ENSC 427: Communication Networks Final Project Presentation

Performance Evaluation of Gaming Traffic Over WiMAX

> Group 3: Kelvin Ho Titus Cheung Glen Nogayev

Spring 2010

Roadmap

- Introduction
- WiMAX Fundamentals
- Related Work
- Implementation Methods
- Expected and Observed Results
- Conclusion

Introduction

- Main Topic
 - Can WiMAX replace traditional methods of internet connectivity for gaming traffic?

Motivation

- Provides another method of "Last Mile" services to areas do not have a landline access. (e.g. MiFi)
- Increasing demand to be connected anywhere at anytime – Mobile Internet
- "3-4% of all packets in the Internet backbone can be associated with 6 popular games" [1]

WiMAX Deployment

Source: WiMAXmaps.org

Motivation

Trend: Technology Convergence Beyond 3G

Source: Dailywireless.org

Modulation Schemes

Source: Dailywireless.org

Related Work

- Gaming Traffic in wired connections (Starcraft, Counterstrike, Quake)
- Gaming Traffic in wireless connections (Counterstrike) [2]
- WiMAX Video and VoIP simulations [3]
 - Effects of packet loss
 - Effects of Jitter and Latency

Implementation Details

Project Overview

- Simulate a variable amount of fixed workstations (clients) connected to a WiMAX base station
 - Deployed at differing distance from the base station
- Simulate one server connected to the same WiMAX base station

Included Model

Project will be utilizing the WiMAX model library

wimax_ss_wkstn (fix) wimax3_bs_atm2_ethernet2_slip4_wlan_router

Implementation Details

- Traffic Modelling
 - Three different types of traffic
 - FPS: First Person Shooter
 - RTS: Real-Time Strategy
 - MMORPG: Massive Multiplayer Online Role Playing Game
 - Network Game Data Traces
 - FPS Counterstrike
 - RTS Starcraft
 - MMORPG World of Warcraft

Implementation Details

- Game Traffic Issues:
 - Packet Loss
 - Jitter
 - Latency
 - Range & Power
 - Reliability

CS Traffic Model

Source: Network Analysis of Counter-strike and Starcraft [3]

CS Traffic Model

Source: Network Analysis of Counter-strike and Starcraft [3]

Network Topology

• Network model for 3 clients

Logical Network APPL Profile Profiles Application Applications	WIMAX Southerstand		backbone
		Ganer_1	
	Gamer_2		IP server_backbone
Gamer_3 Dopyright (c) 2010 MapInfo Dorporation, Troy, New York.	Inays rendered usin;	(Mapinio Professional;	Game_server

Observed Results

• Downlink SNR for 3 clients

Observed Results

• Load for 3 clients

Expected Results

• Still running simulations

• According to WiMAX studies with VoIP and Video, WiMAX may be suitable in terms of bandwidth, latency, and jitter [5].

Class	Application	Bandwidth Guideline		Latency Guideline		Jitter Guideline	
1	Multiplayer Interactive Gaming	Low	50 kbps	Low	< 25 msec	N/A	
2	VoIP & Video Conference	Low	32-64 kbps	Low	< 160 msec	Low	<50 msec

• As the distance away from the base station increases, the packet loss should increase to a point where the game will start experience stuttering and a lowered QoE.

Conclusion

- WiMAX may be able to provide a "last mile" service that will fulfill the application classes and "Quality of Experience" [3].
- Gaming Traffic has no standard Some may use TCP/IP or UDP and the traffic will vary among various games [6].
- The prevalent packet loss in WiMAX may be an issue with games demanding real time reaction (Some studies show a 10% Packet loss) [6].

Future Improvements

- Inclusion of Mobile WiMAX stations (including hand-off scenarios)
- Simulations with a busy WiMAX base station (inclusion of different types of traffic)
- Analysis of game traffic on newer games
 - Classification and categorization of generic genre of game traffic

Thank You!

Any Questions?

References

- [1] J. Färber, "Network game traffic modelling", University of Stuttgart, April 16-17, 2002
- [2] S. Chiu, "Evaluation of Interactive Gaming Traffic over 802.11 Network", ENSC 835: High Performance Networks Final Project, Simon Fraser University, Apr. 2006.
- [3] W. Hrudey, "Streaming Video Content over IEEE 802.16 / WiMAX Broadband Access", April 2008.
- [4] "Starcraft and Counterstrike game traces," [Online]. Available: <u>http://perform.wpi.edu/downloads/#net-game</u>
- [5] "WiMAX Application Classes," [Online]. Available: http://www.wimaxforum.org/technology/downloads/Mobile WiM AX Part1 Overview and Performance.pdf p. 48 [Accessed: Mar 23, 2010].
- [6] "Quality of Experience Requirements," [Online]. Available: http://www.broadband-forum.org/technical/download/TR-126.pdf
 p.79 [Accessed: Mar 24, 2010].