
ENSC 427: COMMUNICATION NETWORKS
FINAL PROJECT PRESENTATIONS

Spring 2010

Implementation of the Gnutella Protocol
Group #7

Zhiyu Hu

Yuyuan Liu

Email: yla41@sfu.ca zyh@sfu.ca
Webpage: http://www.sfu.ca/~yla41/

Outline

• Introduction and Motivation

• Scope of the project

• Implementation details of Gnutella node

-Ping, pong, query, query hit.

• Scenarios and Simulation results

• Conclusion

• References

What is P2P?

• Is a technology which “enables any network-
aware device to provide services to another
network-aware device”

• A peer in P2P network acts as both a client
and a server in traditional client/server
architecture

What is P2P?

Not p2p P2P

Why P2P?

 Harness lots of spare capacity
– 1 Big Fast Server: 1Gbit/s, $10k/month++
– 2,000 cable modems: 1Gbit/s, $??
– 1 000 000 end hosts: Uh wow

Build self-managing systems that deal with huge
scale

– Same techniques attractive for both
companies /servers / P2P

E.g., Akamai’s 14,000 nodes
Google’s 100,000+ nodes

Overview of related work

P2P file-sharing
Quickly grown in popularity

1. Dozens or hundreds of file sharing
applications

2. 35 million American adults use P2P networks
29% of all Internet users in US!

3. Audio/Video transfer now dominates traffic
on the Internet

Overview of related work

Gnutella:
 In 2000, J. Frankel and T. Pepper from Nullsoft

released Gnutella

Soon many other clients: Bearshare Bearshare,
Morpheus, LimeWire, etc.

 In 2001, many protocol enhancements
including “ultrapeers”

Scope of the project

• Establish the Gnutella node to simulate the
behaviours of ping, pong, query and query hit.

1. build packet format, process model and

node model.

2. by combining above three, we build

Gnutella node.

Scope of the project

• Simulations in different topologies

Hexagon, Tree, Line,etc.

Implementation details of Gnutella node

• How ping and pong work

• How query and query hit work

• Packet format

• Node model

• Process model

• Algorithm in Proc state

Implementation details of Gnutella node

• How ping and pong work

• How query and query hit work

• Packet format

• Node model

• Process model

• Algorithm in Proc state

How Ping and Pong work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

How Ping and Pong work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

How Ping and Pong work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

How Ping and Pong work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

How is pong routed

Pong(7) will reach node(1) along the reversed direction of
ping which is sent by node 1 and flooded by other nodes.

This routing rule also applies to QueryHit. Query Hit will
reach the source node of Query along the reversed
direction of Query which is sent by node 1 and flooded by
other nodes.

How ping and pong work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

How ping and pong work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

How ping and pong work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

How ping and pong work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

How ping and pong work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

How ping and pong work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

Implementation details of Gnutella node

• How ping and pong work

• How query and query hit work

• Packet format

• Node model

• Process model

• Algorithm in Proc state

How Query, Query Hit work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

How Query, Query Hit work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

How Query, Query Hit work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

How Query, Query Hit work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

How is QueryHit routed

Pong(7) will reach node(1) along the reversed direction of
ping which is sent by node 1 and flooded by other nodes.

This routing rule also applies to QueryHit. QueryHit(7) will
reach node 1 along the reversed direction of Query which is
sent by node 1 and flooded by other nodes.

How Query, Query Hit work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

How Query, Query Hit work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

How Query, Query Hit work

Image source: H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report.

Implementation details of Gnutella node

• Our Gnutella node can implement ping, pong,
query and query hit correctly.

Implementation details of Gnutella node

• How ping and pong work

• How query and query hit work

• Packet format

• Node model

• Process model

• Algorithm in Proc state

Packet format

 Payload Descriptor: used to indicate packet type.
ping 1, pong 2, query 4, query hit 8.

 TTL, Hops: control the total traffic.

 Dest_addr: used for pong and queryhit routing.

 Search: the content to be searched, used in Query.

Implementation details of Gnutella node

• How ping and pong work

• How query and query hit work

• Packet format

• Node model

• Process model

• Algorithm in Proc state

Node model

• Src: send ping every
second(ping source).

•Proc: manipulate every received
packet (packet processor).

•Rcv: receivers.

•Xmt: transmitters.

Implementation details of Gnutella node

• How ping and pong work

• How query and query hit work

• Packet format

• Node model

• Process model

• Algorithm in Proc state

Process model

• If the packet received is from src,
then

Assign proper value to each field
Copy this packet 5 times
Send these packets through xmt(0:6)
Go back to idle

• If the packet is from one of six rcvs
then

Processing the packet according to a
specific algorithm.
Go back to idle

Implementation details of Gnutella node

• How ping and pong work

• How query and query hit work

• Packet format

• Node model

• Process model

• Algorithm in Proc state

Algorithm in proc state

• If the packet is ping
check if it is a duplicated ping.
if yes-> destroy ping.
if not-> 1. save this new ping to cache

2. generate pong and send it back

3. if ttl >0
forward ping to other 5 xmts.

else destroy ping.

Algorithm in proc state

• If the packet is pong

check if it is a duplicated pong.

if yes-> 1. destroy pong.

if not-> 2. save this new pong to cache

3. check if it is due to the ping generated by this node.

if yes-> destroy pong. Generate and send query

if not-> 1. decode dest_addr to get the tranmitter#

where the pong will be forwarded.

2. update dest_addr.

3. forward pong through that xmt.

Algorithm in proc state
• If the packet is query

check if it is a duplicated query.

if yes-> destroy query.

if not-> 1. save this new query to cache.

2. check whether the node’s data pool has the desired data.

if yes-> Generate and send query hit back.

if not-> check if ttl>0

if yes-> 1. update TTL and Hops fields in the packet.

2. copy this packet four times.

3. forward these five query packets.

Algorithm in proc state
• If the packet is query hit

check whether it is due to the query generated by this node.

if yes-> 1. destroy this packet.

if not-> 1. decode dest_addr to get the tranmitter#

where the query hit will be forwarded.

2. update dest_addr.

3. forward query hit through that xmt.

Two snapshots of the code

Debugging mode of simulation

Scenarios and simulation results

Hexagon Topology

• Basic P2P Topology type

• Every node have the
same configuration

• Every node generate its
own “PING”

• Failed node does not
effect function of other
nodes

Hexagon Topology Simulation Results
Node_0 report

Without failed node
Node_0 report
With failed node_3

Quarry-Hit total
Without failed node

Quarry-Hit total
With failed node_3

Duplicated Hexagon

• Each nodes can be reach by another one within 5 steps
• Can be viewed as two sub nets
• Only SRC_node generate ping
• Test SRC_node have data access from sub-net B

Duplicated Hexagon results

1. Src ping out (blue)
2. q_own_out (red)is the output

number of query that
response to pong come in, not
include the forwarded query
packets

3. qh (green) is the input
number of quarry hit

SRC_node results

Duplicated Hexagon results
Pong out put numbers Quarry hit out put numbers

Pong out means the # of
possible connections

Quarry hit out means the # of
required data are available

Duplicated Hexagon results

 Node 2 <-> node 3 (blue)
are link with in a same
sub net

 Node 2<-> node 11(red)
are the link connect two
subnet together

 Expect higher throughput
for link connect two
subnet together

 coincide with simulation

Line Topology

• Single line connect for 8 nodes

• Single SRC node in the beginning (only this node Ping out)

• Used to test TTL (Time-to-Live)

• Two different TTL are simulated (5 vs 50)

• Expect no packets received or transmitted for node_7 when

TTL = 5

Line Topology simulation results

TTL = 50 node_7

TTL = 5 node_7 and node_6

of Ping (in) = # of Ping(out)

Tree Topology

More realistic, more closer
to open source file sharing
network

Use to test successfulness
of Flooding search method

Only top SRC node generate
PING packets

4 level setup with each
node derived out two nodes
down

Tree Topology Simulation Results

SCR_Node results
Level 1 to level 4 signle_node QH
packets compare

Tree Topology Simulation Results

 The pk_total_out records
the total number for all
types of packets output
form a single node

 Indicate the level traffic
for each node

 During 100s, only 100
ping packets goes out
from SRC node, but
results at least 600
packets output from each
node

Conclusion

• Gnutella is practical for small networks
with few requests

• A larger network would generate far
more traffic per node than a smaller one,
making it inherently unscalable

Future work

• Scalable solution

• Dynamic simulation

• Add Push descriptors in model

References
• [1] R.Schollmeier, “A Definition of Peer-to-Peer Networking for the Classification of Peer-to-Peer

Architectures and Application”s, Proceedings of the First International Conference on Peer-to-Peer
Computing, IEEE (2002).

• [2] E.Bangeman, “Ars Technica Study: BitTorrent sees big growth” [Online]. Available:
http://arstechnica.com/old/content/2008/04/study-bittorren-sees-big-growth-limewire-still-1-p2p-
app.ars [Accessed: March. 15, 2010].

• [3] T. Mennecke “Slyck News- eDonkey 2000 Nearly Double the Size of FastTrack” [Online]. Available:
http://www.slyck.com/news.php?story=814 [Accessed: March 15th, 2010].

• [4] A.Rasti, D.Stutzbach and R.Rejaie “On the Long-term Evolution of the Two-Tier Gnutella Overlay”
University of Oregon. P.2.

• [5] J. Cardoso and M. Lytras, Semantic Web engineering in the knowledge society, Hershey, PA
,2009.

• [6] L. Alfred and W. Sing, Peer-to-peer computing : building supercomputers with Web technologies /
Alfred Wai-Sing Loo. Springer : London, 2007.

• [7] A . Dufour, Improving the performance of the Gnutella network. Simon Fraser University:
Burnaby B.C 2006.

• [8] “The Gnutella specification v0.4”. www9.limewire.com/developer/gnutella_protocol_0.4.pdf.
[Accessed: March. 15,2010].

• [9] S. Osama, Modeling and caching of peer-to-peer traffic. Burnaby B.C: Simon Fraser University,
2006.

References
• [10] D. Worthington; M. Nate (25 May 2005). "BitTorrent Creator Opens Online Search". BetaNews

[Online]. Available: http://www.betanews.com/article/BitTorrent_Creator_Opens_Online_Search/1
117065427. [Accessed: March. 05,2010].

• [11] H.Su and K.Wu, “Gnutella Network Robustness,” ensc.sfu.ca, report. Spring 2009. [Online].
Available:
http://www.ensc.sfu.ca/~ljilja/ENSC427/Spring09/Projects/team12/Gnutella_Network_Robustness_
Final_Version.pdf [Accessed: March. 05, 2010].

Thank you!

• Questions?

