ENSC 427:COMMUNICATION NETWORKS FINAL PROJECT PRESENTATION SPRING 2010

Analysis on the Performance of ATM Network Based on CBR and UBR

Group 12 Jie Gu, Li Xiang www.sfu.ca/~lxa7 jga9@sfu.ca, lxa7@sfu.ca

Context

- Introduction
- Background Information
- OPNET Simulation Details
- Discussion of Results
- Conclusion and Ideas of Future Works

Reference

Background Information

ATM – Asynchronous Transfer Mode

- Cell-based data transmission technology
- □ Cells are in fix length-53 bytes
- Diverse application transmission Voice, Ftp, Email, Video Conferencing
- Four service classes:
 - ABR Average Bit Rate
 - CBR Constant Bit Rate
 - UBR Unspecified Bit Rate
 - VBR Variable Bit Rate

Introduction

- ATM is implemented as a network protocol and was first developed in mid 1980s
- Goal A single networking strategy to transport realtime conference and audio, as well as image, text, email
- Several organizations are involved in the creation of the standard, such as ITU, IETF

OPNET Simulation Details

Objective:

Examine the effect of ATM for variable applications on the

different layers and service classes

- Two Applications: FTP and Voice
- Two Service Classes: CBR and UBR
- Two OPNET Scenarios:

CBR: CBR for FTP and VOICE application

UBR: UBR for FTP and VOICE application

Network Topologies

Network Topologies

Results of FTP Application– Download Response Time

The download response time of UBR is lower than CBR

Results of Voice Application– Packet Delay Variation

- Packet Delay of UBR fluctuates dramatically.
- Packet Delay of CBR is stable and close to zero.

Results of Voice Application– End-to-End Delay

	LX_ATM_cbrubr-CBR-DES-1 LX_ATM_cbrubr-UBR-DES-1
0.16 -	time_average (in Voice.Packet End-to-End Delay (sec))
0.15	
0.14	
0.13	
0.12+	
0.11	
0.10	
0.09 -	
0.08-	
0.07	
0.06 -	
0.05 -	
0.04 -	
0.03 -	
0.02 -	
0.01	

The End-to-End delay of UBR is slightly lower than CBR

We only have four subnets, there are millions of clients in real life

UBR is much better than CBR

Results of Voice Application-

Jitter

•Lots of Jitter in UBR compared with CBR

•All Jitter are less than 0.00008 seconds

•It won't be noticeable to users

Conclusions

CBR

- Strict with QoS, transfer delay, Packet Loss, Jitters
- Instant service, in specified bandwidth, such as Voice transmission

UBR

- □ No guarantee for service
- Applicable in a very tolerant of delay and cell loss environment
- □ FTP, Email

Future Works

Implement other service classes, such as VBR, ABR

Test in other Applications, such as video conferencing

Expand the file size for E-mail and FTP applications

References

- Asynchronous Transfer Mode http://en.wikipedia.org/wiki/Asynchronous_Transfer_Mode
- http://www.panjin.net/dianxin/atm.htm
- Constant bit rate http://en.wikipedia.org/wiki/Constant_bitrate
- Unspecified bit rate
- http://en.wikipedia.org/wiki/Traffic_contract#Unspecified_Bit_ Rate_.28UBR.29
- Kasera ,Sumit ATM networks: concepts and protocols, pp144, 2007
- Kesidis, George ATM network performance, Chapter 7.1, 2000
- McDysan, David E QoS &traffic management in IP &ATM networks, pt 2,2000

Thank You

Questions?