ENSC 427: Communication Networks Spring 2010 Final Project Presentation

Comparison of the Quality of Service (QoS) on the IEEE 802.11e and the 802.11g Wireless LANs

Yalda Hakki (yha17@sfu.ca) Rosy Johal (rja2@sfu.ca) Renuka Rani (rra7@sfu.ca) www.sfu.ca/~rra7

Roadmap

- Introduction
 - Overview and Motivation
 - What is QoS? What factors determine QoS?
- Background Information
 - IEEE 802.11g and 802.11e WLAN MAC Layer
 - QoS Capabilities Enabled by 802.11e WLAN
- Implementation Details
 - OPNET model
 - Scenarios
- Simulation and Results
 - Simulation Configuration
 - Statistics Collected
- Conclusion

Introduction

 Overview and Motivation
 What is QoS?
 What factors determine QoS?

Introduction

- Overview
 - Comparison of the Quality of Service (QoS) over two specifications of WiFi – IEEE 802.11g and 802.11e

Motivation

 Increasing demand in streaming multimedia over wireless networks has made the QoS for 802.11 protocol an important topic in research and development.

What is QoS?

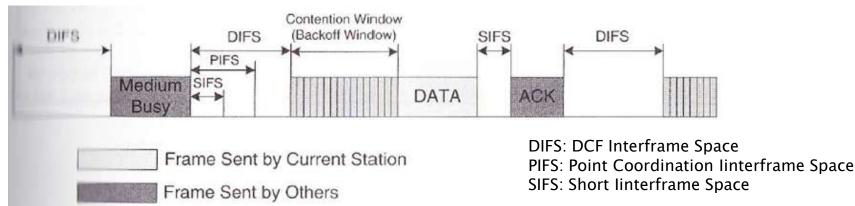
- A method of providing better service for different types of network traffic over various types of packet-switched networks.
- Provides an algorithm for controlling what type of traffic should be given priority to access the network channel.
- The network medium used could be of any type ranging from Ethernet to WiFi (Wireless Fidelity).

What factors determine QoS?

- Packet End-to-End Delay
- Packet Delay Variation
- Packet Loss Ratio
- Throughput

Related Work

- Effects of packet loss on speech and video quality
- Resource ReSerVation Protocol (RSVP)
- Providing QoS through
 - Statistical multiplexing
 - Bandwidth management mechanisms
 - Differentiated Services (DiffServ)


Background Information

802.11g MAC Layer 802.11e MAC Layer

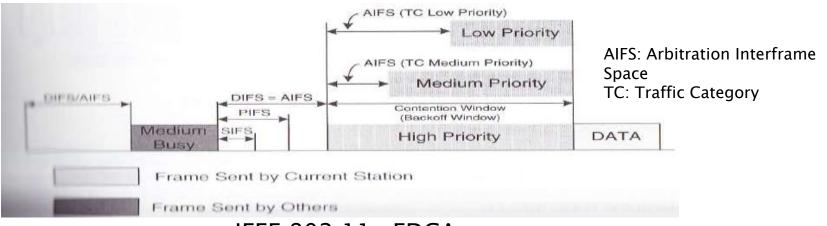
802.11g MAC Layer

Distributed Coordination Function (DCF)

- Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) mechanism is used.
- Based on an asynchronous data transfer on a best effort basis only.
- Contention based channel access

DCF Basic Access Method

Y-K. R. Kwok and V. K. N. Lau, *Wireless Internet and Mobile Computing: Interoperability and performance*. Hoboken, N.J.: Wiley-Interscience: IEEE Press, 2007, p. 271


QoS Limitations of 802.11g

The 802.11g specification has no support for:

- Types of Service (ToS)
- Admission control
- User/end stations to communicate QoS requirements to the access point

802.11e MAC Layer

- Hybrid Coordination Function (HCF)
 - Enhanced Distribution Channel Access (EDCA) is used
 - A combination of contention-based and controlbased (polling) channel access mechanism
 - Eight different levels of priority

IEEE 802.11e EDCA

Y-K. R. Kwok and V. K. N. Lau, *Wireless Internet and Mobile Computing: Interoperability and performance*. Hoboken, N.J.: Wiley-Interscience: IEEE Press, 2007, p. 279

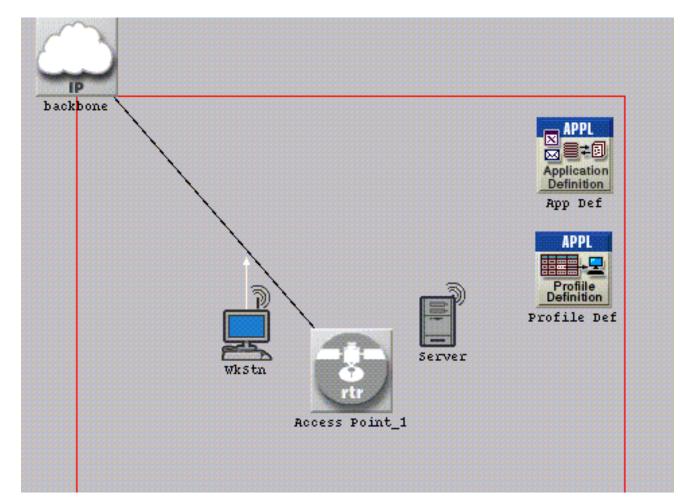
QoS Capabilities Enabled by 802.11e

Traffic Category	Туре	Priority
TC1	Background traffics	1 (Lowest)
TC2	Spare traffics	2
ТС0	Best Effort data traffics	3
ТС3	Excellent data traffics	4
TC4	Controlled load data traffics	5
TC5	Multimedia traffics with delay less than 100 ms	6
TC6	Multimedia traffics with delay less than 10 ms	7
TC7	Network Control traffics	8 (Highest)

802.11e Prioritization of Traffic

Y-K. R. Kwok and V. K. N. Lau, Wireless Internet and Mobile Computing: Interoperability and performance. Hoboken, N.J.: Wiley-Interscience: IEEE Press, 2007, p. 278

Implementation Details


OPNET modelScenarios

Scenarios

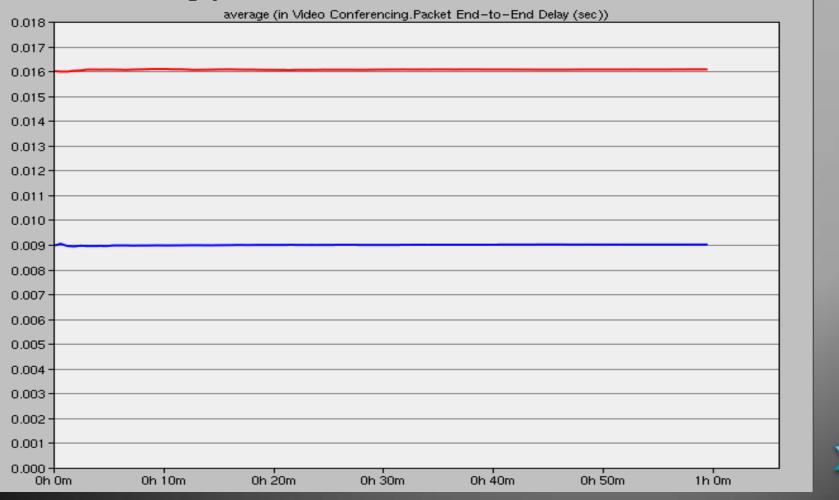
- A workstation receives both video and FTP traffic. Simulation results are collected for both to compare QoS determining factors
 - One scenario (802_11g) uses the standard DCF mechanism
 - Another scenario (802_11e) uses the HCF mechanism to prioritize traffic streams

DCF: Distribution Coordination Function HCF: Hybrid Coordination Function

OPNET model

WLAN Network Model

Simulation and Results


Simulation Configuration
 Statistics Collected

- Packet End-to-End Delay
- Packet Delay Variation
- Media Access Delay
- Client FTP Download Response Time

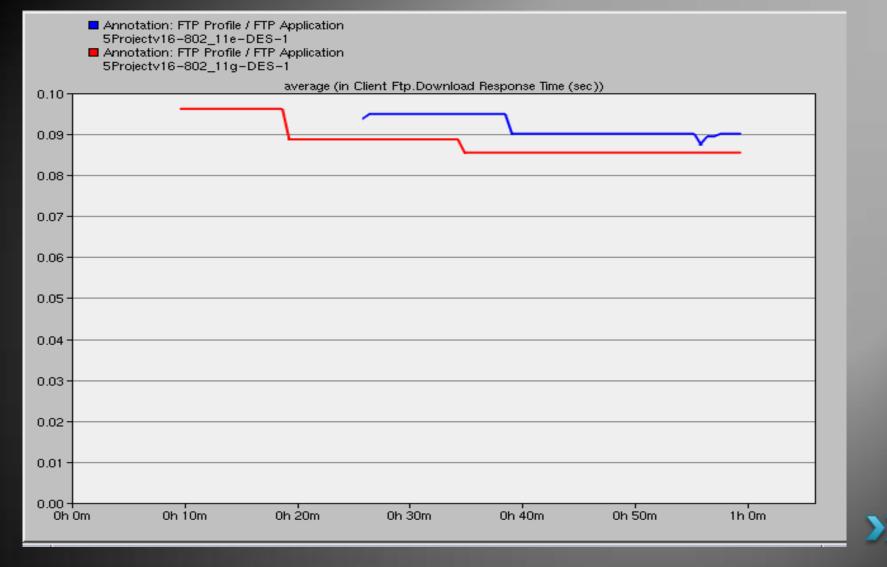
Simulation Properties

- Simulated Time: 1 hour (3600 seconds)
- Simulation Time: 53 minutes
- Seed: 128
- Streaming Video
 - Low Resolution
 - Poisson Distribution
- FTP Traffic
 - High Load

5Projectv16-802_11e-DES-1 5Projectv16-802_11g-DES-1

Video Packet End-to-End Delay

5Projectv16-802_11e-DES-1
5Projectv16-802_11g-DES-1


0.0000040		average (ir	Nideo Conferenc	cing.Packet Delay	Variation)		
0.0000038							
0.0000036							
0.0000034							
0.0000032							
0.0000030							
0.0000028							
0.0000026							
0.0000024							
0.0000022							
0.0000020							
0.0000018							
0.0000016							
0.0000014							
0.0000012							
0.0000010							
0.0000008							
0.0000006							
0.0000004							
0.0000002							
0.0000000 -	Oh 10m	Oh 20m	0h 30m	Oh 40m	Oh 50m	1h Om	1h 10m

Video Packet Delay Variation

SPro ■ aver (Vid SPro	ojectv16-802_11g age (in WLAN (Per	HCF Access Categ		Delay (sec))			
0.0070							1
0.0065							-
0.0060							
0.0055 -							
0.0050							
0.0045							-
0.0040 -							-
0.0035							
0.0030 -							
0.0025 -							
0.0020 -							
0.0015							-
0.0010							
0.0005 -							
0.0000 0h 0m	Oh 10m	0h 20m	Oh 30m	Oh 40m	0h 50m	1h Om	

Video Media Access Delay

Client FTP Download Response Time

Conclusion

Comparison of Expected and Simulated Results

Conclusion

- We expected 802.11e to have lower packet delay variance, packet end-to-end delay and media access delay since it has a priority mechanism.
- The simulated results verified our expectations.

References

- [1] D. Schauland, "What is QoS?" Internet: http://www.wisegeek.com/what-is-qos.htm, [April 11, 2010]
- [2] E. Kartsakli, J. Alonso-Zarate, et al. "Contention-Based Collision-Resolution Medium Access Control Algorithms" in *Medium Access Control in Wireless Networks*, H. Wu, Y. Pan, New York: Nova Science Publishers, 2008, p. 81
- [3] L. Pan and H. Wu, "QoS-Aware Medium Access Control Protocols" in *Medium Access Control in Wireless Networks*, H. Wu, Y. Pan, New York: Nova Science Publishers, 2008, p. 155
- [4] N. Cranley and M. Davis, "QoS for multimedia streaming applications over IEEE 802.11b and 802.11e WLANs" in *Wireless Quality of Service: Technique, standards, and applications,* M. Ma, M.K. Denko, Y. Zhang, Ed. Boca Raton, Fla.: Auerbach Publications, 2009, pp. 57-70
- [5] R. MacKenzie, D. Hands, and T. O`Farrell. "Video Quality over 802.11e with a Multi-Rate 802.11e Physical Layer." Internet: ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05133779, [March. 14, 2010]
- [6] T. Alexander, Optimizing and Testing WLANs: Proven techniques for maximum performance. Amsterdam, Boston: Elsevier Newnes, 2007, pp. 10, 131, 159
- [7] X. Xiao, Techinical, Commerical and Regulatory Challenges of QoS: An Internet Service Model Perspective. Amsterdam, Boston : Elsevier/Morgan Kaufmann, 2008, pp. 13–18, 227–233
- [8] Y-K. R. Kwok and V. K. N. Lau, Wireless Internet and Mobile Computing: Interoperability and performance. Hoboken, N.J.: Wiley-Interscience: IEEE Press, 2007, pp. 271, 278–279

Thank You!

