
1

ENSC 427: Communication
Networks
Robustness of Gnutella network

Spring 2009

Final Project

Hao Su 301006404
Email: hsu@sfu.ca

Ken Wu 301007515
Email: ksw3@sfu.ca

Webpage:
www.sfu.ca/~hsu

2

Table of content

1. Abstract……………….……………………………………..……………………………3
2. Introduction and Background.....................................…….…………………….…..4

2.1 P2P networks………………………………………………………………………..4
2.2 Gnutella network……………… …………...………………...……………………..4

2.2.1 Descriptors…………..……………………..…………………………….4
2.2.2 Descriptor header formats……………………………..……………….5
2.2.3 Descriptor payload formats………………………..…………………...5
 2.2.3.1 Ping…………………..………………………………………...6
 2.2.3.1 Pong………………………...………………………………….6
 2.2.3.3 Query………………………...…………………………………6
 2.2.3.4 Query Hit……………………………………………………….6
 2.2.3.5 Push…………………………………………………………….7
2.2.4 Descriptor routing……………………………..…………………………7
2.2.5 Project Scope……………………………………..……………………..9

3. Implementation………………………………..………………………………………...9
3.1 Packet Format…………………………………………...………………………….9
3.2 Link Model……………………………………………...……………………………9
3.3 Node Model……………………………………………………..…………………10
3.4 Process Model……………………………………………………………………..11
3.5 Network Model……………………………………………………………...……..12

4. Simulation and Results………………………………………………………………..15
4.1 Running the simulation……………………………………………………………15
4.2 Node results………………………………………………………………………..15

5. Conclusion and Discussion……………………………………………………...……18
5.1 Conclusions………….……………………………………….……………………18
5.2 Project Difficulties……………………………...………………………………….18
5.3 Future Work and Improvements…………………………...…………………….19

3

1. ABSTRACT

Like most other P2P protocols and networks, Gnutella builds a virtual network at the
application level with its own routing mechanisms. However, unlike P2P networks such
as Napster, which uses a client-server structure for file searching, Gnutella is a true P2P
system that uses a decentralized system even for file searching, via Ping and Pong
descriptors. This makes Gnutella a very robust to failure. In this project, OPNET
modeler will be used to simulate a simplified Ping and Pong message-exchanging
Gnutella v0.4 protocol. We will test the robustness of such a network by monitoring
Packets received individual nodes in the network. We will implement a variety of
different network topologies, and fail certain nodes of these topologies to test the
robustness to failure. As well, we try to find out what the TTL, or the time-to-live value
has on the robustness of the Gnutella network. Our results show that the node
connectivity has a great impact on the traffic of the network, but the topology does not.
Also, faulty networks will receive fewer packets at each node than one that is fully
connected, but it would be very difficult to completely cut off individual nodes from the
network, unless a large number of nodes in the network are disconnected. Our results
are inconclusive as to how TTL will affect the robustness of the Gnutella network.

4

2. INTRODUCTION AND BACKGROUND

2.1 P2P networks

A peer-to-peer (P2P) network is formed by two or more clients connected together to
share resources directly with one another. In effect, each peer node in the network can
be seen as both the server and client and are equal to each other, with no robust
machine to act solely as a server. This type of network is refereed to as “decentralized”,
in the sense that it differs from the client-server model where communication is usually
to and from a central server. For example, a non-P2P file transfer system have a file
transfer protocol (FTP) server where many clients initiated the download, and the
server(s) react to satisfy these requests. Unlike a P2P protocol, the clients and the
servers are itself.

Typically, P2P networks are used for connecting nodes via largely ad hoc connections.
This type of networks is often used for files sharing and real time telephony traffic.
Some P2P networks and applications such as Napster and OpenNAP use a client-server
structure for some of its tasks such as file searching, and uses P2P structures for the
remaining tasks. However, networks such as Gnutella and Freenet uses what is
referred to as true P2P, in which all tasks use the same P2P structures. In this project,
we focus on examining the robustness of the Gnutella network by implementing an
extremely simplified model of a Gnutella (version 0.4) network with different topologies,
failed nodes and time to live (TTL) values, then collecting data such as number of
packets sent and received for these topologies.

2.2 Gnutella Network

Gnutella is a protocol for distributed search developed by Justin Franel and Tom Pepper
of Nullsoft in early 2000, and it was becoming the most popular file sharing network on
the internet by late 2007. Although the Gnutella protocol is referred to as a “true” P2P
network, it is greatly facilitated by directory servers that inform peers of the network
addresses of other peers. In the Gnutella protocol, each of these client/server peers is
called a servent. Each time a servent wants to do a search; it sends a request to all of
its actively connected servents. These servents in turn forward the request, and so on,
until the packet records a predetermined number of maximum “hops” from the sender.

2.2.1 Descriptors

The Gnutella protocol consists of a set of 5 descriptors used to communicate data
between the servents: Ping, Pong, Query, QueryHit and Push. Ping is used to
actively discover hosts on the network, and it is sent out to all of the servents that are
connected to the sender. A servent that receives a Ping descriptor is expected to
respond with one or more of the Pong descriptors, which includes the address of a
connected Gnutella servent and information regarding the amount of data that it has
made available to the network. The Query descriptor is used primarily as a searching
mechanism for searching files, and sends a QueryHit descriptor back if indeed there is a

5

match. Finally, the Push descriptor allows a firewalled servent to contribute file-based
data to the network.

2.2.2 Descriptor header formats

Once a servent connects to the network, it communicates to the other servents by
sending and receiving descriptors preceded by a header. The byte structure of the
header is shown as follows:

Table 1. Descriptor Header

Message ID Payload
Descriptor

TTL Hops Payload
Length

0……………15 16 17 18 19…………..22

The following table describes each of the fields in the Descriptor header

Table 2. Descriptor header byte field

Descriptor ID
/ Message ID

The first 16 bytes of the descriptor header, represents a unique ID for
identifying the descriptor on the network.

Payload
Descriptor

1 byte of string describing what type of descriptor is expected to follow
the header:
0x00 = Ping 0x01= Pong 0x40= Push 0x80= Query 0x81=QueryHit

TTL Stands for Time To Live. This byte of string represents the number of
time that the descriptors still have left to be forwarded by the Gnutella
network. The TTL will be decremented each time the descriptor is
forwarded until the TTL reaches 0.

Hops A byte of string representing the number of times that the descriptor has
been forwarded. It will be incremented every time the descriptor is
forwarded. TTL + Hops will always be a constant number; this property
can be used for error checking.

Payload
Length

4 byte string that stores the length of the descriptor that is expected to
follow the header. This will give the servent heads-up on where the
next descriptor header is going to be.

2.2.3 Descriptor payload formats

2.2.3.1 Ping

The Ping descriptor has no payload, and has zero length; therefore it is simply
represented by its descriptor header with a payload descriptor of 0x00 and a payload
length of 0x00000000.

2.2.3.2 Pong

The Pong descriptor payload is made up of 14 bytes of information whose byte format is
shown in table 3.

6

Table 3. Pong descriptor payload format

Field Port IP address Number of Files Number of
kilobytes shared

Bytes in
descriptor
payload

0……………
………..1

2……………
…………5

6…………………
…….9

10…………………
……13

description Port number
that the
responder
can accept
connections

The IP
address of the
responding
host

Number of files
that the
responding host is
sharing with the
Gnutella network

Number of data in
kilobytes that the
responding host is
sharing with the
Gnutella network

2.2.3.3 Query

The Query descriptor payload is made up of 3 or more bytes of information whose byte
format is shown in table 4.

Table 4. Query descriptor payload format

Field Minimum speed Search criteria
Bytes in
Descriptor
Payload

0…………………………………………
……………1

2……………………………………
………X

description The minimum speed (in KB/sec) at
which the responding servent should
be able to communicate. If not then
don’t respond.

The string that describes the
query. The length of this string is
determined by the payload length
in the descriptor header.

2.2.3.4 Query Hit

The QueryHit descriptor payload format is shown below in table 5

Table 5. QueryHit descriptor payload format

Field Number
of hits

Port IP
address

Speed Result Set Servent
Identifier

Bytes in
payload

0 1………
…..2

3………
……6

7………
…..10

11………n-1 n…….…n+1
6

Description # of
query
hits

Port
number
for
respondi
ng host

IP
address
of the
respond
ing host

Speed
(kB/sec)
of
respond
ing host

Set of
responses to
the query,
includes file
index, size and
name

16 byte
string for
identifying
the
responding
servent

7

2.2.3.5 Push

The Query descriptor push is made up of 26 bytes of information whose byte format is
shown in table 6.

Table 6. Push descriptor payload format

Field Servent identifier File index IP address Port
Bytes in
payload

0………………….
15

16………………
….19

20……………….
.23

24……………..
25

Description 16 byte string
identifying
servent being
requested to push

Index identifying
file to be
pushed

IP address of the
host servent with
the file to be
pushed

The PORT to
which the file
will be pushed
to

2.2.4 Descriptor routing

The Gnutella protocol requires that the servents route network traffic to according to a
specific routing rules to ensure fast connection setup and data transfers. When a
servent receives a ping or a pong descriptor, it will forward these descriptors to neighbor
servents which are directly connected except the servent that received the descriptor
from. It may also decide to reply with a pong same path that the ping was sent if the
time to live counter is not zero. To avoid extra traffic, a servent receiving a pong
descriptor with a descriptor ID will discard the Pong if it has not seen a Ping with the
same descriptor ID. For the same reasons, when a servent receives a Query descriptor,
it will reply with a QueryHit descriptor only in the same path that the Query descriptor
came from, and discard any received QueryHit descriptor for which it had not received a
Query descriptor previously. The same can be said about the Push Descriptors.
Furthermore, a servent receiving a descriptor that it had already received before will try
not to forward the descriptor any further.

Once a QueryHit descriptor is received by a servent, it may initiate data transfer directly
from the targeted servent to try to download the file described by the QueryHit
descriptor’s result set. The protocol used for download is HTTP, and is done outside of
the Gnutella network.

8

In Fig.1 shows the routing of the Ping and Pong descriptors in the Gnutella network with
TTL and hops parameters. Fig. 2 shows the routing of the Query, QueryHit and Push
descriptors

Figure 1. Ping and pong routing in Gnutella

Figure 2. Query, QueryHit and Push routing in Gnutella protocol

9

2.2.5 Project Scope

The goal of the project is to build a very simplified OPNET model of a Gnutella v0.4
network that simulates Ping and Pong message passing between servents. Different
scenarios of small Gnutella networks with varying numbers of servents and different
topologies will be built and tested for robustness. We will vary parameters such as
number of servent nodes, number of failed/disconnected nodes, network topology, and
TTL initial values to see their effect on the robustness and traffic of the Gnutella network.

It must be emphasized that the real Gnutella network is very large and complex, and the
model we are implementing is only an extremely simplified model. Note that we are not
including the Query, QueryHit and Push descriptors in our model, or the actual protocol
(HTTP) used for file transfer/download.

3. IMPLEMENTATION

A servent model is implemented with a specified packet format, link model, node model
and a process model to test the robustness of the P2P network.

3.1 Packet Format

We created a packet format with many variables such as original packet id, message id,
time to live, hops and sender id, each variable contained 32 bits. The process model will
use these variables to allow the communication between two or more nodes; we’ll
discuss more on the process model later on the report. The packet format created is
shown in Fig. 3.

Figure 3. The packet format

3.2 Link Model

The link model is created to support the point to point duplex and packet format we
created. Some of the attributed we changed are: error correction model ecc model to
ecc_zero_err, error model to NONE, point to point propagation delay model propdel
model to dpt_propdel, point to point transmission delay txdel model to dpt_txdel and
declare external files. These setting are set to allow us to analysis error correction with
ecc_zero_err model and allowed us to take link delay statistics. The link model is shown
in Fig. 4.

10

Figure 4. Duplex link model

3.3 Node Model

The node model consisted of a simple source process which created ping message at a
constant rate. Also we can change the Inter-arrival-time (IAT) of the ping message if we
wish. The default IAT is set to one second, we did not change IAT for this project
because we figured the graph for default IAT is easier to analysis.

There are three point-to-point transmitters and receivers which support the packet format
we created. There is a process proc in the center of the node model, this process model
is created to support the flow of the packets received and transmitted. We will explain
more on how the process model works later on the report.

 Notice the packet stream have to be connected in ordered fashion or else it won’t work,
this was done by analyzed and followed the order specified in the code from the process
model. We connected the packet streams from receiver 0 pr_0 to receiver pr_2 to
process model proc, then source src to proc and finally proc to the transmitters pt_0 to
pt_2 respectively. Lastly the transmitters and the receivers are connected with logical
Tx/Rx (transmitter and receiver) association lines. We check these connections are what
we expected by verifying the connectivity from the process model proc, indeed we
obtained the connected we wanted.

In the node interface we set node type to fixed node and in node statistics we promoted
the packet count in and packet count out, these data can be collected and analyzed.
Each node model itself will represent a servent (peer/server) itself. The Node model we
created is shown in Fig. 5.

Figure 5: The node model

11

3.4 Process Model

We have three state in this process model, the init state, idle state, and procRCV state.
The init and procRCV state is in forced state which means from init to idle state and
procRCV to idle state required no condition to change state. In the idle state, when there
is no action idle state will loops to itself with default. When the source SRC_ARRVL is
arrived then the ping message is generated xmt_src_ping then it loops back to the idle
state. Upon the arriving of packet detected by the receiver RCVR_ARRVL idle state
jumps to procRCV state. The procRCV state handlethe flow of the ping/pong message. It
replied with the pong message and forward ping/pong if time to live is greater than one.
The global variable is declared in the State Variable. Noticed more coding are in the
Header Block and Function Block. The local statistic is set to collect pack count in and
packet count out. The process model is shown in Fig. 6. We’ll provide the code for our
process model in the appendix.

Figure 6: The process model

3.5 Network models

In this project, there were a total of 7 network models that were implemented to test the
different aspects of the network’s robustness. Each network servent is implemented
using the node model described in section 2.3, and the link model of section 2.2. Since
the node model has 3 receiver and 3 transmitters, each of the servent can only be
connected to 3 other servents. So in this way, we were somewhat limited in our network
model implementations. The 7 network model implementations are explained in table 7.

12

Table 7. Network models of different scenarios and their descriptions

Scenario Description
5 servent ring This is a simple ring topology with 5 servents. Each Servent is

connected to the servents immediately to its left and right.
5 servent ring with 1
servent faulty

This is the same 5 servent ring topology as above, except nodes
one is failed. This scenario is compared with the previous one to
see the effects of failed servents in a ring topology.

28 servent ring fully
interconnected

This is a more complex ring topology with 28 servents, and each
servent is connected with 3 other servents that’s is the maximum
number of connection a servent is allowed due to our
implementation design with 3 transmitters and 3 receivers.

28 servent ring fully
interconnected with
10 faulty

This is the same 28 servent fully connected ring topology as above,
except that 10 nodes are purposely failed. This scenario is
compared with the previous one to see the effects of failing many
nodes in a larger network.

Random network This is more randomly connected network with each servent
randomly connected to 1, 2, or 3 other servents in the network.
Different servents inside this random network is compared with
each other to see whether each node inside the topology will
receive different number of packets.

Line network with
TTL=2

A straight line network with 7 servents is implemented. In this
network, the TTL(time to live) parameter of each Ping and Pong
packets is reduced to only 2, so each packet can be passed on
from servent to servent only twice.

Line network with
TTL=5

This is the same network as the one above, except that in this
scenario, the TTL(time to live) is increased to 5. This scenario is
compared with the previous one to see the effects of changing the
TTL of packets sent by the servents.

Figures 7-12 shows the network models of all the scenarios described in Table 7.

Figure 7. Scenario 1 - 5 Servents ring

13

Figure 8. Scenario 2 - 5 servents ring with node_0 failed

Figure 9. Scenario 3 - 28 servents interconnected ring

14

Figure 9. Scenario 4 - 28 servents interconnected ring with failed nodes

Figure 10. Scenario 5 - randomly connected servents

15

Figure 11. Scenario 6 and 7 - line topology with different TTL

Noticed that scenario 6 and 7 have the same picture, but the node models used are
different. The node model for scenario 6 is khpn_node_model_ttl this node model used
TTL = 2 whereas, the node model for scenario 7 is khpn_node_model this node model
used TTL = 5.

4. SIMULATION and RESULTS

4.1 Running the simulation

All simulations were run for 200 seconds, and ping messages were generated 5 seconds
after simulation begins. In our simulation, we only used the inter-arrival time (IAT) of 1
second at the node source. Each scenario is modeled in campus network, the average
overlaid statistic of packet count in is taking for analysis in the graphs below. The
simulation for each scenario takes about a minute to simulate depending on server traffic.

4.2 Node Results

In all simulations, we plotted the number of packets received (packet count in) by the
node (servent) against the simulation time. Because the IAT is only 1 second, the
graphs show as a linear line increasing over time. This shows that the packets are
continuously being received as time progress.

In Fig. 12 shows the result of scenarios 1 and 2, namely, the 5 node ring and the 5 node
ring with a failed servent at node_0. The result is collect for node_1 only, since all the
non-broken nodes have the same characteristics, we only need to analysis one node to
show the robustness of the network. As expected, the 5-node ring that does not have a
broken node received more packets than the 5-node ring with a broken node, and the
number of packets received by the latter is roughly half the amount received by the
former. This is easy to see why, because in such a ring topology, each node should
receive ping and pong messages from both the left and right, but when a node is broken,
the path in one way is broken and the node can only receive packets travelling one way
rather than both ways.

16

Figure 12.Packets received by the 5 ring topology node 1

In Fig. 13 Shows the result of scenarios 3 and 4, namely, the 28-node completely
connected network and the same network with 10 broken nodes. The 28 nodes
interconnected ring topology (red line) has higher packet count in compared with 28
node interconnected ring topology with 10 broken nodes (blue line) as expected.
Although there is many broken nodes to the network node_1 still able to connect to other
servents thus, the network for P2P is very strong and is hard to break “all” the nodes to
the network. This greatly enhanced the file transfer compared with a server based
protocol; if the server node is broken than no other user can access the network until the
server is running again.

We can compare Fig. 12 with Fig. 13 we noticed Fig 13 generally have more packets
count in. This is because there are 3 connections to node_1 in the 28 nodes scenario
compared with 2 connections to 5 nodes scenario.

Figure 13: Packet received by 28 nodes topology in node_1

17

Fig. 14 shows the result of scenario 5, which is a “random” network topology. Note that
this scenario is only a very crude model of a realistic random topology, created with
reference to. This graph shows the packet received at three different nodes (node_1,
node_3 and node_15). As expected, node 3, which has the most connections with other
nodes, received the most number of packets. Node 15, which only has 1 other node
connected to it, received the least number of packets, while node 1 received the medium
amount of packets. Compared with figure 13, we see that node 3(red line in figure 14) in
the random model received the same number of packets as the 28 node topology(red
line in figure 13). This shows that the network topology does not really affect the number
of packets received at each node when the inter-arrival time is very fast. Rather, what
matters is how many other nodes are connected to the node in question. Also, we can
see that for even though failing nodes will decrease the number of packets received by
the node in question, to truly disconnect it from the rest of the network one must sever
every connection it has with the rest of the network.

Figure 14. Random topology, packet received at different nodes in the network

Fig. 15 Shows the result of scenario 6 and 7, namely, the line topology with TTL=2 and
TTL=5. Initially, one may find the result very surprising, as the two different TTL values
yields the same result. One would expect that TTL=5 should give a higher number of
packet received, as the Ping and Pong messages would have a more hops to
propagate before they are discarded, thus each node would receive more packets,
especially in a simple line topology such as this, where packets can only travel in one
path. However, since we are using inter-arrival time (IAT) of only 1 second, it could be
possible that the packets do not have time to “die out” before the next packet is sent out
1 second later, so TTL does not really affect the packet received by each node. In other
words, each non-edge node in the topology is still receiving packets from both sides at a
constant rate despite the lower TTL, and thus the result is saturated, and the graphs are
overlapped in Fig. 15.

18

Figure 15. Line topology with different TTL values

5. CONCLUSION and Discussion

5.1 Conclusions

In this project, we implemented a very simplified Gnutella P2P network using the OPNET
modeler. The node model we constructed only simulates the Ping and Pong descriptor
message passing in Gnutella servents, but omitted the Query and QueryHit descriptor
that the real Gnutella protocol uses. Using our node model, we built network models
with varying number of nodes, in different topologies. From our resulting graphs, we
have found that the Gnutella protocol and network structure is very robust indeed.
Although the number of packets received at the node in question will decrease if other
nodes close to this node are failed, to truly disconnect it from the rest of the network one
must ever every connection it has with the rest of the network.

Results also show that when the inter-arrival time of the Ping and Pong generation is
very fast, the network topology does not really affect the number of packets received at a
node. Rather, what affects the number of packets received is how many other nodes
that the node in question is connected to. Of course, this would not necessarily be true
in a real world Gnutella system, since the inter-arrival time of each servent will be
different, and depending on where in the topology that the node in question is connected
to, there will be a difference in the number of packets received.

Furthermore, it must be noted that at this time in our study, the effects of TTL on the
number of packets received is inconclusive. As mentioned earlier, our investigation on
TTL yielded the same number of packets received no matter what value we set our TTL
to be. This is due to the fact that our model has a very short inter-arrival time of only 1
second, therefore, the packets being received at the node in question does not have
time to “die out”, thus saturating the result. Theoretically, however, the TTL should affect
the number of packets received at each node, because a larger TTL will give each
packet more range to travel, thus having more chance to reach its destination.

19

5.2 Project Difficulties

The difficulty of this project resides mostly in the implementation of the process model
and the node model. Due to the massive number of steps required to build a working
simulation of our Gnutella network and the complexity of the OPNET tool and the C code,
errors are easily made which results in a non-compiling model, or a model that does not
yield the correct results. Due to these reasons, a great deal of time was spent on
debugging to make a working model. More problems arose even after a successful
working model had been built. For example, because of the complexity of our model,
and the large number of inter-related state variables, functional blocks and other C
codes, changing one small thing in the node model will make the whole model not
compile, and debugging will take a long time. Initially, to demonstrate the effect that TTL
has on the robustness of the Gnutella network, we intended to modify our existing node
model to have no source. This way, we would be able to make a network in which some
nodes are able to generate Pings and Pongs, while the other nodes are not, but simply
pass them along in the network. Such a network will better demonstrate the effect TTL
will have on robustness of the system. However, when we tried to modify our existing
node model to have no source, it would not compile, and we could not debug the
problem. Despite these difficulties, the project is non trivial, because we are able to see
that the topology does not really affect the packets received at each node. Instead, how
many connections are at each node is what really affects the number of packets
received at the node. Also, we were able to see that it would be really difficult to really
fail a decentralized network such as Gnutella.

5.3 Future Work and Improvements

In the future, we could improve the project by changing the inter-arrival time of the
packets, therefore decreasing the rate at which Ping and Pong messages are generated,
so that the results will not be saturated in hopes that we will see a difference in the
number of packets received when the TTL value is changed. Also, if there were more
time, we could successfully make a new node model that has no source, but simply pass
on the received messages. This way will also help see the effects that TTL has on the
number of packets received at each node. Furthermore, it would also give a better and
more accurate simulation of the Gnutella protocol if we could include the Query,
QueryHit, and Push descriptors in our future model.

20

Reference

[1] D. Andre, "Peer-to-Peer Networks as Content Distribution Networks,” ensc.sfu.ca, report. Fall 2003.
[Online]. Available: http://www.ensc.sfu.ca/~ljilja/ENSC835/Fall03/Projects/dufour/Report.pdf. [Accessed:
Mar. 06, 2009].

[2] “BitTorrent,” Mar. 10, 2008. [Online].
Available: http://wiki.limewire.org/index.php?title=User_Guide_Bittorent. [Accessed: Feb. 06, 2009]

[3] E. Elghoneimy, “Scalability and Robustness of the Gnutella protocol,” ensc.sfu.ca, report. Spring 2006.
[Online]. Available: http://www.sfu.ca/~eelghone. [Accessed: Feb. 06, 2009].

[4] T. Kelvin, “Examination of Routing Algorithms in Distributed Hash Tables (DHTs) for Peer-to-Peer (P2P)
Network,” ensc.sfu.ca, report. Spring 2008. [Online].
Available: http://www.sfu.ca/~kta18/ENSC835ProjectReport.pdf. [Accessed: Feb. 13, 2009].

[5] T. Klingberg, “Gnutella 0.6,” murdoch.edu.au, report. June 2002. [Online]. Available:
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html. [Accessed: Feb. 13, 2009].

[6] W. Stephanie, “How Kazaa Works,” computer.howstuffworks.com, document. [Online].
Available: http://computer.howstuffworks.com/kazaa3.htm. [Accessed: Feb 13, 2009].

[7] A. Dufour, L. Trajkovic, “Improving Gnutella Network Performance Using Synthetic Coordinates,”
ensc.sfu.ca, report. August 2006 [Online].
Available: http://www.ensc.sfu.ca/~ljilja/papers/QShine2006_158.pdf. [Accessed: April 03, 2009].

http://www.ensc.sfu.ca/~ljilja/ENSC835/Fall03/Projects/dufour/Report.pdf�
http://wiki.limewire.org/index.php?title=User_Guide_Bittorent�
http://www.sfu.ca/~eelghone/�
http://www.sfu.ca/~kta18/ENSC835ProjectReport.pdf�
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html�
http://computer.howstuffworks.com/kazaa3.htm�
http://www.ensc.sfu.ca/~ljilja/papers/QShine2006_158.pdf�

21

Appendix

Project code

/* Process model C form file: khpn_process_model.pr.c */
/* Portions of this file copyright 1992-2007 by OPNET Technologies, Inc. */
/* This variable carries the header into the object file */

const char khpn_process_model_pr_c [] = "MIL_3_Tfile_Hdr_ 140A 30A opnet 7 49D9848C 49D9848C 1 payette fta1 0 0 none none 0 0 none 0 0 0 0 0 0
0 0 18a9 3
";

#include <string.h>

/* OPNET system definitions */
#include <opnet.h>

/* Header Block */
#include <stdbool.h>

/* packet stream definitions */

#define RCV_0_IN_STRM 0

#define RCV_1_IN_STRM 1

#define RCV_2_IN_STRM 2

#define SRC_IN_STRM 3 //simple_source

#define XMT_0_OUT_STRM 0

#define XMT_1_OUT_STRM 1

#define XMT_2_OUT_STRM 2

/* message ids*/

#define PING 1

#define PONG 2

/* initial ttl value (initial hops = 0) - for gen ping */

#define TTL_INIT 5

//for pong ttl = rcvhops+1

/* Packet format and size */

#define FORMAT_STR "khpn_packet_format"

#define PKSIZE 1024

/* transition macros */

#define SRC_ARRVL (op_intrpt_type () == \

OPC_INTRPT_STRM && op_intrpt_strm () == SRC_IN_STRM)

#define RCVR_ARRVL (op_intrpt_type () == OPC_INTRPT_STRM \

&& ((op_intrpt_strm () == RCV_0_IN_STRM) \

|| (op_intrpt_strm () == RCV_1_IN_STRM) \

22

||(op_intrpt_strm () == RCV_2_IN_STRM)))

/* Ping and pong cache memory size */

#define CACHE_SIZE 100

/* cache struct, currently only ids are used */

typedef struct{

int id;

int hops;

Objid orig_Objid;

int sndr;

}msg_cache;

/* End of Header Block */

#if !defined (VOSD_NO_FIN)

#undef BIN

#undef BOUT

#define BIN FIN_LOCAL_FIELD(_op_last_line_passed) = __LINE__ - _op_block_origin;

#define BOUT BIN

#define BINIT FIN_LOCAL_FIELD(_op_last_line_passed) = 0; _op_block_origin = __LINE__;

#else

#define BINIT

#endif /* #if !defined (VOSD_NO_FIN) */

/* State variable definitions */

typedef struct

 {

 /* Internal state tracking for FSM */

 FSM_SYS_STATE

 /* State Variables */

 int pk_count_out ;

 int pk_count_in ;

 Objid own_id ;

 char node_name[10] ;

 Objid node_objid ;

 Stathandle pk_cnt_out_stathandle ;

23

 Stathandle pk_cnt_in_stathandle ;

 int pong_ptr ;

 int ping_ptr ;

 msg_cache ping_msg_cache[CACHE_SIZE] ;

 msg_cache pong_msg_cache[CACHE_SIZE] ;

 } khpn_process_model_state;

#define pk_count_out op_sv_ptr->pk_count_out

#define pk_count_in op_sv_ptr->pk_count_in

#define own_id op_sv_ptr->own_id

#define node_name op_sv_ptr->node_name

#define node_objid op_sv_ptr->node_objid

#define pk_cnt_out_stathandle op_sv_ptr->pk_cnt_out_stathandle

#define pk_cnt_in_stathandle op_sv_ptr->pk_cnt_in_stathandle

#define pong_ptr op_sv_ptr->pong_ptr

#define ping_ptr op_sv_ptr->ping_ptr

#define ping_msg_cache op_sv_ptr->ping_msg_cache

#define pong_msg_cache op_sv_ptr->pong_msg_cache

/* These macro definitions will define a local variable called */

/* "op_sv_ptr" in each function containing a FIN statement. */

/* This variable points to the state variable data structure, */

/* and can be used from a C debugger to display their values. */

#undef FIN_PREAMBLE_DEC

#undef FIN_PREAMBLE_CODE

#define FIN_PREAMBLE_DEC khpn_process_model_state *op_sv_ptr;

#define FIN_PREAMBLE_CODE \

 op_sv_ptr = ((khpn_process_model_state *)(OP_SIM_CONTEXT_PTR->_op_mod_state_ptr));

/* Function Block */

#if !defined (VOSD_NO_FIN)

enum { _op_block_origin = __LINE__ + 2};

#endif

static void xmt_src_ping(void)

24

 {

 Packet * pkptr;

 Packet * cp1_pkptr;

 Packet * cp2_pkptr;

 OpT_Packet_Id pkt_id;

 //char * pkt_id_str;

 FIN(xmt_src_ping());

 /* get packet sent from source, set packet values */

 pkptr = op_pk_get (SRC_IN_STRM);

 pkt_id = op_pk_id (pkptr);

 op_pk_nfd_set_pkid (pkptr, "orig_pkt_id", pkt_id);

 op_pk_nfd_set_int32 (pkptr, "message_id", PING);

 op_pk_nfd_set_int32 (pkptr, "ttl", TTL_INIT);

 op_pk_nfd_set_int32 (pkptr, "hops", 0);

 op_pk_nfd_set_objid (pkptr, "sender_objid", node_objid);

 cp1_pkptr = op_pk_create_fmt (FORMAT_STR);

 op_pk_total_size_set (cp1_pkptr, PKSIZE);

 op_pk_nfd_set_pkid (cp1_pkptr, "orig_pkt_id", pkt_id);

 op_pk_nfd_set_int32 (cp1_pkptr, "message_id", PING);

 op_pk_nfd_set_int32 (cp1_pkptr, "ttl", TTL_INIT);

 op_pk_nfd_set_int32 (cp1_pkptr, "hops", 0);

 op_pk_nfd_set_objid (cp1_pkptr, "sender_objid", node_objid);

 cp2_pkptr = op_pk_create_fmt (FORMAT_STR);

 op_pk_total_size_set (cp2_pkptr, PKSIZE);

 op_pk_nfd_set_pkid (cp2_pkptr, "orig_pkt_id", pkt_id);

 op_pk_nfd_set_int32 (cp2_pkptr, "message_id", PING);

 op_pk_nfd_set_int32 (cp2_pkptr, "ttl", TTL_INIT);

 op_pk_nfd_set_int32 (cp2_pkptr, "hops", 0);

 op_pk_nfd_set_objid (cp2_pkptr, "sender_objid", node_objid);

 /* send packets to transmitters */

 op_pk_send (pkptr, XMT_0_OUT_STRM);

25

 op_pk_send (cp1_pkptr, XMT_1_OUT_STRM);

 op_pk_send (cp2_pkptr, XMT_2_OUT_STRM);

 pk_count_out ++;

 pk_count_out ++;

 pk_count_out ++;

 op_stat_write (pk_cnt_out_stathandle, pk_count_out);

 printf("\n%s:pk_in %d,pk_out %d", node_name, pk_count_in, pk_count_out);

 printf("\n...gen ping: pkt_id %d, ttl %d, hops 0, sender %s", (int)pkt_id, TTL_INIT, node_name);

 printf("\n...gen ping: pkt_id %d, orig_pkt_id %d, ttl %d, hops 0, sender %s", (int)op_pk_id(cp1_pkptr), (int)pkt_id, TTL_INIT, node_name);

 printf("\n...gen ping: pkt_id %d, orig_pkt_id %d, ttl %d, hops 0, sender %s", (int)op_pk_id(cp2_pkptr), (int)pkt_id, TTL_INIT, node_name);

 /* Save to ping cache */

 ping_msg_cache[ping_ptr].id = (int) pkt_id;

 ping_msg_cache[ping_ptr].hops = 0;

 ping_msg_cache[ping_ptr].orig_Objid = node_objid;

 ping_msg_cache[ping_ptr].sndr = SRC_IN_STRM;

 ping_ptr ++;

 if(ping_ptr >= CACHE_SIZE){

 ping_ptr = 0;

 }

 printf("\n\t\tWrote to ping cache, ping_ptr=%d", ping_ptr);

 FOUT;

}

/* End of Function Block */

/* Undefine optional tracing in FIN/FOUT/FRET */

/* The FSM has its own tracing code and the other */

/* functions should not have any tracing. */

#undef FIN_TRACING

#define FIN_TRACING

#undef FOUTRET_TRACING

#define FOUTRET_TRACING

#if defined (__cplusplus)

extern "C" {

26

#endif

 void khpn_process_model (OP_SIM_CONTEXT_ARG_OPT);

 VosT_Obtype _op_khpn_process_model_init (int * init_block_ptr);

 void _op_khpn_process_model_diag (OP_SIM_CONTEXT_ARG_OPT);

 void _op_khpn_process_model_terminate (OP_SIM_CONTEXT_ARG_OPT);

 VosT_Address _op_khpn_process_model_alloc (VosT_Obtype, int);

 void _op_khpn_process_model_svar (void *, const char *, void **);

#if defined (__cplusplus)

} /* end of 'extern "C"' */

#endif

/* Process model interrupt handling procedure */

void

khpn_process_model (OP_SIM_CONTEXT_ARG_OPT)

 {

#if !defined (VOSD_NO_FIN)

 int _op_block_origin = 0;

#endif

 FIN_MT (khpn_process_model ());

 {

 FSM_ENTER ("khpn_process_model")

 FSM_BLOCK_SWITCH

 {

 /*---*/

 /** state (init) enter executives **/

 FSM_STATE_ENTER_FORCED_NOLABEL (0, "init", "khpn_process_model [init enter execs]")

 FSM_PROFILE_SECTION_IN ("khpn_process_model [init enter execs]", state0_enter_exec)

 {

 int i = 0;

 /* Obtain the object id of the surrounding module. */

 own_id = op_id_self ();

 /* Obtain the parent object id and name. */

 node_objid = op_topo_parent (own_id);

 //op_ima_obj_attr_get (node_objid, "name" , node_name);

27

 /* Initialize state (global) variables */

 pk_count_in = 0;

 pk_count_out = 0;

 pk_cnt_in_stathandle = op_stat_reg ("packet count in", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

 pk_cnt_out_stathandle = op_stat_reg ("packet count out", OPC_STAT_INDEX_NONE,
OPC_STAT_LOCAL);

 for(i = 0; i < CACHE_SIZE; i++){

 ping_msg_cache[i].id = -1;

 pong_msg_cache[i].id = -1;

 }

 ping_ptr = 0;

 pong_ptr = 0;

 }

 FSM_PROFILE_SECTION_OUT (state0_enter_exec)

 /** state (init) exit executives **/

 FSM_STATE_EXIT_FORCED (0, "init", "khpn_process_model [init exit execs]")

 /** state (init) transition processing **/

 FSM_TRANSIT_FORCE (1, state1_enter_exec, ;, "default", "", "init", "idle", "tr_0", "khpn_process_model [init ->
idle : default /]")

 /*---*/

 /** state (idle) enter executives **/

 FSM_STATE_ENTER_UNFORCED (1, "idle", state1_enter_exec, "khpn_process_model [idle enter execs]")

 /** blocking after enter executives of unforced state. **/

 FSM_EXIT (3,"khpn_process_model")

 /** state (idle) exit executives **/

 FSM_STATE_EXIT_UNFORCED (1, "idle", "khpn_process_model [idle exit execs]")

 /** state (idle) transition processing **/

 FSM_PROFILE_SECTION_IN ("khpn_process_model [idle trans conditions]", state1_trans_conds)

 FSM_INIT_COND (SRC_ARRVL)

28

 FSM_TEST_COND (RCVR_ARRVL)

 FSM_DFLT_COND

 FSM_TEST_LOGIC ("idle")

 FSM_PROFILE_SECTION_OUT (state1_trans_conds)

 FSM_TRANSIT_SWITCH

 {

 FSM_CASE_TRANSIT (0, 1, state1_enter_exec, xmt_src_ping();, "SRC_ARRVL", "xmt_src_ping()",
"idle", "idle", "tr_2", "khpn_process_model [idle -> idle : SRC_ARRVL / xmt_src_ping()]")

 FSM_CASE_TRANSIT (1, 2, state2_enter_exec, ;, "RCVR_ARRVL", "", "idle", "procRCV", "tr_4",
"khpn_process_model [idle -> procRCV : RCVR_ARRVL /]")

 FSM_CASE_TRANSIT (2, 1, state1_enter_exec, ;, "default", "", "idle", "idle", "tr_1",
"khpn_process_model [idle -> idle : default /]")

 }

 /*---*/

 /** state (procRCV) enter executives **/

 FSM_STATE_ENTER_FORCED (2, "procRCV", state2_enter_exec, "khpn_process_model [procRCV enter execs]")

 FSM_PROFILE_SECTION_IN ("khpn_process_model [procRCV enter execs]", state2_enter_exec)

 {

 int message_id;

 int ttl;

 int hops;

 Objid snd_id;

 Packet *pkptr;

 OpT_Packet_Id pkt_id;

 OpT_Packet_Id orig_pkt_id;

 char * sender_name="test";

 int i;

 bool duplicate_packet; //flag to indicate duplicate
ping,pong

 int input_rcvr;

 int output_xmtr;

 int output_xmtr2;

 /* get packet sent from receiver, read its values */

 input_rcvr = op_intrpt_strm ();

 pkptr = op_pk_get (input_rcvr);

29

 pkt_id = op_pk_id (pkptr);

 op_pk_nfd_get_int32 (pkptr, "message_id",
&message_id);

 op_pk_nfd_get_int32 (pkptr, "ttl", &ttl);

 op_pk_nfd_get_int32 (pkptr, "hops", &hops);

 op_pk_nfd_get_objid (pkptr, "sender_objid",
&snd_id);

 //op_ima_obj_attr_get (snd_id, "name" ,
sender_name);

 op_pk_nfd_get_pkid (pkptr, "orig_pkt_id",
&orig_pkt_id);

 pk_count_in ++;

 op_stat_write (pk_cnt_in_stathandle,
pk_count_in);

 printf("\n%s rcv:pk_in %d,pk_out %d",
node_name, pk_count_in, pk_count_out);

 printf("\n\t...received from rcvr %d: msg_id %d,
pkt_id %d, orig_pkt_id %d, ttl %d, hops %d, sender %s", input_rcvr, message_id, (int)pkt_id, (int)orig_pkt_id, ttl, hops, sender_name);

 if(message_id == 1){

 //Ping,reply with pong, save, forward
to others

 //generate pong and reply

 Packet * pong_pkptr;

 pong_pkptr = op_pk_create_fmt
(FORMAT_STR);

 op_pk_total_size_set (pong_pkptr,
PKSIZE);

 op_pk_nfd_set_pkid (pong_pkptr,
"orig_pkt_id", orig_pkt_id);

 op_pk_nfd_set_int32 (pong_pkptr,
"message_id", PONG);

 op_pk_nfd_set_int32 (pong_pkptr,
"ttl", hops+1); //TTL=HOPS+1

 op_pk_nfd_set_int32 (pong_pkptr,
"hops", 0);

 op_pk_nfd_set_objid (pong_pkptr,
"sender_objid", node_objid);

 switch(input_rcvr){

30

 case RCV_0_IN_STRM:

 output_xmtr = XMT_0_OUT_STRM;

 break;

 case RCV_1_IN_STRM:

 output_xmtr = XMT_1_OUT_STRM;

 break;

 case RCV_2_IN_STRM:

 output_xmtr = XMT_2_OUT_STRM;

 break;

 default:

 printf("\nWarningInvalid input rcvr! Sending to XMT_0_OUT_STRM");

 output_xmtr = XMT_0_OUT_STRM;

 }

 op_pk_send (pong_pkptr,
output_xmtr);

 printf("\n\t...gen pong to xmtr %d:
pkt_id %d, orig_pkt_id %d, ttl %d, hops 0, sender %s", output_xmtr, (int)op_pk_id(pong_pkptr), (int)pkt_id, hops+1, node_name);

 pk_count_out ++;

 /* detect if this is a duplicate */

 duplicate_packet = false;

 for(i = 0; i < CACHE_SIZE; i++){

 if(
 ping_msg_cache[i].id == (int) orig_pkt_id){

 duplicate_packet = true;

 }

 }

 if(duplicate_packet){

 //duplicate ping

 op_pk_destroy (pkptr);

 printf("\n\t....destroy
duplicate ping packet");

 }

31

 else{

 /* Save to ping cache */

 ping_msg_cache[ping_ptr].id = (int) orig_pkt_id;

 ping_msg_cache[ping_ptr].hops = hops;

 ping_msg_cache[ping_ptr].orig_Objid = snd_id;

 ping_msg_cache[ping_ptr].sndr = input_rcvr;

 ping_ptr ++;

 if(ping_ptr >=
CACHE_SIZE){

 ping_ptr = 0;

 }

 printf("\n\t\tWrote ping
to ping cache, ping_ptr=%d", ping_ptr);

 /* forward ping to others
if ttl ok*/

 if(ttl > 1){

 switch(input_rcvr){

 case RCV_0_IN_STRM:

 output_xmtr = XMT_1_OUT_STRM;

 output_xmtr2 = XMT_2_OUT_STRM;

 break;

 case RCV_1_IN_STRM:

 output_xmtr = XMT_0_OUT_STRM;

 output_xmtr2 = XMT_2_OUT_STRM;

 break;

 case RCV_2_IN_STRM:

 output_xmtr = XMT_0_OUT_STRM;

32

 output_xmtr2 = XMT_1_OUT_STRM;

 break;

 default:

 printf("\nWarningInvalid input rcvr! Sending to XMT_1_OUT_STRM,XMT_2_OUT_STRM");

 output_xmtr = XMT_1_OUT_STRM;

 output_xmtr2 = XMT_2_OUT_STRM;

 }

 op_pk_nfd_set_int32 (pkptr, "ttl", ttl-1);

 op_pk_nfd_set_int32 (pkptr, "hops", hops+1);

 op_pk_send
(pkptr, output_xmtr);

 printf("\n\t...fwd ping to xmtr %d: orig_pkt_id %d, ttl %d, hops %d, sender %s", output_xmtr, (int)orig_pkt_id, ttl-1, hops+1, sender_name);

 pk_count_out ++;

 Packet *
cp1_pkptr;

 cp1_pkptr =
op_pk_create_fmt (FORMAT_STR);

 op_pk_total_size_set (cp1_pkptr, PKSIZE);

 op_pk_nfd_set_pkid (cp1_pkptr, "orig_pkt_id", orig_pkt_id);

 op_pk_nfd_set_int32 (cp1_pkptr, "message_id", PING);

 op_pk_nfd_set_int32 (cp1_pkptr, "ttl", ttl-1);

 op_pk_nfd_set_int32 (cp1_pkptr, "hops", hops+1);

 op_pk_nfd_set_objid (cp1_pkptr, "sender_objid", snd_id);

 op_pk_send
(cp1_pkptr, output_xmtr2);

 printf("\n\t...gen ping to xmtr %d: orig_pkt_id %d, ttl %d, hops %d, sender %s", output_xmtr2, (int)orig_pkt_id, ttl-1, hops+1,
sender_name);

 pk_count_out ++;

33

 }

 }

 }

 else{

 //Pong, fwd , save

 /* detect if this is a
duplicate */

 duplicate_packet = false;

 for(i = 0; i < CACHE_SIZE;
i++){

 if(
 pong_msg_cache[i].id == (int) orig_pkt_id){

 duplicate_packet = true;

 }

 }

 if(duplicate_packet){

 //duplicate
pong

 op_pk_destroy (pkptr);

 printf("\n\t....destroy duplicate pong packet");

 }

 else{

 /* Save to
pong cache */

 pong_msg_cache[pong_ptr].id = (int) orig_pkt_id;

 pong_msg_cache[pong_ptr].hops = hops;

 pong_msg_cache[pong_ptr].orig_Objid = snd_id;

 pong_msg_cache[pong_ptr].sndr = input_rcvr;

 pong_ptr ++;

 if(pong_ptr
>= CACHE_SIZE){

 pong_ptr = 0;

34

 }

 printf("\n\t\tWrote pong to pong cache, pong_ptr=%d", pong_ptr);

 /* forward
pong to others if ttl ok*/

 if(ttl > 1){

 switch(input_rcvr){

 case RCV_0_IN_STRM:

 output_xmtr = XMT_1_OUT_STRM;

 output_xmtr2 = XMT_2_OUT_STRM;

 break;

 case RCV_1_IN_STRM:

 output_xmtr = XMT_0_OUT_STRM;

 output_xmtr2 = XMT_2_OUT_STRM;

 break;

 case RCV_2_IN_STRM:

 output_xmtr = XMT_0_OUT_STRM;

 output_xmtr2 = XMT_1_OUT_STRM;

 break;

 default:

 printf("\nWarningInvalid input rcvr! Sending to XMT_1_OUT_STRM,XMT_2_OUT_STRM");

 output_xmtr = XMT_1_OUT_STRM;

 output_xmtr2 = XMT_2_OUT_STRM;

 }

 op_pk_nfd_set_int32 (pkptr, "ttl", ttl-1);

 op_pk_nfd_set_int32 (pkptr, "hops", hops+1);

35

 op_pk_send
(pkptr, output_xmtr);

 printf("\n\t...fwd pong to xmtr %d: orig_pkt_id %d, ttl %d, hops %d, sender %s", output_xmtr, (int)orig_pkt_id, ttl-1, hops+1,
sender_name);

 pk_count_out ++;

 Packet *
cp2_pkptr;

 cp2_pkptr =
op_pk_create_fmt (FORMAT_STR);

 op_pk_total_size_set (cp2_pkptr, PKSIZE);

 op_pk_nfd_set_pkid (cp2_pkptr, "orig_pkt_id", orig_pkt_id);

 op_pk_nfd_set_int32 (cp2_pkptr, "message_id", PONG);

 op_pk_nfd_set_int32 (cp2_pkptr, "ttl", ttl-1);

 op_pk_nfd_set_int32 (cp2_pkptr, "hops", hops+1);

 op_pk_nfd_set_objid (cp2_pkptr, "sender_objid", snd_id);

 op_pk_send
(cp2_pkptr, output_xmtr2);

 printf("\n\t...gen pong to xmtr %d: orig_pkt_id %d, ttl %d, hops %d, sender %s", output_xmtr2, (int)orig_pkt_id, ttl-1, hops+1,
sender_name);

 pk_count_out ++;

 }

 }

 }

 op_stat_write (pk_cnt_out_stathandle,
pk_count_out);

 }

 FSM_PROFILE_SECTION_OUT (state2_enter_exec)

 /** state (procRCV) exit executives **/

 FSM_STATE_EXIT_FORCED (2, "procRCV", "khpn_process_model [procRCV exit execs]")

 /** state (procRCV) transition processing **/

 FSM_TRANSIT_FORCE (1, state1_enter_exec, ;, "default", "", "procRCV", "idle", "tr_3", "khpn_process_model
[procRCV -> idle : default /]")

36

 /*---*/

 }

 FSM_EXIT (0,"khpn_process_model")

 }

 }

void

_op_khpn_process_model_diag (OP_SIM_CONTEXT_ARG_OPT)

 {

 /* No Diagnostic Block */

 }

void

_op_khpn_process_model_terminate (OP_SIM_CONTEXT_ARG_OPT)

 {

 FIN_MT (_op_khpn_process_model_terminate ())

 /* No Termination Block */

 Vos_Poolmem_Dealloc (op_sv_ptr);

 FOUT

 }

/* Undefine shortcuts to state variables to avoid */

/* syntax error in direct access to fields of */

/* local variable prs_ptr in _op_khpn_process_model_svar function. */

#undef pk_count_out

#undef pk_count_in

#undef own_id

#undef node_name

#undef node_objid

#undef pk_cnt_out_stathandle

#undef pk_cnt_in_stathandle

#undef pong_ptr

#undef ping_ptr

#undef ping_msg_cache

#undef pong_msg_cache

37

#undef FIN_PREAMBLE_DEC

#undef FIN_PREAMBLE_CODE

#define FIN_PREAMBLE_DEC

#define FIN_PREAMBLE_CODE

VosT_Obtype

_op_khpn_process_model_init (int * init_block_ptr)

 {

 VosT_Obtype obtype = OPC_NIL;

 FIN_MT (_op_khpn_process_model_init (init_block_ptr))

 obtype = Vos_Define_Object_Prstate ("proc state vars (khpn_process_model)",

 sizeof (khpn_process_model_state));

 *init_block_ptr = 0;

 FRET (obtype)

 }

VosT_Address

_op_khpn_process_model_alloc (VosT_Obtype obtype, int init_block)

 {

#if !defined (VOSD_NO_FIN)

 int _op_block_origin = 0;

#endif

 khpn_process_model_state * ptr;

 FIN_MT (_op_khpn_process_model_alloc (obtype))

 ptr = (khpn_process_model_state *)Vos_Alloc_Object (obtype);

 if (ptr != OPC_NIL)

 {

 ptr->_op_current_block = init_block;

#if defined (OPD_ALLOW_ODB)

 ptr->_op_current_state = "khpn_process_model [init enter execs]";

#endif

 }

 FRET ((VosT_Address)ptr)

 }

void

_op_khpn_process_model_svar (void * gen_ptr, const char * var_name, void ** var_p_ptr)

38

 {

 khpn_process_model_state *prs_ptr;

 FIN_MT (_op_khpn_process_model_svar (gen_ptr, var_name, var_p_ptr))

 if (var_name == OPC_NIL)

 {

 *var_p_ptr = (void *)OPC_NIL;

 FOUT

 }

 prs_ptr = (khpn_process_model_state *)gen_ptr;

 if (strcmp ("pk_count_out" , var_name) == 0)

 {

 *var_p_ptr = (void *) (&prs_ptr->pk_count_out);

 FOUT

 }

 if (strcmp ("pk_count_in" , var_name) == 0)

 {

 *var_p_ptr = (void *) (&prs_ptr->pk_count_in);

 FOUT

 }

 if (strcmp ("own_id" , var_name) == 0)

 {

 *var_p_ptr = (void *) (&prs_ptr->own_id);

 FOUT

 }

 if (strcmp ("node_name" , var_name) == 0)

 {

 *var_p_ptr = (void *) (prs_ptr->node_name);

 FOUT

 }

 if (strcmp ("node_objid" , var_name) == 0)

 {

 *var_p_ptr = (void *) (&prs_ptr->node_objid);

 FOUT

39

 }

 if (strcmp ("pk_cnt_out_stathandle" , var_name) == 0)

 {

 *var_p_ptr = (void *) (&prs_ptr->pk_cnt_out_stathandle);

 FOUT

 }

 if (strcmp ("pk_cnt_in_stathandle" , var_name) == 0)

 {

 *var_p_ptr = (void *) (&prs_ptr->pk_cnt_in_stathandle);

 FOUT

 }

 if (strcmp ("pong_ptr" , var_name) == 0)

 {

 *var_p_ptr = (void *) (&prs_ptr->pong_ptr);

 FOUT

 }

 if (strcmp ("ping_ptr" , var_name) == 0)

 {

 *var_p_ptr = (void *) (&prs_ptr->ping_ptr);

 FOUT

 }

 if (strcmp ("ping_msg_cache" , var_name) == 0)

 {

 *var_p_ptr = (void *) (prs_ptr->ping_msg_cache);

 FOUT

 }

 if (strcmp ("pong_msg_cache" , var_name) == 0)

 {

 *var_p_ptr = (void *) (prs_ptr->pong_msg_cache);

 FOUT

 }

 *var_p_ptr = (void *)OPC_NIL;

 FOUT

 }

