SIMON FRASER UNIVERSITY SCHOOL OF ENGINEERING SCIENCE

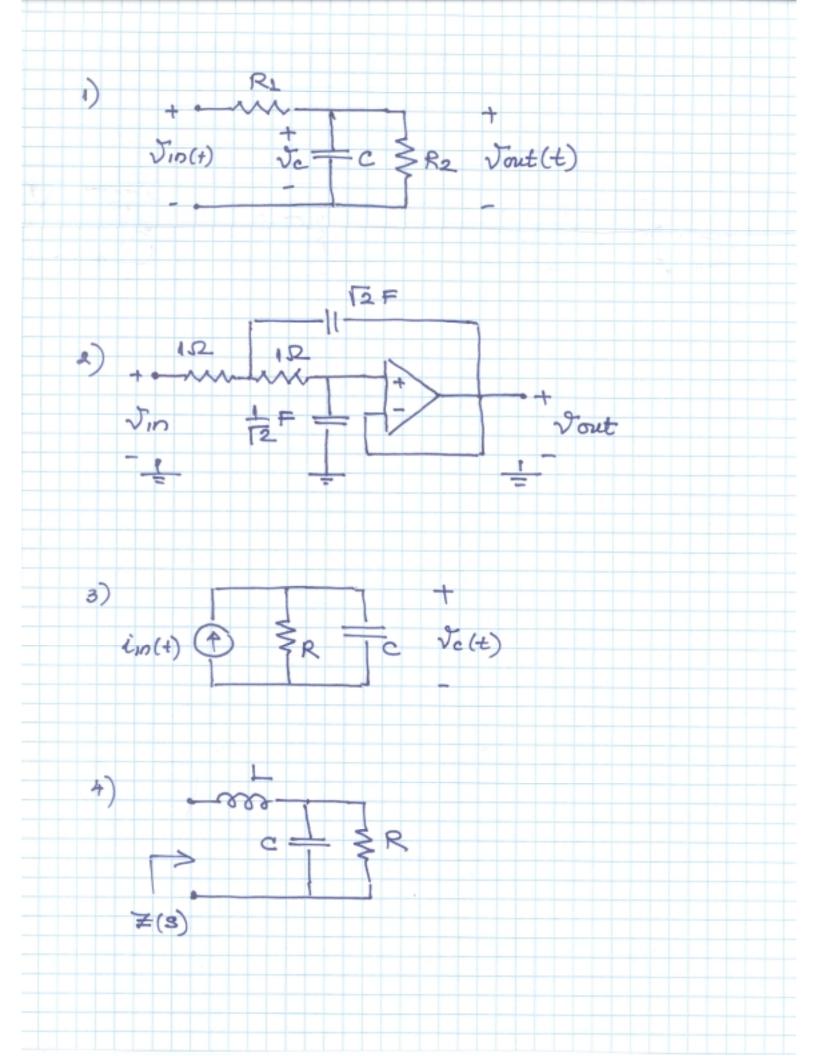
Spring 2008 ENSC 320: ELECTRIC CIRCUITS II

Midterm Examination No. 2 March 19, 2008

Duration: 50 minutes. Attempt all four problems. Questions are **not** equally weighted. Closed book and closed notes. Calculators, PDAs, laptops, and wireless phones are not permitted.

- 1. (25 points) Consider the circuits shown in Fig. 1, where $R_1 = 50 \ \Omega$, $R_2 = 200 \ \Omega$, and $C = 2.5 \ mF$.
 - Find its transfer function.
 - Let $v_{in}(t) = 10e^{-2t}u(t) V$ and $v_c(0_-) = 4 V$.
 - Use Laplace transform to find the complete response of the circuit by first finding the zero-state response and the zero-input response.
 - Identify the circuit's forced response and natural response.
 - Identify the circuit's steady-state response and transient response.

2. (40 points)


Consider the circuit shown in Figure 2. Assume that the op-amp is ideal.

- Find transfer function $H(s) = V_{out}/V_{in}$.
- Find zeros and poles of H(s).
- Find the magnitude and the phase of the frequency response.
- Plot the magnitude as functions of ω and identify the type of the circuit.
- 3. (20 points) Consider the circuits shown in Fig. 3, where $R = 0.25 \ \Omega$ and C = 1 F.
 - Find the transfer function H(s) and the impulse response h(t).
 - If $i_{in}(t) = 3e^{-t}u(t) A$, find $v_c(t)$ using the convolution integral.

4. (15 points)

Consider the circuit shown in Figure 4. Find:

- input impedance Z(s)
- the circuit's resonant frequency ω_r
- input impedance at ω_r .

6. THE INVERSE LAPLACE TRANSFORM

m number	f(t)	$\mathcal{L}[f(t)] = F(s)$
1	<i>K</i> δ(<i>t</i>)	K
2	Ku(t) or K	<u>K</u>
	history and the state of the second	8
3	r(t)	$\frac{1}{s^2}$
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
5	$e^{-at}u(t)$	$\frac{1}{s+a}$
6	$te^{-at}u(t)$	$\frac{1}{(s+a)^2}$
7	$t^n e^{-at}u(t)$	$\frac{n!}{(s+a)^{n+1}}$
8	$\sin(\omega t)u(t)$	$\frac{\omega}{s^2 + \omega^2}$
9	cos(ωt)u(t)	$\frac{s}{s^2 + \omega^2}$
10	$e^{-at}\sin(\omega t)u(t)$	$\frac{\omega}{(s+a)^2 + \omega^2}$
11	$e^{-at}\cos(\omega t)u(t)$	$\frac{s+a}{(s+a)^2+\omega^2}$
12	$t \sin(\omega t) u(t)$	$\frac{2\omega s}{(s^2 + \omega^2)^2}$
13	$t \cos(\omega t)u(t)$	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$
14	$\sin(\omega t + \phi)u(t)$	$\frac{s\sin(\phi) + \omega\cos(\phi)}{s^2 + \omega^2}$
15	$\cos(\omega t + \phi)u(t)$	$\frac{s\cos(\phi) - \omega\sin(\phi)}{s^2 + \omega^2}$
16	$e^{-dt}[\sin(\omega t) - \omega t \cos(\omega t)]u(t)$	$\frac{2\omega^{3}}{[(s+a)^{2}+\omega^{2}]^{2}}$
17	$te^{-at}\sin(\omega t)u(t)$	$2\omega \frac{s+a}{[(s+a)^2+\omega^2]^2}$
18 e	$e^{-at} \left[C_{\parallel} \cos(\omega t) + \left(\frac{C_2 - C_{\parallel} a}{\omega} \right) \sin(\omega t) \right] u(t)$	$\frac{C_1s+C_2}{(s+a)^2+\omega^2}$
19	$2\sqrt{A^2+B^2}e^{-at}\cos\left[\omega t-\tan^{-1}\left(\frac{B}{A}\right)\right]$	$\frac{A+jB}{s+a+j\omega} + \frac{A-jB}{s+a-j\omega}$
20	$2\sqrt{A^2+B^2} te^{-at} \cos\left[\omega t - \tan^{-1}\left(\frac{B}{A}\right)\right]$	$\frac{A+jB}{(s+a+j\omega)^2} + \frac{A-jB}{(s+a-j\omega)^2}$