Effect of Location Awareness Restrictions on the Network Usage of P2P Applications

ENSC 427: COMMUNICATION NETWORKS FINAL PROJECT PRESENTATION Spring 2009

> Steven Verner (sverner@sfu.ca) Cristian Panaitiu (cap5@sfu.ca)

http://cris.panaitiu.googlepages.com/ensc427project

Introduction

 P2P protocols are widespread •ISPs throttle P2P traffic P2P traffic is 'location-blind' [3,5] •"Close" peers sought in some protocols Packet route not considered Traffic is routed inefficiently Packets traverse long routes Backbone links congested Unused ISP bandwidth Location aware protocols Solution to inefficient routing

Related Work

- •Much of internet traffic is P2P traffic 70% [3]
 - •ISPs throttle P2P traffic
- Inefficiency of P2P from inefficient routing
 - •Topology closeness can improve performance [1,4]
 - •Current protocols are topology-blind
- •Location awareness protocols being proposed [5]

Main Trunk Congestion

- •P2P traffic is uniform [3]
- •Net traffic arrives in bursts[3]
- •P2P funneled to bottleneck links congests network
 - •Web user throughput decreases
 - Main trunks constantly congested
- •ISPs solve this by throttling

Location Awareness

Possible solution to congested links and throttling
Users first search for resources on local network

Idea: to decrease packets throttled by the ISP

•Less main trunk traffic

•Benefit in E2E delay, RTT

Less long distance packets → less probability of throttling

P2P Network Simulation

- •Three types of users
 - •P2P users
 - •Web users
 - •Web servers
- •Traffic throttling in ISPs •20-30% P2P traffic allowed

Effect of Traffic Throttling

With throttling

CPSV_Final_Project_Ensc427u-Scenario2_Multiple_Noc Object: ISP_0 <-> ISP_1 [0] --> Object: ISP_0 <-> ISP_1 [0] <-point-to-point.utilization

•Net effect of P2P packet throttling

- •Less average E2E delay (over 30%)
- •Location unaware P2P loses many packets (

Effect of Traffic Throttling

No throttling

With throttling

CPSV_Final_Project_Ensc427r-Scenario2_Multip

Effect of Traffic Throttling

- Web users benefit
 - Statistically fewer destroyed packets
 - P2P packets faced with binomial chance of loss
- Location aware protocols benefit
 - Statistically fewer destroyed packets
 - Peers are closer topology-wise
 - Less throttled packetsLess RTT, E2E delay

Conclusion

- •P2P traffic congests main trunks
 - Decreases benefit from statistical multiplexing
- •ISPs throttle P2P traffic

•Decrease congestion on main trunks to increase QoS to web users but decrease QoS to P2P users

- •Benefit to P2P protocols from location awareness
 - •Route traffic efficiently
 - •Incentive to location awareness for increased performance

Future Work

- Unique packet IDs
- Implement trackers with location information
- Different connection speeds
- Dynamic throttling
- •Implement location awareness for peers

References

- 1. "Study of the location awareness in bit torrent like networks" URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4127056
- "BitTorrent Location-aware Protocol 1.0 Specification" URL: <u>http://wiki.theory.org/BitTorrent_Location-aware_Protocol_1.0_Specification</u>
- 3. "Impact of P2P traffic to the IP communication network performances" URL: <u>http://www.sparc.uni-mb.si/OPNET/PDF/ImpactOfP2P.pdf</u>
- "L-CAN: Locality aware structured overlay for P2P live streaming" URL: <u>http://150.140.187.130/getfile.php?fid=36</u>
- "The BitTorrent Protocol Specification" URL: <u>http://bittorrent.org/beps/bep_0003.html</u>