ENSC 427: COMMUNICATION NETWORK PROJECT PRESENTATION Spring 2010 Instructor: Ljiljana Trajkovic

Message Ferrying

Group 9 Timbo Yuen (tty2@sfu.ca) Dan Hendry (danh@sfu.ca) Yazan Shehadeh (ysa5@sfu.ca)

http://messageferrying.dustbunnytycoon.com

April 12, 2010

Roadmap

- Introduction
 - Background
 - Animated Example
 - Potential Uses
 - Project Overview
- Simulation
 - Network Architecture
 - Implementation
 - Simulation Results
- Conclusion and Discussion
- Future Work
- References

Introduction: Background

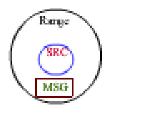
What is Message Ferrying?

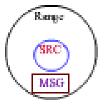
- The process of physically carrying data between network nodes which cannot communicate directly
- Also known as "store-carry-forward" routing

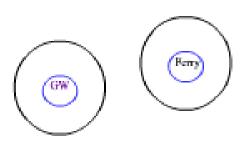
Past Research

- Existing research has focused on message ferrying in partitioned, wireless ad-hoc networks [1][2]
- It has examined methods and algorithms to control ferry movement – Message Oriented Ferries [3]
 - Ex. Dedicated communication robots on a battlefield
- Little research has been found which deals with random ferry mobility - Task Oriented Ferries. [3]
 - Ex. A 'ferry enabled' cell phone

Introduction: Background


Why Message Ferrying?


- We are transporting an increasingly large amount of technology all the time – try to utilize that fact
- Requires virtually no physical infrastructure
- For certain applications, existing networking options could be expensive or impractical
 - Wired (ex Ethernet)
 - Wireless (ex WiFi, WiMAX, cellular data modems)
- Ad-hoc wireless networks perform poorly in sparse networks [3]


Introduction: Animated Example

6

The ferry node is carrying messages between nodes which cannot communicate directly

Introduction: Potential Uses of Message Ferrying

Message ferrying is suitable for applications that tolerate significant network delay and loss

Application	Suitable?
Remote sensor monitoring	Yes
E-mail	Potentially
Machine-machine communication	Yes
Disaster communications	Yes
Gaming	No
VoIP	No

Introduction: Project Overview

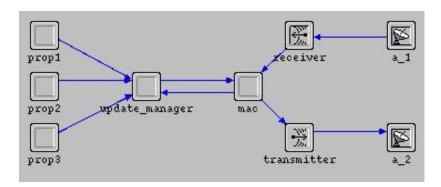
Project Goals

- Examine message ferrying with task oriented ferries
- Design, implement, simulate, and evaluate a 3rd, 4th, and 5th layer (OSI) message ferrying network in OPNET

Issues

- OPNET has no support for message ferrying
- All node and processes models were designed from scratch

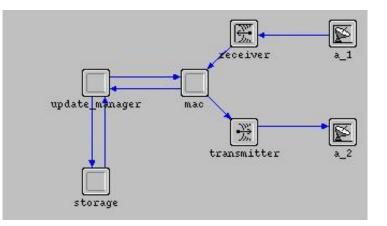
Roadmap

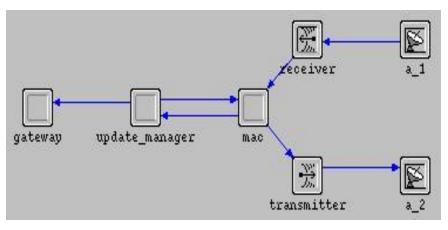

- Introduction
 - Background
 - Animated Example
 - Uses
 - Project Overview
- Simulation
 - Network Architecture
 - Implementation
 - Simulation Results
- Conclusion and Discussion
- Future Work
- References

Simulation: Network Architecture

- Communication between arbitrary nodes is an extremely complex problem due to random ferry movement
- Instead, design a specialized 'one way' wireless network
- Three types of network nodes
 - Source nodes
 - Ferry nodes
 - Gateway nodes
- Data flow from source nodes to gateway nodes via ferry nodes

Simulation: Implementation

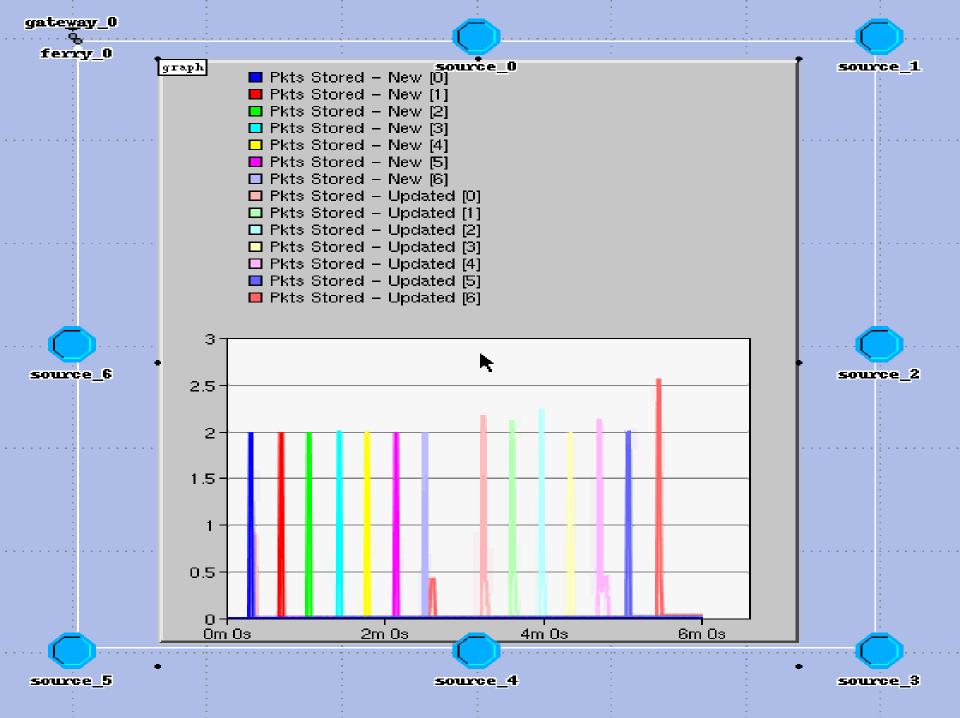

- 11
- Source nodes have properties (prop1, prop2, etc) which generate update messages that are carried to any gateway node by message ferries.

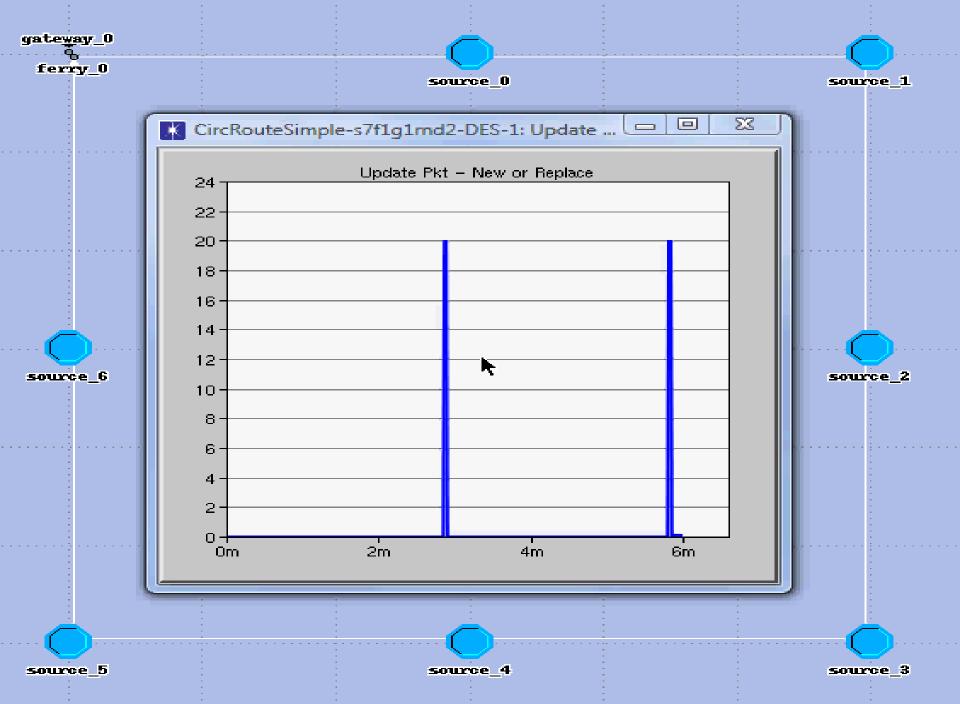


□ 1. Source Node

Static nodes which have a set of properties that generate update messages

Simulation: Implementation




2. Ferry Node

Mobile nodes which collects updates from source nodes when they are in range. Updates are stored in memory.

Gateway Node

Gateways receive update messages from ferries and forward them to a final destination via the Internet.

Roadmap

- □ Introduction
 - Background
 - Animated Example
 - Uses
 - Project Overview
- Simulation
 - Network Architecture
 - Implementation
 - Simulation Results
- Conclusion and Discussion
- Future Work
- References

Conclusion and Discussion

- Successfully tested OPNET models and simulated a simple network
- Validated OPNET as a tool to analyze message ferrying
- General results
 - Minimum update delay is ferry travel time. Increasing the number of gateways reduces delay
 - Delivery success rate depends on the ferries memory capacity.

Future Work and Ideas

- 17
- Simulate realistic scenarios and use cases source node placement, ferry movement and gateway locations
- Evaluate the performance of alternative heuristics used to discard packets when the ferries memory buffer is full
- Implement an acknowledgment mechanism to remove redundant update packets from the network
- Integrate with existing MANET routing protocols
- Reverse message transport, from gateway to source nodes – MUCH more complicated problem

References

18

- [1] R. Patra, K. Fall, and S. Jain, "Routing in a delay tolerant network," in *Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for computer communications*, 2004.
- [2] W. Zhao, M. Ammar, and E. Zegura, "A message ferrying approach for data delivery in sparse mobile ad hoc networks," in *Proceedings of the 5th ACM international symposium on Mobile ad hoc networking and computing*, College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332, 2004.

[3] Y. Chen, W. Zhao, M. Ammar, and E. Zegura, "Hybrid routing in clustered DTNs with message ferrying," in *Proceedings of the 1st international MobiSys workshop on Mobile opportunistic networking*, College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, 2007.

QUESTIONS?

THANK YOU FOR YOUR TIME