ENSC 427: Communication Networks Final Project Presentation Spring 2009

ZigBee Mesh Network Simulation Using OPNET and Study of Routing Selection

Group 4

Jun Kim Wil Gomez Sam Leung jkimd@sfu.ca wgomez@sfu.ca mingl@sfu.ca

http://www.sfu.ca/~mingl

Introduction - Why ZigBee?

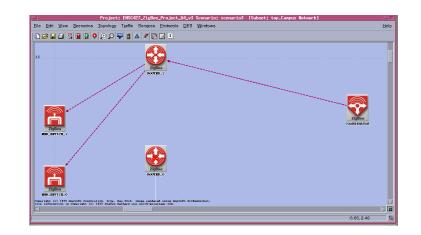
Bluetooth

High power consumption

- Battery lasts days
- Higher data rate
 - 3.0Mbps (Bluetooth 2.0)
- Short Ranged
 - 10 meters
- Applications
 - Computer connections
 - Mobile phones

ZigBee

- Low power consumption
 - Battery lasts months or years
- Lower data rate
 - 250kbps (operating in 2.4GHz)
- Longer Ranged
 - 100 meters (1500 m in Zigbee Pro)
- Applications
 - Automated HVAC control
 - Agricultural networks

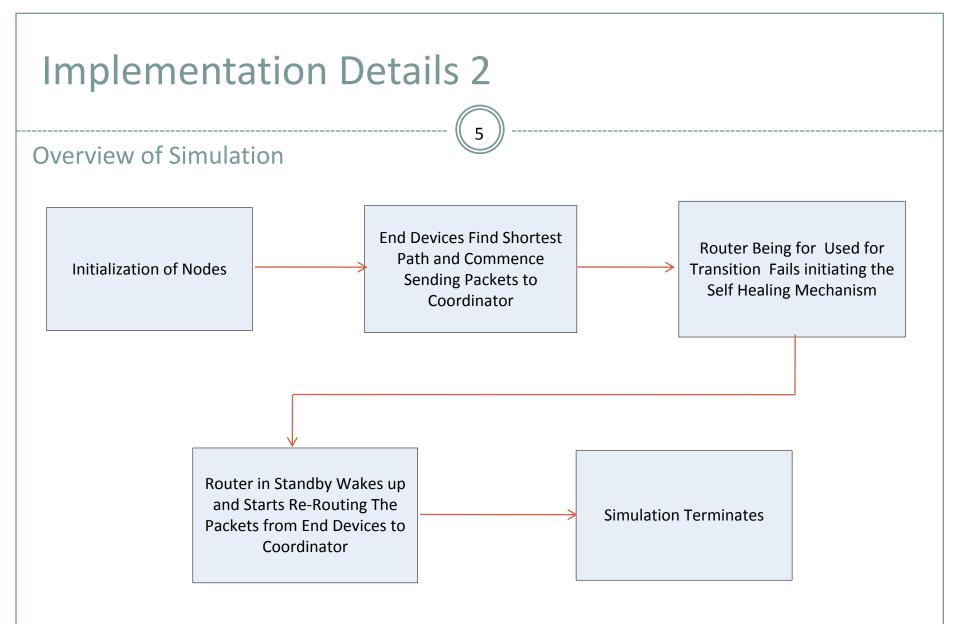

Introduction – ZigBee Qualities

- Dependability
 - Channel selection
 - CSMA-CA
 - Acknowledgements
- Secure Operation
 - Advanced Encryption Standard (AES) based encryption
 - Message timeout
 - Access Control Lists
- Binding Types
 - One-to-one
 - One-to-many
 - Many-to-one
 - Many-to-many

Implementation Details

Overall Design

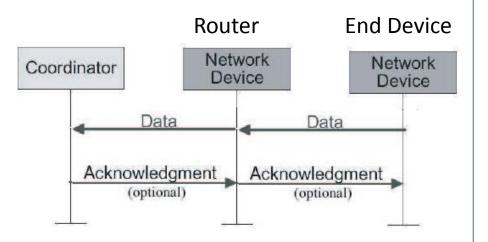
- We used the Mesh routing topology for Zigbee Networks
- End nodes constantly sent packets to the Coordinator through one of the routers
- The router being used would eventually fail to simulate self healing
- The failure was done by moving the router out of range



End Device

Router Co

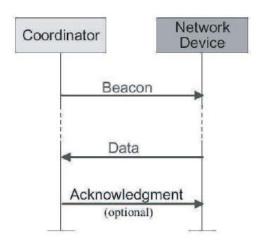
Coordinator

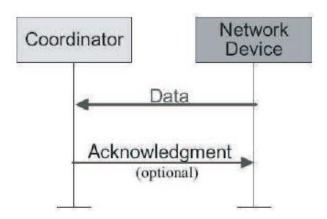

Implementation Details 3

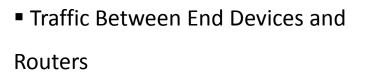
6

Use for ACK

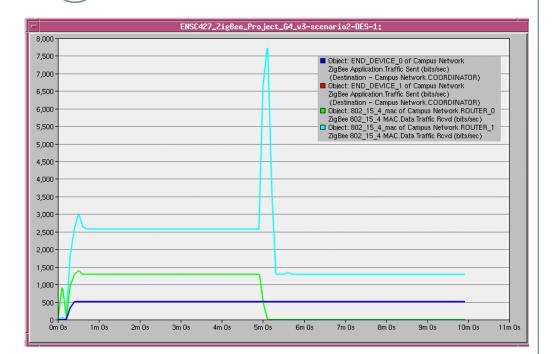
With out ACK the end nodes would have no way of knowing their packets were not being received by the router and the coordinator
No re-routing would take place and


self healing would fail

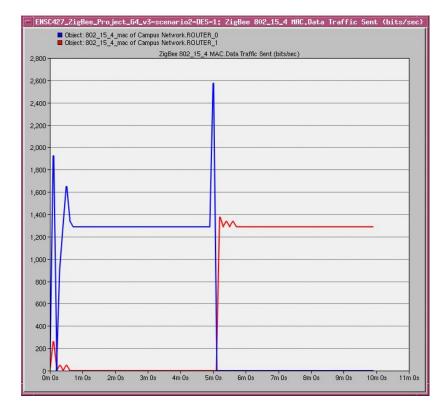

Implementation Details 4


Device to Coordinator Communication: Beacon Vs Non-Beacon Mode

Device waits for network beacon,
When found it synchronizes with
Coordinator
Waits to transmit data using slotted
CSMA-CA

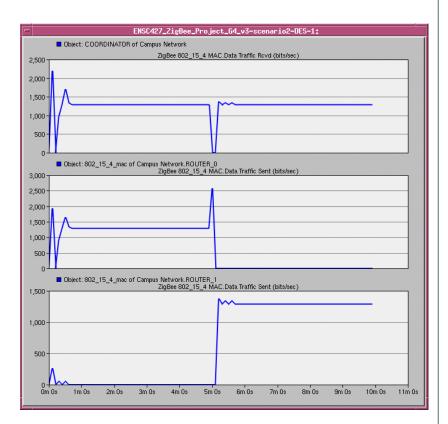


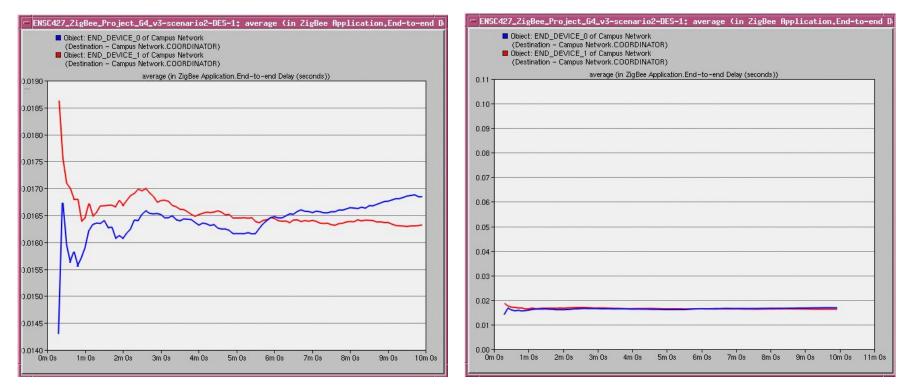
- Transmits Data Frame using unslotted
 CSMA-CA
- No synchronization required



- Drop in green line indicates
 "failure" of router
- Light blue shows pick up of traffic to resume routing
- Heavy traffic of light blue is result of Mesh network setting and none-beaconing
- Receives data from surrounding and keeps track (not to route)

- Green and light blue traffic received by router
- Blue (red overlap) traffic sent by end devices


Traffic Between End Devices and Routers


	ENSC42	7_ZigBee	_Project	_G4_v3-s	cenario2	-DES-1: E	IND_DEVIC	E_O of Ca	mpus Net	work	
🗖 Zig 🗖 Zig	Bee 802_15_4 Bee 802_15_4	MAC.Con MAC.Man	trol Traffic S agement Tra	ient (bits/sec ffic Sent (bit	:) ts/sec)						
250											
240											_
230					-						_
220					_						_
210					_						
200											
190											
180											_
170											
160											
150											_
140											
130											_
120-											_
110-											
100											_
90-											_
80-											_
70-											_
60											_
50-											_
40											_
30-											
20											
10-A					A						
0 / LL		-	-			-			-		
Om Os	1m Os :	2m Os	3m Os	4m Os	5m Os	6m Os	7m Os	8m Os	9m Os	10m Os	11m Os

Traffic Between Routers and Coordinator

00	 Object: COORDINATOR of Campus Network ZigBee 802_15_4 MAC.Data Traffic Rovd (bits/sec) Object: 802_15_4 mAC.Data Traffic Rovd (bits/sec) ZigBee 802_15_4 MAC.Data Traffic Sent (bits/sec) Dipiect: 802_15_4 mAC.Data Traffic Sent (bits/sec)
	M
00	
200 -	

- End-To-End (ETE) Delay
 - Very minor through rerouting transition
 - Retry occurs at five minute mark

Challenges and Difficulties

- Incomplete ZigBee OPNET Model
 - Multicast Traffic, Indirect Transmission, Security, Slotted Mode, Contention free operation mode

- Lack of Implementation Details
 - No specifications on range
- Slow computer (too many users?)
- Potential Alternative Approaches
 - Programming of more practical router failure

Discussion (continued)

- Improvements and Future Work
 - More realistic application scenarios
 - Including more nodes and variations of topologies

- What We Learned
 - ZigBee
 - Better understanding of the ZigBee protocol
 - Features and potential applications for use in projects
 - OPNET
 - Various functionalities provided by OPNET
 - Limitations calculating battery life

References

I] IEEE Standard for Information technology- Telecommunications and information exchange between systems- Local and metropolitan area networks- Specific requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs), IEEE Standard 802.15.4, 2006. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1700009&isnumber=35824

[2] Jennic Ltd., "ZigBee e-learning", Jennic, 2007, [Online]. Available: http://www.jennic.com/elearning/zigbee/index.htm

•[3] Digi International Inc., "ZigBee Wireless Standard," Digi Making Wireless M2M Easy. [Online]. Available: http://www.digi.com/technology/rf-articles/wireless-zigbee.jsp

[4] J. Sun, Z. Wang, H. Wang, and X. Zhang, "Research on Routing Protocols Based on ZigBee Network," in Thrid Int. Conf., Intelligent Information Hiding and Multimedia Signal Processing, vol. 1, Kaohsiung, Taiwan, 2007, pp. 639-642. [Online]. Available:http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4457629&isnumber=4457471

 [5] X. Xu, D. Yuan, and J. Wan, "An Enhanced Routing Protocol for ZigBee/IEEE 802.15.4 Wireless Networks," in Second Int. Conf., Future Generation Communication and Networking, Hainan, China, 2008, pp. 294-298. [Online].
 Available:http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4734107&isnumber=4734039