Message Ferrying: Implementation and

Simulation in OPNET

ENSC 427

Group 9
Dan Hendry (danh@sfu.ca), 301133878
Yazan Shehadeh (ysab@sfu.ca), 301028275
Timbo Yuen (tty2@sfu.ca), 301023080

Simon Fraser University

School of Engineering Science

April 19, 2010

Course Instructor: Professor Ljiljana Trajkovic

Abstract

Machine to machine communication has long been considered a feature of the next
technological age. For many applications, networking options available today are
either too expensive or cumbersome to justify the information they are able to pro-
vide (such as dedicated wired Ethernet or cellular data modems), or do not provide
uniform connectivity (such as WiFi). An alternate solution is to use ad-hoc mesh
networking. Such networks however, require every node to be connect to another and
fail when the network is sparse or becomes partitioned. Message ferrying is a tech-
nique which uses physical mobile devices, known as message ferries, as data transport
mechanisms between disconnected network nodes or partitioned subnetworks. This
report describes a message ferrying algorithm and simulation model for task oriented
ferries created in OPNET which is applicable to a specialized remote sensor network
in which a central repository maintains current sensor state. Update success rate and

delay results are presented for two simulations.

Contents

[Contents] iv

| List of Figures| vi

1__Introduction|
(1.1 Background|
(1.1.1 Ad Hoc Network Types|.

[1.1.2 Message Ferrying & Store-Carry-Forward Routing

(1.2 Motivations and Potential Applications|
(1.3 Project Goals|

W NN = =

2 Project Premise and OPNET Model Design|

[2.1.1 Application Characteristics and Requirements|

[2.1.2 State Monitoring Network|
2.2 OPNET Model Designl

© O O Ul xR A

[2.2.2 Algorithm and Behaviour|
[2.2.3 Assumptions|. 10

[2.3.1 Scenario Topology and Details| 11

B.21

Update Success Rate|

3.2.2

Delaylo

4 Results|

A3

Comparison of Success Ratel . . .

A14

Effect of Source Node Storage] . .

F.2.1

Algorithm Improvements|

(.22

Model Improvements|

523

otatistic Improvements|

5.24

Applicability and Network Model|

[_References

i

14
14
14
15
15
16
16
17
18

19
19
19
20
20
22
23
23
23
26

28
28
29
29
29
29
30

32

[A Code: Source Property Process

[A.7 stop State: Enter Executives

[B Code: Storage Process|

IB.1 Overviewl

[C Code: Update Manager Process|

[C.1 Overviewl

il

33
33
34
34
35
38
39
40

41
41
42
42
42
46
47

48
48
49
49
50
54
55
95
o6

[E Code: Hold Queue Process|
E.l Overviewl. e e

[Code: (Gateway Receiver Process|

1 Overviewl.o

v

List of Figures

2.1 Source Node Modell o000 7
2.2 Ferry Node Modell., 7
2.3 Gateway Node Modell 8
2.4 Network Mode| - Validation Simulationl 11
[2.5 Update Packets Received by the Ferry Node] 12
2.6 Gateway receives the packet as the terry node passes by its range ot |
I ransmissIon] . . . v . . oe e e e e e e e 13
3.1 Simulation 1 - Network Model (1 Gateway, 1 Ferry)| 15
3.2 Simulation 2 - Network Model (2 Gateways, 2 Ferries). 16
.1 Success Rate vs Memory Capacity - Simulation 1 (1 Ferry, 1 Gateway), |
| Source Storage Disabledo 20
1.2 Success Rate vs Memory Capacity - Simulation 2 (2 Ferries, 2 Gate- |
| ways), Source Storage Disabled| 00000 21
4.3 Success Rate vs Memory Capacity - Simulation 1 and 2 , Seed of 128 |
| and Source Storage Disabled|o 000000 21
4.4 Eftect of Source Node Storage - Success Rate vs Memory Capacity - |
| Simulation 2, Seed of 128|. L 22
4.5 Delay - Simulation 1 (1 Ferry, 1 Gateway), Memory Capacity of 3| . . 24
.6 Delay - Simulation 1 (1 Ferry, 1 Gateway), Memory Capacity of 30| 24
1.7 Delay - Simulation 2 (2 Ferries, 2 Gateways), Memory Capacity of 3| . 25
4.8 Delay - Simulation 2 (2 Ferries, 2 Gateways), Memory Capacity of 30| 25
[4.9 Delay - Simulation 1 and 2, Memory Capacity of 30, Seed of 26834|. . 26

[4.10 Delay - Simulation 1 and 2, Memory Capacity of 5, Seed of 128 . . . 27

[A.1 Source property process modell 33
[A.2 State variables of source property process|. 34
[B.1 Storage process model| o000 41
[B.2 State variables of storage process| L. 42
[C.1 Update manager process model| 48
[C.2 State variables of update manager process| 49
[D.1 MAC process model|, 57
[D.2 State variables of MAC process| 58
[£.1 Hold queue process model| 60
[E.2 State variables of hold queue process| 61
[F.1 Gateway receiver process model 63

vi

Introduction

1.1 Background

Message ferrying is a networking approach where data is physically carried between
network nodes which cannot communicate directly. It is sometimes called "store-
carry-forward” routing [I]. Message ferries can be of two types; message oriented
ferries and task oriented ferries [2]. Message oriented ferries are ferries dedicated to
the task of transporting data, known in this context as messages, and their position
is controlled by a ferrying algorithm. Task oriented ferries transport data but do
so while performing another task. Their movement is not controlled by the ferrying
algorithm. Much past research has focused on message oriented ferries within parti-
tioned, wireless ad-hoc networks [1] [3] . Very little research has been found on the
topic of task oriented ferries, the focus of this project. Related networking concepts
are presented in section [I.1.1] Potential examples of applications suitable for message
ferrying are presented in section [I.2]

1.1.1 Ad Hoc Network Types
Mobile Ad Hoc Networks

A mobile ad hoc network (MANET), is a self-configuring mesh network of mobile

devices connected by wireless links [4]. These mobile devices are free to move inde-

pendently in any direction and act as a router, where it must forward traffic unrelated

to its own. Much past research on message ferrying has focused on MANETSs.

Partitioned Networks

Partitioned networks are networks with no single hop or multiple hop route between
some or even all node pairs. [2] In a partitioned network, nodes may remain fully
disconnected or they may cluster, forming subnetworks in which all nodes are con-
nected. All current used routing algorithms used in MANETS fail in the presence
of partitioning [I]. This project assumes disconnected nodes, but does not assume

nodes cluster.

Delay Tolerant Networks

A delay tolerant network is one in which routing strategies and applications must
tolerate significant delays delivering packets. This delay may range from a few minutes
up to hours or even days [1]. The network presented in this report is inherently delay

tolerant.

1.1.2 Message Ferrying & Store-Carry-Forward Routing

Message ferrying is a technique where mobile nodes in a MANET buffer data and
physically carry it between nodes which are unable to communicate directly [3]. Store-
carry-forward routing is a strategy which makes use of, typically, known or assigned
trajectories of these mobile nodes, known as message ferries [I]. Some messages are

dropped if no route to the destination can be found [5].

1.2 Motivations and Potential Applications

With the significant number of mobile devices in use today, such as smartphones,
laptops, tablets, netbooks, and more, there are many devices which could be poten-

tially used as message ferries [6]. This project proposes one way to make use of the

technology we transport with us on a daily basis. A message ferrying network could
transport small amounts of data over large distances essentially for free. Beyond the
use of message ferrying in remote sensor networks, discussed throughout this report,
other applications of this technique might include tracking road traffic conditions, in-
house utility management, automation for home devices, industrial monitoring, robot

to robot communication and more [4].

1.3 Project Goals

Message ferrying has typically been examined within the context of improving through-
put, reducing delay and increasing reliability within an ad hoc network [7]. Due to
the complexity of incorporating message ferrying into existing ad hoc and MANET
routing algorithms, this project will focus on a network in which data is transported
strictly using ferries. No clustering of network nodes and routing within subnetworks
will be considered (as discussed in section . Surprisingly, very little research has
been found for a network with these characteristics. The goals of this project may be

listed as follows.

e Design and implement a message ferrying algorithm.

e Simulate this algorithm in a highly partitioned network without node clustering

or subnetworks.
e Evaluate the network using delay and message loss metrics.

e Examine the impact of node density, ferry count, and memory limits.

Project Premise and OPNET
Model Design

This chapter presents the premise and details of a specialized network design used
to analyze message ferrying in section [2.1] A general overview of the OPNET model
which was created is then presented in section [2.2] Please refer to the appendix for
specific details. Finally, the results of an initial simulation used to validate the node

models is presented in [2.3

2.1 Premise
This section outlines the requirements for any application which uses message ferrying.

Details of a specialized ‘state monitoring’ network are then discussed.

2.1.1 Application Characteristics and Requirements

Any application making use of message ferrying must have the following characteris-

tics:

Delay Tolerance: Since data is transported by a physical device, significant delays

of minutes to hours must be expected.

Loss Tolerance: Given that ferries have limited memory, loss of data must be

expected.

Small and Independent Messages: Following from the limited memory capacity
of ferries and the high probability of data loss, a reliable method for segmenta-
tion and reassembly of messages should not be expected. Applications should
limit the size of messages such that the can be transmitted in their entirety

using one protocol data unit.

Given these criteria, a message ferrying network is unsuitable for many typical
networking applications including web browsing, real-time voice or text communica-
tion and file transfer. As such, a very specialized ’state monitoring’ network designed

for non-critical monitoring of remote sensors is considered.

2.1.2 State Monitoring Network

The general premise for this project consists of a network containing numerous,
uniquely identifiable source nodes. Each source node has a limited number of prop-
erties, in the form of key/value pairs, specifying a property name (the key) and its
current value. Properties may change overtime and each change defines a new state
for the source node. A temperature sensor for example, might support a ’temper-
ature’ property, the value of which is the current temperature updated every hour.
Properties do not have to contain a single value and each may be as large as the
payload limit of network packets.

The network and message ferrying algorithm is designed to synchronize a central
repository with the current state of every source node. Only the most recent state (or
most recent value) for each property is important, not the history of how that property
has changed. This limits the number of packets which can exist in the network as only
the most recent update must be reported. The message ferries collect data from source
nodes when they are in range and transport it to the central repository. The central
repository is assumed to be a server connected to the Internet. Ferries pass updates

they have collected from source nodes to special gateway nodes. These gateway

nodes are then responsible for using a reliable delivery mechanism over a standard
IP network to update the central repository. This last stage is not considered for
the implementation presented here. Once messages have been delivered to gateway

nodes, they are assumed to have been delivered.

2.2 OPNET Model Design

Due to the lack of support in OPNET for message ferrying, all node and process
models were creates specifically for this project. An overview of the basic network
elements, including node and packets types, is presented in[2.2.1] A description of the
networking algorithm is then presented in section [2.2.2] Please refer to the appendix

for specific implementation details.

2.2.1 Network Elements
Network Nodes

The network is comprised of three types of network nodes:

Source Node: Static (non-mobile) nodes in the network which have a set of prop-
erties (key/value pairs). After a property of a source node changes, known as
a state change, it attempt to notify the central repository via gateway nodes
by transferring update packets to any message ferries which are in range. It
is important to note that source updates may be delivered to any gateway. A

source node could be, for example, a remote temperature sensor.

Message Ferry: Mobile nodes which collects updates from source nodes when they
are in range. Message ferries store updates from source nodes within a buffer.
When in range, these update packets are forwarded to gateway nodes. A source
node could be, for example, a specially equipt cell phone or a small computer

attached to a vehicle.

Gateway: Gateway nodes download update packets from message ferries and mark

them as received.

Source nodes have properties (propl, prop2, etc) which generate update messages.
These messages get carried to any gateway node by message ferries. The OPNET

node model for a source node node may be seen in [2.1

Figure 2.1: Source Node Model

The OPNET node model for a message ferry is shown in figure[2.2] The ferry is a
mobile node which collects updates from source nodes when they are in range. These
updates are then stored in memory (the storage process in figure ‘ The storage
process compares the updates, uniquely identified by source ID and property key, and

keeps the most recent according to the key update number (see below).

Figure 2.2: Ferry Node Model

The OPNET model for a gateway node is shown in figure[2.3] The gateway process

model seen in the figure is responsible for tracking what updates have been received.

7

It makes use of global variables so updates may be received by any gateway.

eoeiver i

[]

Hr—=

gatewan update manager

=
w
o

R
—_

transmitter a2

Figure 2.3: Gateway Node Model

Properties and Property Process

Each source node supports three properties as can be seen in figure 2.1 Furthermore,
each property has three main pieces of data as described below. Updates generated
by the property contain these three pieces of information. For the purposes of this

project, the value of the property is inconsequential and not considered.

Source ID: A unique identifier of the source node a property is associated with
Key: Or property key is a unique for each property within a source node

Key Update Number: A counter which is incremented each time the property
value changes. Only the most recent value of a property, as defined by its key

update number, is of importance.

Packets

Two types of packets are used within the OPNET model.

Update Packet: Update packets are generated by the property processes of source
nodes when their value changes. They are transmitted to message ferries which

in turn transport them to the gateway.

Beacon Packet: Beacon packets are used to detect when nodes are in range and are

able to communicate. Beacon packets are generated periodically be ferry and

gateway nodes and trigger transmission of stored update messages by receiving

nodes.

2.2.2 Algorithm and Behaviour

A brief overview of the algorithm implemented in each node is presented in this
section. Pseudo code is presented here; refer to the appendix for the actual imple-
mentation.

Ferry Node Algorithm

Ferry nodes behave in the following way. Note that ferry nodes are mobile.

1. Periodically send beacons to notify other nodes that there is a ferry in range.

These beacons trigger source nodes and other ferries to transmit stored updates.

2. When updates are received, store them. Updates are discard based on the

following conditions.

(a) If two updates (one received and one in memory) with the same source id
and key are detected, discard the updated with the smallest key update

number.

(b) If the memory limit has been reached, discard the oldest update (regardless

of source id and key).
3. When a beacon is received, transmit all updates in memory.

4. Repeat

Source Node Algorithm

Source nodes behave in the following way

1. Wait for a beacon.

2. Based on the current state, defined by the key update number for each property,

transmit updates.

3. Repeat

Gateway Algorithm

Gateway nodes behave in the following way:

1. Periodically send beacons to notify other nodes that of the gateways existence.
2. Wait for updates to be received

3. If an update received for a given source id and key has a greater key update
number than the last update received for that source id and key, record an
update. If the key update number is equal to or less than the last update,
discard the update.

2.2.3 Assumptions

In order to simplify the simulation and focus on the message ferrying algorithm, a
number of assumptions were made regarding data transmission and wireless commu-

nication.

e Communication range of 60 meters. When nodes are closer than 60 meters they

can communicate and when they are further apart than 60 meters, they cannot.

e No propagation and transmission delay. This assumption was made to ensure

ferries receive all updates when moving past source nodes.

e No unintentional loss, the node link is assumed to be reliable. It is assumed
that there is no loss caused by radio interference. This assumption was made

to eliminate the need for an acknowledgment and retransmission mechanism.

These assumptions are considered valid as there are are number of technologies,

implemented at a lower network layer, which provides reliable data transfer services.

10

2.3 Validation

This section presents, an initial simulation which was used to validate the OPNET

node and process models.

2.3.1 Scenario Topology and Details

The network model is shown in figure It is used to ensure the ferry receives
updates from source nodes as it passes by them and transmits them to the gateway.
There is one gateway node, one ferry node, and seven source nodes. The size of the
map is 0.75 km x 0.75 km with source nodes placed evenly apart by 0.375 km. The
gateway node is at the top left corner, and the ferry is in motion indicated next to the
red arrow. The speed of the ferry is constant at 60 kmph, as it moves clockwise two
times along the rectangular path that is highlighted in white. The simulated time

was six minutes.

Figure 2.4: Network Model - Validation Simulation

11

2.3.2 Validation Simulation Results

A statistic measuring the number of updates received per second was created and
set to be collected for the ferry and gateway nodes. The simulation was run and the
results for the ferry are shown in figure 2.5 From it, we can see that the ferry is

receiving updates each time it passes by a source node.

tevay 0 o sourt soure
ateviy B Phts Stored - Hew [~ el

B Pkts Stored = Mew [1] i

[Pkts Stored - Mew [2]

[Pkts Stored — Mew [3] e
.............. O Fits Stored — Hew [4]

B Pkts Stored — Mew 5] B

O Pkts Stored - Mew [5]

O Pkts Stored - Updated [0]

[Pkts Stored - Lpdated [1]

[Pkts Stared — Updated [2]

O Pkts Stored — Updated [3]

O Pkts Stored - Updated [4]

@ Pkts Stored - Updated [5]

[Pkts Stored - Updated [5]
..... Q 3 Q

05 13t

fFexzy 0

a T T u
! Q Om 03 2m O Q Am Oz B O Q
source 5 : =

Figure 2.5: Update Packets Received by the Ferry Node

Results collected for the gateway may be seen in 2.6, From the figure, it is clear
that there are two spikes in the graph which corresponds to the ferry transmitting the
updates it has collected. The ferry node traverses its path twice in this simulation
which is why there are two spikes. Each source node sends three update packets to
the ferry node as it passes. Since there are seven source nodes, this accounts for the

21 packets received by the gateway node, which can be seen in figure |2.6]

12

Figure 2.6: Gateway receives the packet as the ferry node passes by its range of
transmission

13

Simulation

This chapter provides an overview of the two simulations which were created. These
simulations are intended to be as realistic as possible and involve random movement
of ferry nodes. The ferries were assumed to be vehicles which defined their speed.
A number of scenarios were tested for each simulation, the parameters varied are

explained in section [3.2]

3.1 Network Model

This section outlines the two network models defining each simulation. Their dif-
ference lies on the number of ferry and gateway nodes. The parameters common

between each are explained in section [3.1.3]

3.1.1 Scenario 1

The first simulation was created with one gateway node, one ferry node, and ten
source nodes. The network model may be seen in figure 3.1} The gateway is placed in
the center of the map and the ferry node starts next to it. Source nodes are more or
less evenly distributed and are placed such that they are out of direct communication

range.

14

Figure 3.1: Simulation 1 - Network Model (1 Gateway, 1 Ferry)

3.1.2 Scenario 2

The second simulation was created with two gateway nodes, two ferry node, and ten
source nodes. The network model may be seen in figure [3.2] The gateways are placed
in opposing quadrants, while both ferries start from the center. Source nodes and
gateways are more or less evenly distributed and are placed such that they are out of

direct communication range.

3.1.3 Common Settings

Some of the settings and characteristics common to all the topologies are the following;:

e All ferries move in random directions and have a varying speeds of 36kph -

72kph in uniform distribution.
e The size of both maps is 1km x 1km

e Properties are updated every 2 seconds with a variance of 0.1 seconds

15

Figure 3.2: Simulation 2 - Network Model (2 Gateways, 2 Ferries)

e Simulations are run for 90 minutes. Property updates were disabled for the last
thirty minutes in an effort to obtain statistics valid for a simulation of indefinite

length.

3.2 DMetrics and Results of Interest

Two metrics are of primary interest when analyzing the network, update success rate

and delay.

3.2.1 Update Success Rate

Update success rate, or alternatively update loss, is of central importance in the
network. It is primarily affected by memory limits imposed by the ferry but is also
affected by the number of ferry and gateway nodes. Defining success rate is somewhat
complicated as updates may be intentionally discarded before they reach a gateway if
they are out of date. Additionally, updates may be duplicated multiple time as ferries

exchange messages. Finally, discarding updates with a key update number less than

16

the most recent key update number received by the gateway is desired behaviour. As
such, the following conditions are used to determine success rate which is measured

as success, failure or mo value for each key update generated by every source node

property.
e For updates which reach the gateway:

— If the update has a key update number greater than the last update re-
ceived by the gateway (for a given source id and property key) the update

counts as a success.

— If the update has a key update number equal to or less than the last update
received by the gateway (for a given source id and property key) the update

is not considered and counts as no wvalue.

e For updates which do not reach the gateway and are discard by every ferry

node:

— If the update has a key update number greater than the last update re-
ceived by the gateway (for a given source id and property key) the update

counts as a failure.

— If the update has a key update number equal to or less than the last update
received by the gateway (for a given source id and property key) the update

is not considered and counts as no wvalue.

3.2.2 Delay

The number of ferries and gateways is the primary parameter affecting delay, however,
ferry memory limits also play a role. Delay is defined as the time an update takes to
reach the gateway after it has been generated by a source node. Only updates which
are successfully delivered (as defined in section count towards delay. As such, it
is important for results of delay to be considered within the context of update success
rate. It should be noted that the lower bound on delay is the time it physically takes

the ferry to move between the source node and gateway.

17

3.2.3 Simulation Parameters Varied

The following parameters were varied to create additional scenarios for each simula-
tion as presented in section . Their impact on success rate and delay (from sections

13.2.2) and [3.2.1)) were considered.

Memory Limit

The memory limit, also referred to as capacity, is the buffer size of the ferry. It limits
the number of unique updates which can be stored at once. It is set in number of
updates, not bytes, and hence is somewhat unrealistic. It is sufficient for the purposes

of this scenario however.

Seed - Effect of Randomness

Since ferry movement is random and the number of gateways is limited, it is important
to consider multiple random when simulating in OPNET.

Source Node Storage

The node models and algorithm presented thus far has assumed that only ferries store
updates. A modified node model which allows source nodes to store updates was also

considered. The effect of enabling source node storage was examined.

18

4

Results

Simulation results are presented in terms of success rate (section |4.1)) and delay (sec-

tion [4.2).

4.1 Swuccess Rate

As discussed in section [3.2.1], memory limit is the most important parameter affecting

success rate.

4.1.1 Simulation 1

The update success rate for the first simulation with one ferry and one gateway is
shown in 4.} Success rate is shown as a function of ferry memory capacity. Results
for two separate seeds are shown since ferry movement, and hence delivery times and
success rate, is heavily affected by randomness. The spike in success rate shown for
the first simulation (seed of 128) at a memory capacity of four is an artifact of this
randomness. It can be seen from this figure that success rate increases rapidly with
memory capacity. There is a leveling effect seen when memory capacity increases
beyond 30. Since there are ten source nodes each with three properties and the
storage process is intelligent about keeping only the most current updates, no packets

must be discarded (see section [2.2.2)). The fact that success rate never reaches 1, or

19

100%, is an artifact of the limited simulation time. Were the simulation to run forever

and ferries to visit every source node, success rate would approach 1.
08 /e<
06 //

0.4 &

0.2

Success Rate

D T T T T T T T 1
a 5 10 15 20 25 30 35 40

Memory Capacity
—Ceed=128 =——Seed=26834

Figure 4.1: Success Rate vs Memory Capacity - Simulation 1 (1 Ferry, 1 Gateway),
Source Storage Disabled

4.1.2 Simulation 2

The update success rate for second simulation, with two ferries and two gateways,
is shown in figure As in section success rate is shown as a function of
ferry memory capacity and results for two separate seeds are shown. It can be seen
that variability in the success rate between the two seed values is lower than the first
scenario. Increasing the number of ferries and gateways increases the likely hood a

ferry will pass by the node and decreases variance.

4.1.3 Comparison of Success Rate

A comparison of success rate between simulations 1 and 2 is show in figure[4.3] It can
be seen the additional ferry and gateway significantly increase success rate; this result

is expected. As discussed in section the success rate should be 1 for memory

20

Success Rate

[

10 15 20 25 30 35 40

N4
/

Memaory Capcity

m——Ceed=12§ =———Sced=26834

Figure 4.2: Success Rate vs Memory Capacity - Simulation 2 (2 Ferries, 2
Gateways), Source Storage Disabled

capacities beyond 30. The fact that it is not is a result of limited simulation time.
| /—/’ -

Success Rate

04

0.2

0 T T T T T T T 1
a 5 10 15 20 25 30 35 40

Memory Capcity
== Gimulation 1 (1 Ferry, 1 Gateway) ===Simulation 2 (2 Ferries, 2 Gateways)

Figure 4.3: Success Rate vs Memory Capacity - Simulation 1 and 2 , Seed of 128
and Source Storage Disabled

21

4.1.4 Effect of Source Node Storage

As discussed in section [3.2.3] source nodes can be configured to receive updates from
ferries, store them and retransmit them; in essence, acting as stationary ferries. The
impact of enabling source node storage on success rate in simulation 2 can be seen
in 4.4 It can be seen that although success rate increased, the change was not
drastic. This result is somewhat expected given that there were only two ferries and
all source nodes were relatively close to gateways. It is expected that the impact
of enabling source node storage would become more pronounced by increasing the
number of ferries or increasing the distance between source nodes and gateways while
keeping the relative spacing of source nodes constant Enabling source node storage
in simulation 1 was seen to have no impact on success rate. This is expected as the
algorithm used to discard packets in the presence of memory constrains would prevent

a ferry re-storing up an update it had previously discarded.

g
V//

0.2

Success Rate

I:I T T T T T T T 1
a 5 10 15 20 25 30 35 40

Memory Capcity
m N ithout Storage ==ith Storage

Figure 4.4: Effect of Source Node Storage - Success Rate vs Memory Capacity -
Simulation 2, Seed of 128

22

4.2 Delay

The time between a property value changing and when that change is registered by the
gateway is of interest and examined. Delay is presented as a cumulative distribution
function. A CDF was chosen over a PDF as it is more meaningful in the presence
of random ferry movement. It is important to note that delay results presented here
only account for updates successfully delivered. Updates lost as defined in section
[3.2.7] with the exception of the very last update, do not count towards the measured
delay. As such, results showing greater delay may not indicate the given scenario has
better performance. These results must be considered within the context of loss as

presented in section [£.1]

4.2.1 Simulation 1

Figures and show the delay for simulation 1 (1 ferry and 1 gateway) with
memory limits of 3 and 30 updates imposed by the ferry respectively. Two seeds
are shown for each in order to illustrate the effects of randomness. When memory is
limited (shown in figure , it can be seen more than half of all updates are delivered
within 400 seconds. This result is somewhat misleading as the success rate is very
poor for this memory setting (see section [4.1.1)). The results presented in figure
are far more meaningful. A gradual increase in the delay is seen with approximately

80% of updates being delivered within 500 seconds.

4.2.2 Simulation 2

Figures and show the delay for simulation 2 with memory limits of 3 and 30
updates imposed by the ferries respectively. As in section randomness (as dis-
tinguished between the two seed values) has less effect on the output than simulation
1. Comparing the memory constrained cases between simulations (figures and
4.7)), it is clear that the second simulation has reduced delay and increased success
rate. It can be seen from figure 4.8 that 90% of updates have a delay of approximately

300 seconds when memory is not constrained.

23

1
08
—_
06 i
T8
(o]
o
04
0.2
0 T T T 1
a 500 1000 1500 20040
Delay (Seconds)

—Seed=128 e=———Seed=26834

Figure 4.5: Delay - Simulation 1 (1 Ferry, 1 Gateway), Memory Capacity of 3

4
A

0 T T T 1
a 500 1000 1500 2000

CDF

Delay (Seconds)
—Cped=12f =——Seed=26834

Figure 4.6: Delay - Simulation 1 (1 Ferry, 1 Gateway), Memory Capacity of 30

24

[

CDF

04

0.2

0 T T T 1
0 500 1000 1500 2000

Delay (Seconds)
—teed=128 =———Sced=26834

Figure 4.7: Delay - Simulation 2 (2 Ferries, 2 Gateways), Memory Capacity of 3

N

4

Ny
NI
Jdo

0 500 1000 1500 2000

CDF

Delay (Seconds)

m—Cepd=12f =——=Sced=26R34

Figure 4.8: Delay - Simulation 2 (2 Ferries, 2 Gateways), Memory Capacity of 30

25

4.2.3 Comparison of Simulation

Figures 4.9 and provide a comparison of delay between the two scenarios. It
can be seen that the second scenario, with an additional ferry and gateway, has
significantly reduced average delay. Furthermore, very few updates take longer than
approximately 300 seconds to reach the gateway. When ferry memory capacity is lim-
ited to 5 updates, the additional ferry and gateway is seen to increase the probability

updates are received in a timely manner.

Nyl
R

. f

a 500 1000 1500 2000

CDF
Q

Delay (Seconds)

m——Simulation 1 (1 Ferry, 1 Gateway] ==Simulation 2 (2 Ferries, 2 Gateways)

Figure 4.9: Delay - Simulation 1 and 2, Memory Capacity of 30, Seed of 26834

26

Rras
o
N
Jdo

a 500 1000 1500 2000

CDF

Delay (Seconds)
m——Cimulation 1 (1 Ferry, 1 Gateway] ==Simulation 2 (2 Ferries, 2 Gateways)

Figure 4.10: Delay - Simulation 1 and 2, Memory Capacity of 5, Seed of 128

27

Conclusion

First and foremost, OPNET has been shown to be a suitable tool for analyzing mes-
sage ferrying. The node models created to analyze the specialized ‘state monitor’
network were tested and validated. A more complicated examination was performed
with a network model involving ten source nodes and varying numbers of ferry and
gateway nodes. Statistics measuring update success and delay were defined, imple-

mented and collected during an OPNET simulation.

5.1 Results

A number of general conclusions can be drawn from the results presented in section [4]
Adding gateways and ferries was seen to reduces delay, reduces the memory require-
ments of ferries to achieve a desired success rate, and decreases variability in delay
(see section . As such, any message ferrying network should have a maximum
number of ferries and gateways. The success rate was seen to marginally improve
when enabling source storage. This improvement is expected to increase with addi-
tional ferries. As such, it may be concluded that networks with few ferries need not

implement this feature, however it should be enabled for networks with many ferries.

28

5.2 Future Work

There are four main categories for future work and improvements to the OPNET

model in order to study task oriented message ferrying.

5.2.1 Algorithm Improvements

Many aspects of the ferrying algorithm implemented in this network are simplistic.
For example, there is no reverse communication from the gateway to message ferries
indicating updates have been delivered and update messages may be discarded. The
implementation of an update acknowledgment mechanism could significantly improve
performance and memory utilization. Additionally, a more intelligent algorithm used

by ferries to discard packets could also improve overall network performance.

5.2.2 Model Improvements

Many assumptions and simplifications were made when considering update and data
transfer between nodes. For example, near instantaneous data transfer, little to no
packet loss, and a strict communication range of 60 meters was assumed. Incorpo-
rating an existing point to point protocol for reliable wireless data transfer, such as

WiFi or ZigBee would provide more realistic results.x

5.2.3 Statistic Improvements

Due to the unique nature of the network, common ways to measure statistics are not
valid. As such, custom logic was required to produce all statistics. Measurement of
only two statistics was implemented, delay and update success rate. Adding addi-
tional statistics, such as number of active packets in the network and arrival order,

would provide additional insights into the networks behaviour.

29

5.2.4 Applicability and Network Model

The simulations that were presented involves roughly even source node placement
and random ferry movement. It is unlikely that a real network would have these
characteristics. Creating and simulating a real-world network model and application

would provide more realistic results.

30

References

1]

2]

R. Patra, K. Fall, and S. Jain, “Routing in a delay tolerant network,” in Pro-
ceedings of the 2004 conference on Applications, technologies, architectures, and

protocols for computer communications, 2004.

Y. Chen, W. Zhao, M. Ammar, and E. Zegura, “Hybrid routing in clustered DTNs
with message ferrying,” in Proceedings of the 1st international MobiSys workshop

on Mobile opportunistic networking, College of Computing, Georgia Institute of

Technology, Atlanta, GA, 30332, 2007.

W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach for data
delivery in sparse mobile ad hoc networks,” in Proceedings of the 5th ACM in-
ternational symposium on Mobile ad hoc networking and computing, College of

Computing, Georgia Institute of Technology, Atlanta, Georgia 30332, 2004.

S.-L. Wu and Y .-C. Tseng, Wireless Ad Hoc Networking. Auerbach Publications,
2007, pp. 439-459.

T. Massey, “Message Ferry Architecture and Implementation,” in Georgia In-
stitute of Technology, 2004, http://www.cs.ucla.edu/~tmassey/MF_Master_Proj.
pdf.

J. A. Davis, A. H. Fagg, and B. N. Levine, “Wearable Computers as Packet Trans-
port Mechanisms in Highly-Partitioned Ad-Hoc Networks,” in In Proceedings of
the 5th IEEFE international Symposium on Wearable Computers, IEEE Computer

Society, Washington, DC, 141, October 2001.

31

http://www.cs.ucla.edu/~tmassey/MF_Master_Proj.pdf
http://www.cs.ucla.edu/~tmassey/MF_Master_Proj.pdf

[7] R.C.Suganthe and P.Balasubramanie, “Efficient Routing For Intermittently Con-
nected Mobile Ad hoc Network,” in IJCSNS International Journal of Com-
puter Science and Network Security, 184 VOL.8 No.11, November 2008, 2008,
http://paper.ijcsns.org/07_book/200811/20081126.pdf.

32

http://paper.ijcsns.org/07_book/200811/20081126.pdf

Appendix A

Code: Source Property Process

A.1 Overview

Figure A.1: Source property process model

33

A.2 Local variables

Type
lint
lint

int

| Ohijid

{Evhandle
[DmsT_Dist_Handle
int

lint

|int

[List

Stathandle
[Stathandle

lint

{double

_Stathandle

Mame

prop_key

prop_key update_counter

prop_last_key updated
self_id

nest_update_evh
update_dist_ptr

source_id

is_snurce_mnde
‘has_one_update

active_updates_|st

stal_update_success
stat_update_success_limited_loss

last_key_update_num_deliverad

stop_time

stat_delay

Figure A.2: State variables of source property process

A.3 Header Block

#include <oms_dist_support.h>

//Interrupt Codes (codes have no meaning and are random)

#define
#define
#define
#define
#define
#define

IC_PROP_VAL_CHANGED 39
IC_UPDATES_DISABLE 83
IC_UPDATES_ENABLE 84
IC_STOP 21

IC_GW_PKT_RX 99

SOURCE_MODE (is_source_mode)

//Interrupts

#define
#define
#define
#define
#define
#define

typedef
{

PROP_VAL_CHANGED (op_intrpt_type() == OPC_INTRPT_SELF && op_intrpt_code() == IC_PROP_VAL_CHANGED)

DISABLE_PROP_UPDATES (op_intrpt_type() == OPC_INTRPT_REMOTE && op_intrpt_code() == IC_UPDATES_DISABLE)
ENABLE_PROP_UPDATES (op_intrpt_type() == OPC_INTRPT_REMOTE && op_intrpt_code() == IC_UPDATES_ENABLE)
I_GW_PKT_RX (op_intrpt_type() == OPC_INTRPT_REMOTE && op_intrpt_code() == IC_GW_PKT_RX)

I_END_SIM (op_intrpt_type() == OPC_INTRPT_ENDSIM)

I_STOP (op_intrpt_type() == OPC_INTRPT_SELF && op_intrpt_code() == IC_STOP)

struct

int update_counter_number;

int pkts_alive;

int has_

one_store;

int gateway_rx;

double generated_timestamp;

int mark_for_delete;

int discard_reason;

34

¥ active_update_tacker;

void new_val(void);
void schedule_update(void);
void gw_pkt_rx(void);

void stat_finalize(void);

A.4 Function Block

void new_val(void)

{

FIN (new_val ());
prop_key_update_counter++;
schedule_update();

FOUT

}

void schedule_update(void)
{

double next_update_time;
FIN(schedule_update());

next_update_time = oms_dist_outcome (update_dist_ptr);

if (next_update_time <0)
{
next_update_time = 0;

}

next_update_evh = op_intrpt_schedule_self (op_sim_time () + next_update_time, IC_PROP_VAL_CHANGED) ;
FOUT;

s

void gw_pkt_rx()

Ici *iciptr;

int sourceid;

int key_update_number;

int action;

int discard_reason;

int tracker_index;

double generated_timestamp;
active_update_tacker *pTracker;
char msg[255];

int i;

FIN(gw_pkt_rx());

iciptr = op_intrpt_ici ();

if (iciptr == OPC_NIL)

{

op_sim_end("Null ICI", "", "", "");
¥

op_ici_attr_get (iciptr, "source_id", &sourceid);

op_ici_attr_get (iciptr, "key_update_number", &key_update_number);
op_ici_attr_get (iciptr, "action", &action)

op_ici_attr_get (iciptr, "discard_reason", &discard_reason);

op_ici_attr_get (iciptr, "generated_timestamp", &generated_timestamp)

//Basic field checks

35

if (sourceid != source_id)

{

op_sim_end("Bad source id for ICI", "", "', "");

}

else if (key_update_number > prop_key_update_counter || key_update_number <= 0)
{

op_sim_end("Bad key_update_number for ICI", "", "",
s
//Find the tracker

pTracker = OPC_NIL;

for(tracker_index = 0; tracker_index < op_prg_list_size(active_updates_lst); tracker_index++)
{

active_update_tacker *pTrackerTemp;

pTrackerTemp = (active_update_tacker *)op_prg_list_access(active_updates_lst, tracker_index);

if (pTrackerTemp->update_counter_number == key_update_number)
{

pTracker = pTrackerTemp;
break;

¥

}

if (pTracker == OPC_NIL)
{

int i;

char msg1[255];

char msg2[255];

char msg3[255] ;

printf("Current list state\n");

for(i = 0; i < op_prg_list_size(active_updates_lst); i++)

{

active_update_tacker *pTrackerTemp;

pTrackerTemp = (active_update_tacker *)op_prg_list_access(active_updates_lst, i);
sprintf(msgl, "update_counter_number=%d\n", pTrackerTemp—>update_counter_number);
printf (msgl) ;

¥

sprintf (msgl, "Tracker index=%d, List size=Yd", tracker_index, op_prg_list_size(active_updates_lst));
sprintf (msg2, "key_update_number=}d, prop_key_update_counter=%d", key_update_number, prop_key_update_counter);
sprintf (msg3, "Action=Yd", action);

op_sim_end("Could not find tracker", msgl, msg2, msg3);

s

if (action == 1)

{

//Gateway received packet

if (pTracker->gateway_rx)

{

op_sim_end("Two gateway rx interrupts", "", "", "");

¥

else if (pTracker->pkts_alive <= 0)

{

op_sim_end("pkts_alive problem", "", "", "");

}

pTracker->gateway_rx = 1;

op_stat_write(stat_delay, op_sim_time() - generated_timestamp);
op_stat_write(stat_update_success, 1.0);

op_stat_write(stat_update_success_limited_loss, 1.0);

if (last_key_update_num_delivered >= key_update_number)
{
op_sim_end("Problem with gateway", "", "", "");

¥

36

last_key_update_num_delivered = key_update_number;
¥

else if (action == 2)

{

//Store

if (pTracker->pkts_alive < 0)

{

op_sim_end("Thats strange...", "", "", "");
¥

pTracker->pkts_alive++;
pTracker->has_one_store = 1;

s

else if (action == 3)

{

//Discard

pTracker->pkts_alive--;
pTracker->discard_reason = discard_reason;
}

else

{

op_sim_end("Bad action", "", "", "");

s

has_one_update = 1;
for(i = 0; i < op_prg_list_size(active_updates_lst); i++)
{

pTracker = (active_update_tacker *)op_prg_list_access(active_updates_lst, i);

if (pTracker->pkts_alive <= 0)

{

pTracker->mark_for_delete--;

s

if (pTracker->mark_for_delete <= 0)
{

active_update_tacker *pTrackerTemp;

if (pTracker->pkts_alive < 0 && pTracker->has_one_store)
{

op_sim_end("Thats strange...", "2", "", "");

¥

if (pTracker->gateway_rx =:
{

//Nothing left - update has been lost

0)

op_stat_write(stat_update_success, 0.0);

if (pTracker->discard_reason == 1)

{

//Update

¥

else if(pTracker->discard_reason == 2)
{

//Mem full

if(pTracker—>update_counter_number > last_key_update_num_delivered)
{

op_stat_write(stat_update_success_limited_loss, 0.0);

s

}

else

{

op_sim_end("Bad discard reason", "", "", "");

¥

37

}

pTrackerTemp = (active_update_tacker *)op_prg_list_remove(active_updates_lst, i);

if (pTrackerTemp != pTracker)
{

op_sim_end("AHA,not another error!", "", "', "");
}

op_prg_mem_free(pTracker) ;

¥

¥

op_ici_destroy(iciptr);
FOUT;

¥

void stat_finalize()

{

Stathandle oneup;

int i;

FIN(stat_finalize());
oneup = op_stat_reg("One Update",0PC_STAT_INDEX_NONE, OPC_STAT_GLOBAL);

op_stat_write(oneup, has_one_update);

for(i = 0; i < op_prg_list_size(active_updates_lst); i++)
{
active_update_tacker *pTracker;

pTracker = (active_update_tacker *)op_prg_list_access(active_updates_lst, i);

if (pTracker->gateway_rx == 0)
{
//Receiving should already have been taken care of

op_stat_write(stat_update_success, 0.0);

if (pTracker->update_counter_number > last_key_update_num_delivered)
{

op_stat_write(stat_update_success_limited_loss, 0.0);

¥

s

if (pTracker->update_counter_number == prop_last_key_updated)

{

if (pTracker->gateway_rx == 0)

{

op_stat_write(stat_delay, op_sim_time() - pTracker->generated_timestamp);
s

}

s

FOUT;

A.5 init State: Enter Executives

char msg[100];

char updatedist_str [128];

self_id = op_id_self();

op_ima_obj_attr_get (self_id, "Source ID", &source_id);
op_ima_obj_attr_get (self_id, "Property Key", &prop_key);
op_ima_obj_attr_get (self_id, "Property Update Interval", updatedist_str);

op_ima_obj_attr_get (self_id, "Stop Time", &stop_time);

38

op_ima_obj_attr_get (self_id, "Enable Properties", &is_source_mode);

active_updates_lst = op_prg_list_create();

has_one_update = 03

prop_key_update_counter = 0;

prop_last_key_updated = 0; //So it gets updated right away

update_dist_ptr = oms_dist_load_from_string (updatedist_str);

stat_delay = op_stat_reg("Delay",0PC_STAT_INDEX_NONE, OPC_STAT_GLOBAL);

stat_update_success = op_stat_reg("Update Success",0PC_STAT_INDEX_NONE, OPC_STAT_GLOBAL);

stat_update_success_limited_loss = op_stat_reg("Update Success - Losses by buffer full",0PC_STAT_INDEX_NONE, OPC_STAT_GLOBAL);

if (is_source_mode)

{

schedule_update() ;

if (stop_time > 0)

{

op_intrpt_schedule_self (op_sim_time() + stop_time, IC_STOP);
}

}

A.6 active State: Enter Executives

Packet *pPkt;

if (prop_key_update_counter != prop_last_key_updated)
{

active_update_tacker *pTracker;

int i;

//Error check

for(i = 0; i < op_prg_list_size(active_updates_lst); i++)
{

//Might be able to just check the tail instead

pTracker = (active_update_tacker *)op_prg_list_access(active_updates_lst, i);
if (pTracker->update_counter_number == prop_last_key_updated)

{

if (pTracker->has_one_store == 0)

{

op_sim_end("Did not receive store interrupt", "", "", "");

}

¥

s

prop_last_key_updated = prop_key_update_counter;

pPkt = op_pk_create_fmt("keyupdate");

op_pk_nfd_set_int32(pPkt, "source_id", source_id);
op_pk_nfd_set_int32(pPkt, "key", prop_key);

op_pk_nfd_set_int32(pPkt, "key_update_number", prop_key_update_counter);
op_pk_nfd_set_dbl(pPkt, "generated_timestamp", op_sim_time());
op_pk_nfd_set_objid(pPkt, "source_prop_objid", self_id);

pTracker = (active_update_tacker *) op_prg_mem_alloc (sizeof (active_update_tacker));
pTracker->update_counter_number = prop_key_update_counter;
pTracker->pkts_alive = 0;

pTracker->has_one_store = 0;

pTracker->gateway_rx = 0;

pTracker->generated_timestamp = op_sim_time();

pTracker->mark_for_delete = 3;

op_prg_list_insert(active_updates_lst, pTracker, OPC_LISTPOS_TAIL);
op_pk_send(pPkt, 0); //Output stream

s

39

A.7 stop State: Enter Executives

char msg_str[255];

if (op_ev_valid (next_update_evh) == OPC_TRUE)

{

sprintf (msg_str, "[%d] Stopping property updates @ %d\n", source_id, op_sim_time());
printf (msg_str);

op_ev_cancel (next_update_evh);

}

40

Appendix B

Code: Storage Process

B.1 Overview

Figure B.1: Storage process model

41

B.2 Local variables

Type Mame
List* pup'd' at-é__ist'
int = intrptscheduled
int = updatesSent
Ohjid self_jd
int maxlistsize
Crhijid updatemanager_id
int souUrce._id
int i5_gateway
List® stat_lst_pdisc__hfull
List® stat st pdisc_old
List” stat_lst_pstored_new
List® stat_[st_pstored_updated
Stathandle stat_preceived
List® stat st pdisc_dup
Stathandle stat_neworupdated

Figure B.2: State variables of storage process

B.3 Header Block

#define MAX_SRC_IDS 10

#define GATEWAY_MODE (is_gateway)

#define STORAGE_MODE (!GATEWAY_MODE)

#define STRM_UM_IN O

#define STRM_UM_OUT O

#define STRM_GW_OUT 1

//Interrupt Codes (random numbers)

#define IC_DUMP_UPDATES 73

#define IC_DUMP_UPDATES_DONE 74

#define IC_SOURCPROP_ACTION 99

#define TX_UPDATES (op_intrpt_type() == OPC_INTRPT_REMOTE && op_intrpt_code() == IC_DUMP_UPDATES)
#define UPDATE_RECEIVED (op_intrpt_type() == OPC_INTRPT_STRM)

int written_global_storage_stat = 0;
List *create_stat_lst_loc(const char *);
void store_update(void);

void tx_updates(void);

void gateway_fwrd(void);

B.4 Function Block

void store_update(void)
{

Packet *pkt;

Packet *1stPkt;

42

char message_str [255];
Objid propl_id;

int key;

int sourceid;

int key_updnm;

int pos_index;

double gen_ts;

int newkey;

int newsourceid;

int newkey_updnm;
double newgen_ts;

int listsize;

int i, j, k;

double temp;

Ici *iciptr;

Objid source_prop_id;
FIN (store_update ());

pkt = op_pk_get (op_intrpt_strm ());

//get info

op_pk_nfd_get(pkt, "key", &newkey);

op_pk_nfd_get (pkt, "source_id", &newsourceid);
op_pk_nfd_get (pkt, "key_update_number", &newkey_updnm) ;
op_pk_nfd_get (pkt, "generated_timestamp", &newgen_ts);

listsize = op_prg_list_size(pupdate_lst);

if (newsourceid < 0 || newsourceid >= MAX_SRC_IDS)
{

op_sim_end("Bad sourceid", "", "", "");

¥

op_stat_write(stat_preceived, 1.0);

//Search & Compare ’key_update_number’; replace if newer
for(i = 0; i < listsize; i++)

{

1stPkt = (Packet *)op_prg_list_access (pupdate_lst, i);
op_pk_nfd_get(1stPkt, "key", &key);

op_pk_nfd_get (1stPkt, "source_id", &sourceid);
op_pk_nfd_get(lstpkt, "key_update_number", &key_updnm)
op_pk_nfd_get (1stPkt, "generated_timestamp", &gen_ts);

//COMPARE for matching source/key

if (newsourceid == sourceid)

{

if (newkey == key)

{

if (newkey_updnm > key_updnm) //if key is newer we update

{

if (newsourceid != source_id)

{

op_stat_write(*((Stathandle *)op_prg_list_access (stat_lst_pstored_updated, sourceid)), 1.0);
op_stat_write(stat_neworupdated, 1.0);

¥

op_pk_nfd_get (1stPkt, "source_prop_objid", &source_prop_id);
iciptr = op_ici_create ("prop_action");

op_ici_attr_set (iciptr, "source_id", sourceid);
op_ici_attr_set (iciptr, "key_update_number", newkey_updnm)
op_ici_attr_set (iciptr, "action", 2);
op_ici_install(iciptr);

op_intrpt_schedule_remote (op_sim_time (), IC_SOURCPROP_ACTION, source_prop_id);

43

iciptr = op_ici_create ("prop_action");

op_ici_attr_set (iciptr, "source_id", sourceid);
op_ici_attr_set (iciptr, "key_update_number", key_updnm);
op_ici_attr_set (iciptr, "action", 3); //3 = discard
op_ici_attr_set (iciptr, "discard_reason", 1); //1 = update
op_ici_install(iciptr);

op_intrpt_schedule_remote (op_sim_time (), IC_SOURCPROP_ACTION, source_prop_id);

op_prg_list_remove (pupdate_lst, i);

op_prg_list_insert(pupdate_lst, pkt, OPC_LISTPOS_TAIL);

op_pk_destroy (1stPkt) ;

FOUT;

¥

else

{

if (newkey_updnm == key_updnm)

{

op_stat_write(x((Stathandle *)op_prg_list_access (stat_lst_pdisc_dup, sourceid)), 1.0);
}

else

{

op_stat_write(x((Stathandle *)op_prg_list_access (stat_lst_pdisc_old, sourceid)), 1.0)
}

//Dont need to trigger the source prop intrupt because this pkt was never stored
op_pk_destroy(pkt) ;

FOUT;

}

}

}

} //forloop

op_pk_nfd_get (pkt, "source_prop_objid", &source_prop_id);

iciptr = op_ici_create ("prop_action");

op_ici_attr_set (iciptr, "source_id", newsourceid)

op_ici_attr_set (iciptr, "key_update_number", newkey_updnm)

op_ici_attr_set (iciptr, "action", 2); //2 = store

op_ici_install(iciptr);

op_intrpt_schedule_remote (op_sim_time (), IC_SOURCPROP_ACTION, source_prop_id);
op_prg_list_insert(pupdate_lst, pkt, OPC_LISTPOS_TAIL);

listsize = op_prg_list_size(pupdate_lst);

if (newsourceid != source_id)

{

op_stat_write(*((Stathandle *)op_prg_list_access (stat_lst_pstored_new, newsourceid)), 1.0);
op_stat_write(stat_neworupdated, 1.0);

s

//See if we need to get rid of something

if (listsize > maxlistsize)

{

//set first packet for temp

1stPkt = (Packet *)op_prg_list_access (pupdate_lst, 0);
op_pk_nfd_get (1stPkt, "generated_timestamp", &gen_ts);

temp = gen_ts;

//find oldest timestamp

for(j = 0; j < listsize; j++)

{

1stPkt = (Packet *)op_prg_list_access (pupdate_lst, j);
op_pk_nfd_get (1stPkt, "generated_timestamp", &gen_ts);
if(gen_ts < temp)

{

44

temp = gen_ts; //replace if older
}
¥

//delete packet with oldest timestamp, temp,

for(k = 0; k < listsize; k++)

{

1stPkt = (Packet *)op_prg_list_access (pupdate_lst, k);
op_pk_nfd_get (1stPkt, "generated_timestamp", &gen_ts);
op_pk_nfd_get(lstpkt, "source_id", &sourceid);
op_pk_nfd_get (1stPkt, "key_update_number", &key_updnm);

if (temp == gen_ts)

{

op_stat_write(x((Stathandle *)op_prg_list_access (stat_lst_pdisc_bfull, sourceid)), 1.0);
op_pk_nfd_get (1stPkt, "source_prop_objid", &source_prop_id);

iciptr = op_ici_create ("prop_action");

op_ici_attr_set (iciptr, "source_id", sourceid);

op_ici_attr_set (iciptr, "key_update_number", key_updnm) ;

op_ici_attr_set (iciptr, "action", 3); //3 = discard

op_ici_attr_set (iciptr, "discard_reason", 2); //2 = Memory Full
op_ici_install(iciptr);

op_intrpt_schedule_remote (op_sim_time (), IC_SOURCPROP_ACTION, source_prop_id);
op_prg_list_remove (pupdate_lst, k);

op_pk_destroy (1stPkt);

break;

}

s

}

FOUT;

s

void tx_updates(void)
{

int i;

int lstSize;

Packet *pkt;

Packet *pPktCopy;
char message_str [255];

FIN (tx_updates ());

1stSize = op_prg_list_size (pupdate_lst);

for (i = 0; i < lstSize; i++)

{

pkt = (Packet *) op_prg_list_access (pupdate_lst, i);

pPktCopy = op_pk_copy (pkt) ;

op_pk_send (pPktCopy, STRM_UM_OUT);

}

op_intrpt_schedule_remote(op_sim_time (), IC_DUMP_UPDATES_DONE, updatemanager_id);
FOUT;

s

void tx_updates_done(void)

{

FIN (tx_updates_done ());

op_intrpt_schedule_remote(op_sim_time (), IC_DUMP_UPDATES_DONE, updatemanager_id);
FOUT;

}

void gateway_fwrd()

{

FIN (update_gateway ());

op_stat_write(stat_preceived, 1.0);

45

op_pk_send (op_pk_get (STRM_UM_IN), STRM_GW_OUT);
FOUT;

s

List *create_stat_lst_loc(const char *statName)
{

List *1lst;

int stat_size_asdf;

int i;

char msg1[255];

char msg2[255] ;

FIN(create_stat_lst_loc());

op_stat_dim_size_get (statName, OPC_STAT_LOCAL, &stat_size_asdf);
if(stat_size_asdf !'= MAX_SRC_IDS)

{

sprintf (msgl, "stat_size_asdf: %d", stat_size_asdf);

sprintf (msg2, "MAX_SRC_IDS: %d", MAX_SRC_IDS);

op_sim_end("Bad stat dimension", statName, msgl, msg2);

}

1st = op_prg_list_create();

for(i = 0; i < MAX_SRC_IDS; i++)

{

Stathandle *sth_temp;

sth_temp = (Stathandle *) op_prg_mem_alloc (sizeof (Stathandle));
*sth_temp = op_stat_reg (statName, i, OPC_STAT_LOCAL);

op_prg_list_insert(lst, sth_temp, OPC_LISTPOS_TAIL);
}

FRET(1st);

}

B.5 1init State: Enter Executives

int i;

self_id = op_id_self();

printf ("REGISTERING STATS\n");

stat_lst_pstored_new = create_stat_lst_loc("Pkts Stored - New");

stat_lst_pstored_updated = create_stat_lst_loc("Pkts Stored - Updated");

stat_lst_pdisc_old = create_stat_lst_loc("Pkts Discarded - 01d");

stat_lst_pdisc_bfull = create_stat_lst_loc("Pkts Discarded - Buffer Full");

stat_lst_pdisc_dup = create_stat_lst_loc("Pkts Discarded - Duplicate");

stat_preceived = op_stat_reg("Pkts Received",0PC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

stat_neworupdated = op_stat_reg("Pkts Stored - New or Updated",0PC_STAT_INDEX_NONE, OPC_STAT_LOCAL) ;

pupdate_lst = op_prg_list_create (); //allocate an empty list
op_ima_sim_attr_get (OPC_IMA_INTEGER, "Capacity", &maxlistsize);
if (written_global_storage_stat == 0)

{

written_global_storage_stat = 1;

op_stat_write_scalar("Storage Capacity", maxlistsize);

}

op_ima_obj_attr_get (self_id, "Source ID", &source_id);
op_ima_obj_attr_get (self_id, "Is Gateway", &is_gateway);

updatemanager_id = op_id_from_name (op_topo_parent(self_id), OPC_OBJTYPE_PROC, "update_manager");

46

B.6 storage State: Enter Executives

if (maxlistsize <= 0)

{

//Typically when this node is a gateway
op_sim_end("Invalid max list size", "", "", "");

}

47

Appendix C

Code: Update Manager Process

C.1 Overview

Figure C.1: Update manager process model

48

C.2 Local variables

ﬂ.-'pe Iame
| Ojid storage_id
{int _ is_pkt_interrupt
\Packet * pPkt_interrupt
[Evhandle evh__hean:nn_tmr
éDmsT_Dist_Handle disth_heacon_timer
[Oihjid self_id
lint source_id
| Obijid propl_id
| Ohjid propz_id
[Cibjid props_id
| Orhaji gueus_id
(it i5_source
fint enable_source_storage

Figure C.2: State variables of update manager process

C.3 Header Block

#include <oms_dist_support.h>
//STREAMS

#define STRM_IN_P1 O

#define STRM_IN_P2 1

#define STRM_IN_P3 2

#define STRM_IN_STORE 3
#define STRM_OUT_STORE 0O
#define STRM_IN_MAC 4

#define STRM_OUT_MAC 1

//INTERRUPT CODES

#define IC_REQ_STORE_DUMP 73
#define IC_STORE_DUMP_DONE 74
#define IC_PROP_UPDATES_DISABLE 83
#define IC_PROP_UPDATES_ENABLE 84
#define IC_SEND_BEACON_TIMER 42
#define IC_PK_UPDATEORACK 37
#define IC_PK_BEACON 38

#define IC_Q_DISABLE 54

#define IC_Q_ENABLE 55

#define IC_TX_ACQUIRED 67

//INTERRUPTS

//Stream
#define I_S_PROP_PKT (op_intrpt_type() == OPC_INTRPT_STRM && (op_intrpt_strm() == STRM_IN_P1 || op_intrpt_strm() == STRM_IN_P2 || op_intrpt_strm() == STRM_IN_P3))

49

#define I_S_STORE_PKT (op_intrpt_type() == OPC_INTRPT_STRM && op_intrpt_strm() == STRM_IN_STORE)
#define I_S_MAC_PKT (op_intrpt_type() == OPC_INTRPT_STRM && op_intrpt_strm() == STRM_IN_MAC)

//Packet op_intrpt_strm() == STRM_IN_P1

#define I_PK_UPDATEORACK (op_intrpt_type() == OPC_INTRPT_SELF &% op_intrpt_code() == IC_PK_UPDATEORACK)

#define I_PK_BEACON (op_intrpt_type() == OPC_INTRPT_SELF && op_intrpt_code() == IC_PK_BEACON)

#define I_TX_ACQUIRED ((op_intrpt_type() == OPC_INTRPT_SELF || op_intrpt_type() == OPC_INTRPT_REMOTE) && op_intrpt_code() == IC_TX_ACQUIRED)

//Remote
#define I_R_STORE_DUMP_DONE (op_intrpt_type() == OPC_INTRPT_REMOTE && op_intrpt_code() == IC_STORE_DUMP_DONE)

//Local (self)
#define I_L_SEND_BEACON_TIMER (op_intrpt_type() == OPC_INTRPT_SELF && op_intrpt_code() == IC_SEND_BEACON_TIMER)

//0THER
#define STORE_UPDATES (!is_source || enable_source_storage)
List *tx_rights_lst = OPC_NIL;

//PROTOTYPES

//Beacon control

void enable_beacon();

void disable_beacon();

void send_beacon();

void send_beacon_timed();

void reset_beacon_timer();
//Property control

void enable_prop_updates();

void disable_prop_updates();

void disable_q();

void enable_q();

//Storage control

void request_storage_dump();
//Packet redirection

void send_to_store();

void send_to_mac();

void generate_mac_pk_interrupt();
void clear_pk_interrupt(void);
void printbad_mac_or_prop_strm(void);
void print_default(void);

void acquire_tx_rights(void);

C.4 Function Block

void schedule_beacon()

{

double next_becon_time = 0;

FIN(schedule_beacon());

while(next_becon_time <= 0.1)

{

next_becon_time = oms_dist_outcome (disth_beacon_timer);
}

evh_beacon_tmr = op_intrpt_schedule_self (op_sim_time () + next_becon_time, IC_SEND_BEACON_TIMER);
FOUT;

s

void enable_beacon()

50

{

FIN(enable_beacon());

schedule_beacon() ;

FOUT;

s

void disable_beacon()

{

FIN(disable_beacon());

if (op_ev_valid (evh_beacon_tmr) == OPC_TRUE)

{

op_ev_cancel (evh_beacon_tmr);

s

FOUT;

}

void reset_beacon_timer()

{

FIN(reset_beacon_timer());

disable_beacon();

enable_beacon();

FOUT;

}

void send_beacon()

{

char message_str[255];

Packet *pPkt;

FIN(send_beacon());

pPkt = op_pk_create_fmt("beacon");

op_pk_nfd_set_int32(pPkt, "source_id", source_id);

op_pk_send(pPkt, STRM_OUT_MAC);

schedule_beacon() ;

FOUT;

s

//Property control

void enable_prop_updates()

{

FIN(enable_prop_updates());

op_intrpt_schedule_remote(op_sim_time (), IC_PROP_UPDATES_ENABLE, propl_id);
op_intrpt_schedule_remote(op_sim_time (), IC_PROP_UPDATES_ENABLE, prop2_id);
op_intrpt_schedule_remote(op_sim_time (), IC_PROP_UPDATES_ENABLE, prop3_id);
FOUT;

s

void disable_prop_updates()

{

FIN(disable_prop_updates());

op_intrpt_schedule_remote(op_sim_time(), IC_PROP_UPDATES_DISABLE, propl_id);
op_intrpt_schedule_remote(op_sim_time(), IC_PROP_UPDATES_DISABLE, prop2_id);
op_intrpt_schedule_remote(op_sim_time (), IC_PROP_UPDATES_DISABLE, prop3_id);
FOUT;

s

void request_storage_dump()

{

FIN(request_sotrage_dump());

op_intrpt_schedule_remote(op_sim_time(), IC_REQ_STORE_DUMP, storage_id);
FOUT;

}

void send_to_store()

{

Packet *pPktToForward;

FIN(send_to_store());

if (is_pkt_interrupt)

{

51

is_pkt_interrupt = 0;

if (pPkt_interrupt == OPC_NIL)

{

op_sim_end("Nill interrupt pkt", "", "", "");
s

pPktToForward = pPkt_interrupt;
pPkt_interrupt = OPC_NIL;

s

else

{

if (pPkt_interrupt != OPC_NIL)

{

op_sim_end("Not nill interrupt pkt", "", "", "");
}

pPktToForward = op_pk_get (op_intrpt_strm());
}

op_pk_send (pPktToForward, STRM_OUT_STORE);
FOUT;

¥

void send_to_mac()

{

char message_str[255];

Packet *pPktToForward;

FIN(send_to_mac());

if (is_pkt_interrupt)

{

is_pkt_interrupt = 0;

if (pPkt_interrupt == OPC_NIL)

{

op_sim_end("Nill interrupt pkt", "", "", "");
}

pPktToForward = pPkt_interrupt;
pPkt_interrupt = OPC_NIL;

s

else

{

if (pPkt_interrupt != OPC_NIL)

{

op_sim_end("Not nill interrupt pkt", "", "", "");
}

pPktToForward = op_pk_get (op_intrpt_strm());
s

op_pk_send (pPktToForward, STRM_OUT_MAC);
FOUT;

}

void clear_pk_interrupt()

{

FIN(clear_pk_interrupt());

if (is_pkt_interrupt)

{

is_pkt_interrupt = 0;

if (pPkt_interrupt == OPC_NIL)

{

op_sim_end("Nill interrupt pkt", "", "", "");
}

op_pk_destroy (pPkt_interrupt) ;
pPkt_interrupt = OPC_NIL;

s

else

{

op_sim_end("clear_pk_interrupt called wrong", "", "",

iy

92

FOUT;

s

void generate_mac_pk_interrupt()

{

char message_str[255];

char format_name[255];
FIN(generate_mac_pk_interrupt());
reset_beacon_timer(); //To prevent a bad state

if (pPkt_interrupt != OPC_NIL)

{

op_sim_end("Not nill interrupt pkt", "", "", "");

s

else if (is_pkt_interrupt)

{

op_sim_end("Pkt interrupt flag set (bad)", "", "", "");
s

else if (op_intrpt_strm() !'= STRM_IN_MAC)

{

op_sim_end("generate_mac_pk_interrupt called for non mac stream interrupt", "", "", "");
}

pPkt_interrupt = op_pk_get (STRM_IN_MAC);
is_pkt_interrupt = 1;

op_pk_format (pPkt_interrupt, format_name) ;

if (strcmp (format_name, "beacon") == 0)

{

op_intrpt_schedule_self (op_sim_time(), IC_PK_BEACON);
}

else if (strcmp (format_name, "keyupdate") == 0)

{

op_intrpt_schedule_self (op_sim_time(), IC_PK_UPDATEORACK) ;
s

FOUT;

¥

void disable_q()

{

FIN(disable_q(Q));
op_intrpt_schedule_remote(op_sim_time(), IC_Q_DISABLE, queue_id);
FOUT;

s

void enable_q()

{

FIN(enable_q());
op_intrpt_schedule_remote(op_sim_time(), IC_Q_ENABLE, queue_id);
FOUT;

}

void print_default()

{

FIN(print_default());
printf ("DEFAULT\n") ;
FOUT;

¥

void acquire_tx_rights()
{

int i;
FIN(acquire_tx_rights());
if (is_pkt_interrupt)

{

is_pkt_interrupt = 0;

53

if (pPkt_interrupt == OPC_NIL)

{

op_sim_end("Nill interrupt pkt", "", "", "");

}

op_pk_destroy (pPkt_interrupt) ;

pPkt_interrupt = OPC_NIL;

¥

else

{

if (pPkt_interrupt != OPC_NIL)

{

op_sim_end("Not nill interrupt pkt", "", "", "");

s

}

for(i = 0; i < op_prg_list_size(tx_rights_lst); i++)
{

if (op_prg_list_access(tx_rights_lst, i) == &self_id)
{

if(i = 0)

{

op_sim_end ("NOOOOO....... R O H

s

FOUT;

s

s

op_prg_list_insert(tx_rights_lst, &self_id, OPC_LISTPOS_TAIL);
if (op_prg_list_size(tx_rights_lst) == 1)

{

op_intrpt_schedule_self (op_sim_time(), IC_TX_ACQUIRED);
¥

FOUT;

C.5 1nit State: Enter Executives

char beacon_dist_str[128];

self_id = op_id_self();

op_ima_obj_attr_get (self_id, "Source ID", &source_id);

op_ima_obj_attr_get (self_id, "Beacon Interval", beacon_dist_str);

disth_beacon_timer = oms_dist_load_from_string (beacon_dist_str);

op_ima_obj_attr_get (self_id, "Is Source", &is_source);

op_ima_sim_attr_get (OPC_IMA_INTEGER, "Enable Source Storage", &enable_source_storage);
storage_id = op_id_from_name (op_topo_parent(self_id), OPC_OBJTYPE_PROC, "storage");
propl_id = op_id_from_name (op_topo_parent(self_id), OPC_OBJTYPE_PROC, "propl");
prop2_id = op_id_from_name (op_topo_parent(self_id), OPC_OBJTYPE_PROC, "prop2");
prop3_id = op_id_from_name (op_topo_parent(self_id), OPC_OBJTYPE_PROC, "prop3");
queue_id = op_id_from_name (op_topo_parent(self_id), OPC_OBJTYPE_PROC, "hold_queue");

if (tx_rights_lst == OPC_NIL)

{

printf("Creating TX rights list\n");
tx_rights_lst = op_prg_list_create();
}

//Property stream priorities

o4

op_intrpt_priority_set (OPC_INTRPT_STRM, STRM_IN_P1, 15);
op_intrpt_priority_set (OPC_INTRPT_STRM, STRM_IN_P2, 15);
op_intrpt_priority_set (OPC_INTRPT_STRM, STRM_IN_P3, 15);

//Lower than property inputs

op_intrpt_priority_set (OPC_INTRPT_STRM, STRM_IN_STORE, 10);
op_intrpt_priority_set (OPC_INTRPT_STRM, STRM_IN_MAC, 8);
//Absolute highest - controlled by stream interrupts
op_intrpt_priority_set (OPC_INTRPT_SELF, IC_PK_BEACON, 20);
op_intrpt_priority_set (OPC_INTRPT_SELF, IC_PK_UPDATEORACK, 20);
op_intrpt_priority_set (OPC_INTRPT_SELF, IC_TX_ACQUIRED, 20);
//Lower than STRM_IN_STORE

op_intrpt_priority_set (OPC_INTRPT_REMOTE, IC_STORE_DUMP_DONE, 9);
//Absolute lowest

op_intrpt_priority_set (OPC_INTRPT_SELF, IC_SEND_BEACON_TIMER, 0);

enable_beacon();

C.6 tx start State: Enter Executives

if (op_prg_list_access(tx_rights_lst, OPC_LISTPOS_HEAD) != &self_id)
{

op_sim_end("Dont have TX rights", "", "", "");

}

if (is_pkt_interrupt)

{

is_pkt_interrupt = 0;

if (pPkt_interrupt == OPC_NIL)

{

op_sim_end("Nill interrupt pkt", "", "", "");

}

op_pk_destroy (pPkt_interrupt) ;

pPkt_interrupt = OPC_NIL;

s

else

{

if (pPkt_interrupt != OPC_NIL)

{

op_sim_end("Not nill interrupt pkt", "", "", "");
s

}

if (op_pk_get (STRM_IN_MAC) != OPC_NIL)

{

op_sim_end ("STRM_IN_MAC - Packet waiting", "", "", "u);
}

disable_qQ);

disable_prop_updates();

disable_beacon();

request_storage_dump() ;

C.7 tx done State: Enter Executives

%)

if (op_pk_get (STRM_IN_STORE) != OPC_NIL)

{

op_sim_end("Store stream not empty", "", "", "");
}

enable_qQ);

enable_prop_updates() ;

//Allow the node we just received updates from to transmit

enable_beacon();

if (op_prg_list_remove(tx_rights_lst, OPC_LISTPOS_HEAD) != &self_id)
{

op_sim_end("Dont have TX rights", "Leave", "", "");

}

if (op_prg_list_size(tx_rights_1lst)>0)

{

if (op_prg_list_access(tx_rights_lst, OPC_LISTPOS_HEAD) == &self_id)
{

op_sim_end("Stupid OPNET", "This is actually your fault", "", "");
s

op_intrpt_schedule_remote(op_sim_time (), IC_TX_ACQUIRED, *((int *)op_prg_list_access(tx_rights_lst, OPC_LISTPOS_HEAD)));
s

C.8 error State: Enter Executives

//Unrecoverable error

op_sim_end("Unexpected state", "", "", "");

56

Appendix D

Code: MAC Process

D.1 Overview

Figure D.1: MAC process model

57

D.2

D.3

//Streams

Local variables

Type Mame

int source_id

Crhjid self_id

Figure D.2: State variables of MAC process

Header Block

#define STRM_INPUT 0
#define STRM_RRX 1
#define STRM_OUTPUT O

#define STRM_RTX 1

//Interrupts

#define I_RX_PKT (op_intrpt_type() == OPC_INTRPT_STRM && op_intrpt_strm() == STRM_RRX)
#define I_INPUT_PKT (op_intrpt_type() == OPC_INTRPT_STRM && op_intrpt_strm() == STRM_INPUT)

void rrx_to_output(void);

void input_to_rtx(void);

D.4

Function Block

void rrx_to_output(void)

{

Packet *pPkt;

Objid pktsource;

char message_str[255];

FIN(rrx_to_output());

pPkt = op_pk_get (STRM_RRX) ;

op_pk_nfd_get (pPkt, "mac_source", &pktsource);

if (pktsource == self_id)

{

op_pk_destroy (pPkt) ;

}
else

{

op_pk_send (pPkt, STRM_OUTPUT);

¥
FOUT;
¥

void input_to_rtx(void)

{

Packet *pPkt;

FIN(input_to_rtx());
pPkt = op_pk_get (STRM_INPUT) ;

op_pk_nfd_set_objid(pPkt, "mac_source", self_id);

op_pk_send (pPkt, STRM_RTX);

FOUT;
s

58

D.5 1nit State: Enter Executives

self_id = op_id_self();

op_ima_obj_attr_get (self_id, "Source ID", &source_id);

59

Appendix E

Code: Hold Queue Process

E.1 Overview

Figure E.1: Hold queue process model

60

E.2 Local variables

Type | Mame

[List = |1st_pkts

Figure E.2: State variables of hold queue process

E.3 Header Block

#define IC_DISABLE 54

#define IC_ENABLE 55

#define I_DISABLE (op_intrpt_type() == OPC_INTRPT_REMOTE && op_intrpt_code() == IC_DISABLE)
#define I_ENABLE (op_intrpt_type() == OPC_INTRPT_REMOTE && op_intrpt_code() == IC_ENABLE)

E.4 Function Block

E.5 1init State: Enter Executives

1st_pkts = op_prg_list_create ();

E.6 forward State: Enter Executives

Packet *pPkt;
int len;

len = op_prg_list_size(lst_pkts);

while(len > 0)

{

printf (" [HOLD] - Sending buffered pkt\n");
op_pk_send (op_prg_list_remove (lst_pkts, OPC_LISTPOS_HEAD), 0);
printf ("\t[HOLD] - Done sending buffered pkt\n");
len = op_prg_list_size(lst_pkts);

¥

pPkt = op_pk_get(0);

while(pPkt != OPC_NIL)

{

op_pk_send (pPkt, 0);

pPkt = op_pk_get(0);

s

61

E.7 hold State: Enter Executives

Packet *pPkt;
pPkt = op_pk_get(0);

while(pPkt != OPC_NIL)

{

op_prg_list_insert(lst_pkts, pPkt, OPC_LISTPOS_TAIL);
pPkt = op_pk_get(0);

¥

62

Appendix F

Code: Gateway Receiver Process

F.1 Overview

Figure F.1: Gateway receiver process model

63

F.2 Header Block

#define MAX_SRC_IDS 10

#define IC_SOURCPROP_RX 99

int has_inited = 0;

int pkt_received[MAX_SRC_IDS*3];

int hack_pkt_keyupnum[MAX_SRC_IDS*S];
Stathandle stat_neworreplace;
Stathandle stat_counterchange;

List *create_stat_lst(char *);

F.3 Function Block

List *create_stat_lst(char *statName)

{

List *1lst;

int stat_size;

int i;

FIN(create_stat_lst(char *statName));
op_stat_dim_size_get (statName, OPC_STAT_GLOBAL, &stat_size);
if (stat_size != MAX_SRC_IDS)

{

op_sim_end("Bad stat dimension", statName, "", "");

s

1st = op_prg_list_create();

for(i = 0; i < MAX_SRC_IDS; i++)

{

Stathandle *sth_temp;

sth_temp = (Stathandle *) op_prg_mem_alloc (sizeof (Stathandle));
*sth_temp = op_stat_reg (statName, i, OPC_STAT_GLOBAL);
op_prg_list_insert(lst, sth_temp, OPC_LISTPOS_TAIL);

}

FRET(1st);

}

F.4 1init State: Enter Executives

int stat_size_temp;

int i;

if (has_inited == 0)

{

printf ("INITIALIZING gateway statistics\n");

has_inited = 1;

for(i = 0; i < MAX_SRC_IDS*3; i++)

{

pkt_received[i] = 0;

hack_pkt_keyupnum[i] = -1;

}

stat_neworreplace = op_stat_reg("Update Pkt - New or Replace" ,0PC_STAT_INDEX_NONE, OPC_STAT_GLOBAL);
stat_counterchange = op_stat_reg("Update Counter Change" ,0PC_STAT_INDEX_NONE, OPC_STAT_GLOBAL);
¥

64

F.5 record State: Exit Executives

Packet *pPkt;

int key;

int sourceid;

int key_updnm;

double generated_timestamp;
int is_update;

int array_index;

Objid source_prop_id;

char message_str [255];

pPkt = op_pk_get (op_intrpt_strm());

if (pPkt == OPC_NIL)

{

op_sim_end("Nil stream pkt", "", "", "");

¥

op_pk_nfd_get (pPkt, "source_id", &sourceid);

op_pk_nfd_get (pPkt, "key", &key);

op_pk_nfd_get (pPkt, "key_update_number", &key_updnm) ;
op_pk_nfd_get (pPkt, "source_prop_objid", &source_prop_id);
op_pk_nfd_get (pPkt, "generated_timestamp", &generated_timestamp);
//printf ("\tEnd getting fields\n");

//Check the fields

if (sourceid < O || sourceid >= MAX_SRC_IDS)
{

op_sim_end("Bad source id", "", "", "");

}

else if (key_updnm < 0)

{

op_sim_end("Bad key_updnm", "", "", "");

s

else if(key < 1 || key > 3)

{

op_sim_end("Bad key", "", "", "");

s

array_index = sourceid#3 + (key-1);
is_update = 0;

if (pkt_received[array_index])

{

int oldkey_updnm = hack_pkt_keyupnum[array_index] ;
if (oldkey_updnm < key_updnm)

{

is_update = 1;
op_stat_write(stat_counterchange, key_updnm - oldkey_updnm) ;
hack_pkt_keyupnum[array_index] = key_updnm;
}

¥

else

{

is_update = 1;

pkt_received[array_index] = 1;
hack_pkt_keyupnum[array_index] = key_updnm;
s

65

if (is_update)

{

Ici *iciptr = op_ici_create ("prop_action");

op_ici_attr_set (iciptr, "source_id", sourceid);

op_ici_attr_set (iciptr, "key_update_number", key_updnm);
op_ici_attr_set (iciptr, "action", 1); //Gateway rx code
op_ici_attr_set (iciptr, "generated_timestamp", generated_timestamp);
op_ici_install(iciptr);

op_intrpt_schedule_remote (op_sim_time (), IC_SOURCPROP_RX, source_prop_id);
op_stat_write(stat_neworreplace, 1.0);

}

op_pk_destroy (pPkt) ;

66

	 Contents
	 List of Figures
	Introduction
	Background
	Ad Hoc Network Types
	Message Ferrying & Store-Carry-Forward Routing

	Motivations and Potential Applications
	Project Goals

	Project Premise and OPNET Model Design
	Premise
	Application Characteristics and Requirements
	State Monitoring Network

	OPNET Model Design
	Network Elements
	Algorithm and Behaviour
	Assumptions

	Validation
	Scenario Topology and Details
	Validation Simulation Results

	Simulation
	Network Model
	Scenario 1
	Scenario 2
	Common Settings

	Metrics and Results of Interest
	Update Success Rate
	Delay
	Simulation Parameters Varied

	Results
	Success Rate
	Simulation 1
	Simulation 2
	Comparison of Success Rate
	Effect of Source Node Storage

	Delay
	Simulation 1
	Simulation 2
	Comparison of Simulation

	Conclusion
	Results
	Future Work
	Algorithm Improvements
	Model Improvements
	Statistic Improvements
	Applicability and Network Model

	 References
	Code: Source Property Process
	Overview
	Local variables
	Header Block
	Function Block
	init State: Enter Executives
	active State: Enter Executives
	stop State: Enter Executives

	Code: Storage Process
	Overview
	Local variables
	Header Block
	Function Block
	init State: Enter Executives
	storage State: Enter Executives

	Code: Update Manager Process
	Overview
	Local variables
	Header Block
	Function Block
	init State: Enter Executives
	tx start State: Enter Executives
	tx done State: Enter Executives
	error State: Enter Executives

	Code: MAC Process
	Overview
	Local variables
	Header Block
	Function Block
	init State: Enter Executives

	Code: Hold Queue Process
	Overview
	Local variables
	Header Block
	Function Block
	init State: Enter Executives
	forward State: Enter Executives
	hold State: Enter Executives

	Code: Gateway Receiver Process
	Overview
	Header Block
	Function Block
	init State: Enter Executives
	record State: Exit Executives

