

ENSC427: COMMUNICATION NETWORKS

SPRING 2011

GROUP #10

FINAL PROJECT

IMPROVED ANT ROUTING FOR
WIRELESS AD-HOC MESH NETWORKS

http://www.sfu.ca/~ela6/

Jack Qaio

301025357
hqa@sfu.ca

Kwang-Young Lee
301026697

ela6@sfu.ca

Abstract

A mobile ad-hoc network (MANET) can be used to set up a temporary mean of communication
by having nodes behave as hosts and routers, with packets hopping between nodes to reach
the destination node. This makes MANET suitable for rapid deployment, but due to the dynamic
changes in network configurations, quickly finding the optimum route is difficult. In this project, a
biology-inspired ant routing algorithm with GPS assisted location awareness is used to reduce
routing overhead and to improve convergence compared to an ant routing without location
awareness.

1. Introduction

A MANET is an architecture-less network with nodes acting as both hosts and routers, and are
usually wireless. Some can also communicate through existing fixed infrastructure. Since a
MANET does not require an established infrastructure, it can be used in areas where
establishing a structured architecture network is too cost-prohibitive or unavailable. Some
examples include emergency disaster relief efforts, military communication, and One Laptop Per
Child donation program.

Unlike other structured architecture network, a MANET's topology changes dynamically due to
the mobile nature of nodes and unreliable link conditions due to the environment. Because of
the dynamic topology of MANETs, a great deal of research effort is spent on developing a good
routing algorithm. One of the principal requirements for a good routing algorithm is to quickly
adapt to changing network topology and conditions.

One of the implementations for routing in MANET is Antnet, first developed by Lavina Jain and
later updated by Richardson Lima[1]. Inspired by the foraging behaviour of ants when they
search for food and the swarm intelligence to the optimized path between a food source and
colony, each node in a MANET stores routing information for the neighbouring nodes and their
usage as pheromone values and routes incoming packets to the path with the highest
pheromone value. However, during initialization and route discovery phase, all the pheromone
values are set equal and nodes route incoming packets randomly until the pheromone value
converges to the optimum values.

This project proposes using another layer of information with global positioning system (GPS)
during route discovery phase in order to improve the end-to-end delay and therefore converge
to the optimum routing solution. Using both regular gridded network topology and random
network topology, the viability and the effectiveness of using GPS information during route
discovery phase when Antnet implementation cannot make a good decision based on available
pheromone information will be explored.

First, some related work in MANET routing, both conventional and ant-like, will be discussed.
After, the routing algorithm of GPS-assisted Antnet will be examined in detail. Lastly, some
simulation scenarios and their results will be discussed and some conclusion will be drawn
based on the simulation findings.

2. MANET Routing Related Work

In this section, some related work on MANET routing algorithms, both conventional and ant-
inspired, will be discussed.

2.1 Dynamic Source Routing (DSR)
When a source node wishes to communicate to a certain destination node, it broadcasts route
request message packets (RREQ) with the destination node address. When the neighbouring

nodes receive the RREQ message packet, they forward the packets with their address attached
to the message. So until the RREQ message reaches the correct destination node, the
message packet increases in size with the necessary information of the path the message
packet travelled.

When the destination node receives the RREQ message packet(s), it destroys the messages,
calculates best route between the destination node and the source node, and sends a replay
message back to the source through the best route with the best routing information. Once the
source node receives the reply message, it starts sending data packets through the best route,
completing the route discovery phase.

While this algorithm scales and performs well in small MANETs with a small number of nodes,
M. Bouhorma, H. Bentaouit and A. Boudhir found that when the network size is large, the
routing overhead becomes larger [2].

2.2 Ad-hoc On-demand Distance Vector Routing (AODV)
The AODV is a distance vector routing for MANET [3]. When a node wishes to establish a
connection to a destination node, it first broadcasts RREQ message, and if another node has a
recent, up-to-date information to route to the destination, or if the message reaches the
destination node, a replay message is sent back to the source node [4]. While the node replies,
it creates a reverse route entry with information regarding the number of hops to the source and
the address of the node where the reply message came from. A limited lifetime is assigned to
entry and the entry is removed when the lifetime expires.

Unlike DSV, where the RREQ message becomes bigger as it propagates through the network,
AODV uses nodes to store the necessary routing information and properly route messages
through.

2.3 Ant-Inspired Routing Algorithm (ARA)
In this section, the biological ant's foraging behaviour to search for food wil be explained, then
one of the ARAs, Antnet developed by Lavina Jain and updated by Richardson Lima [1], will be
examined in detail. After, some previous works related to ARAs and MANETs will be discussed.

2.3.1 Biological Ant Foraging Behaviour
When an ant searches for food, it first randomly disperses from the colony until a food source is
discovered. While searching, each ant leaves a trail of pheromone and it uses the trail of
pheromone it left behind as a guide back to the colony, while it strengthens the existing trail by
leaving more pheromone on it. Therefore, the path to the food source has stronger pheromone
trail than other trails. This is the path discovery phase.

Other ants can use the stronger level of pheromone as an indication of a good path to a food
source, and follow the trail while leaving their own pheromone behind. This maintains and
strengthens the previously existing pheromone trail. This mechanism is also employed to finding
the best path between the colony and the food source.

If two paths for the same food source with different lengths are established, assuming the
pheromone levels are equal, ants will split equally to both paths. However, since one of the
paths are shorter than the other path, the ants on the shorter paths will have returned back to
the colony while the other ants on the longer path are still en-route. This will cause the
pheromone level on the shorter path to be stronger than that on the longer path, leading more
ants to the shorter path, strengthening the shorter path's pheromone level. And since the longer
path is not used regularly, the pheromone evaporates, removing the pheromone trail. This
allows ants to converge on the optimized path from their colony to a food source. The figure
below shows the pheromone level difference between a longer path and a shorter path to the
food source.

Fig 1: Biological ant's pheromone level difference between two paths with unequal length.

The top path takes longer for a complete travel while the shorter path will take less.

2.3.2. Previous ARA Related Work
Inspired by the behaviour of real ants and the emergent swarm intelligence of finding the
optimum path between a colony and a food source, various ant inspired algorithms were made
and its applications grew wider to various computational optimization problems. One of the
applications where the ant routing algorithm is used is on routing in MANETs.

D. Câmara and A. A.F. Loureiro developed a novel approach, GPS ant-like routing algorithm
(GPSAL), to use GPS information to route information in MANETs while using ant-like agents to
disseminate routing information between nodes and compared their algorithm to Location-Aided
Routing (LAR) [5]. While this approach uses ant-like agents to populate the GPS coordinates
and routing information, GPSAL mostly uses GPS information to make routing decisions and
travelling packets do not affect the routing decision like Antnet does.

E. Osagie, P. Thulasiraman and R.K. Thulasiram developed improved ant colony optimization
routing algorithm (PACONET) based on the foraging behaviour of real ants [6]. While their
implementation is similar to Antnet, they have made a number of modifications in the route
discovery algorithm to prevent packets looping and to explore all possible routes. PACONET
performed similar to AODV in terms of average end-to end delay but improved in routing control
overhead.

2.3.3. Antnet
In the Antnet algorithm, the general behaviour of each packet used for routing table generation
can be described as follows:

Forward mode, no pheromone trail In forward mode, the ant packet searches for
the destination node.

Choose random next destination that is not the
parent node. Record a pheromone vector in
the current node’s routing table.

Forward mode, pheromone trail found Follow the pheromone vector in the local
node’s routing table. If multiple possible next
nodes are found, choose the next node based
on the strength of its pheromone vector, where
the pheromone strength determines the
probability that it will be chosen.

Multiply the pheromone vector that was used
by a scaling factor, and reduce all other
pheromone vector entries such that the total
probability adds to one.

Reverse mode In the reverse mode, the ant packet has
arrived at the destination and must make its
way back to the source.

Follow the reverse pheromone vector in the
current node’s routing table. If multiple
candidates are found, use a probability
distribution as previously described.

Scale the pheromone vector that was used.

The pheromone vectors in each node are recorded as probability values in the range from 0 to 1,
the sum of which must add to one. A simple 4 node ring topology may have the following
pheromone table:

For Node 1

Node 2 Node 2: 1

Node 3 Node 2: 0.5

Node 4: 0.5

Node 4 Node 4: 1

Because two possible routes are possible from 1->4, the probabilities of both are recorded in
the pheromone table. Depending on network congestion and other factors, one route may be
favoured over the other.

3. GPS-Assisted Antnet

3.1. Algorithm Implementation and Assumptions
For this project, the original Antnet code developed by Lavina Jain was used as a starting base.
The routing algorithm was modified such that if there existed paths with pheromone values
difference less than Pd, and if it is small enough, instead of choosing the route destination
randomly as Antnet would, the algorithm will compare the node's relative orientation with
respect to the neighbouring nodes and the destination node for the packet, and send the packet
to the neighbouring node closest to the destination node. Then the routing decision changes the
node's pheromone table as normal Antnet routing would. In other cases where Pd is larger than
the preset threshold, the normal Antnet routing algorithm based on the pheromone levels in the
routing table.

Due to technical difficulties of modifying the original Antnet code to fully integrate wireless links
and dynamic network topology changes, a simulated wireless network with varying delay wired
links (512 Mbps, variable delay, Drop-Tail) are used between the nodes. Since it is a simulated
wireless link, the distance between two nodes are used to calculate the link delay. The
maximum link distance, that is the distance between two nodes, is 20m. The minimum link delay
between nodes is 5ms and the maximum link delay is 20ms. The link delay is calculated using
the following equation.

 (1)

For this project, the modified code was expected to improve the first routing decision based on
the information provided by GPS. Therefore, the biggest difference in performance was
expected during initialization and route establishment stage, where the individual routing packet
sizes are small and do not carry any payload other than some routing information. Because of
this, it was assumed that the throughput is not important during initialization and only the end-to-
end delay was observed relative to time.

Another assumption was made such that the initialization stage is short enough such that the
mobility of the nodes can be ignored and can be assumed to be stationary.

3.2. Simulation Setup
For this project, the modified GPS-assisted Antnet code is compared to the original Antnet code
for possible improvements in end-to-end delay. For this, two scenarios were created. The table
below shows the simulation setup.

Table 1: Simulation setup for two scenarios

Scenarios Dimension Number of Nodes Node Layout

1
50m x 50m

70 Randomly Distributed

2 25 Regular Grid

In order to satisfy the GPS-assisted Antnet's assumption, the simulation time was set to 2.5
seconds, where the initialization stage, that is when all the nodes broadcast routing packets to
all other nodes, started at 1.1 seconds and ended at 2.1 seconds.

 Fig 2. The grid topology Fig 3. The random mesh topology

To maintain consistency, the random number generator used in the mesh topology is seeded
with a constant value so that the same random topology is generated each time.

4. Simulation Results/Discussion

The main measure of the algorithm performance is end-to-end delay. Other metrics such as
throughput and jitter were deemed not critical in gauging the performance of the routing
algorithm, especially in the initialization stage where each packet does not carry any payload.

Grid Topology Histogram

-10

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

end-to-end delay (ms)

fr
eq

u
en

cy

Antnet

GPS/Antnet

Fig4: A comparison histogram of the overall end-to-end delay for gridded gridded network

Initial results seem promising. The original Antnet algorithm ends with an average end-to-end
delay of 293ms, and the GPS-assisted Antnet 271ms - A 7% improvement on the original.

These results are consistent with our expectations, as the regular topology ensures that the
GPS algorithm will always yield the shortest route to the destination. This assumption may not
hold up in a more random scenario, where the ideal route may not always be the shortest, and
where the GPS approach does not always yield the shortest route.

As can be expected, results were less ideal for the randomly generated topology.

Random Topology Histogram

-50

0

50

100

150

200

250

300

0 200 400 600 800 1000

end-to-end delay (ms)

fr
eq

u
en

cy

Antnet

GPS/Antnet

Random Topology Histogram

-50

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500

end-to-end delay (ms)

fr
eq

u
en

cy

Antnet

GPS/Antnet

It is apparent that a small number of outliers exist for the GPS/Antnet case that exhibit
anomalously large delays. While the majority of the packets in the GPS case arrive with a delay
similar to that of the original Antnet case, a small number of packets are caught in a loop,
resulting in large delays. Upon further investigation, a design flaw in the algorithm is discovered.
When the GPS directive conflicts with an Antnet directive, a feedback loop occurs.

Eg:

At Node 1:

- no pheromone found, GPS:
proceed to node 2

At Node 2:

- pheromone vector points to
node 1, Antnet: go to node 1

These loops usually form in groups of 3 or more nodes, and drastically reduce the overall
performance of the algorithm. Because the loop may persist for several seconds, it also causes
legitimate packets to be dropped as the feedback loop consumes all available bandwidth in a
single link.

5. Future Work

Although we have simulated a location-based wired network, the greatest application of this
type of algorithm is in low-throughput, low-reliability wireless networks. Future work may expand
the link types to such wireless protocols as ZigBee and 802.11.

The major problem of GPS/Antnet conflict is yet to be resolved, and will need to be fixed for this
algorithm to be useful in real MANETs. In order to do so, some degree of communication is
required between the GPS and Antnet algorithms. A possible solution is to store in each packet
the addresses of a number of previously visited nodes, so that a loop cannot form and harm the
performance of the network.

The current implementation of the algorithm may be useful in regular networks, where nodes
are arranged in pre-designed patterns that avoid the offending corner cases that tend to
generate feedback loops. In these cases a GPS device may not be necessary, as the location of
each of the nodes may be programmed beforehand.

6. Conclusion

While the GPS/Antnet algorithm does not perform ideally, it is a promising idea that could be
developed further to enhance the capabilities of current networking technologies.

From the data we have collected, the greatest gains in using a location-aware approach comes
when a regular topology is employed. While a number of efficient routing algorithms exist for
regular network topologies, none are as robust as the Antnet algorithm. Using a location-aware
approach combined with Antnet may provide the best of both worlds – fast convergence during
packet flooding and instant, adaptive re-routing during congestion or node failure.

As for the case of ad-hoc wireless networks, it is doubtful that the application of GPS in
combination with Antnet will yield significant gains in network performance with respect to the
cost of investing in the GPS devices.

7. References

[1] Richardson Lima. "Download Ns2.33-Antnet1.0 by Richardson Lima << ACO routing
algorithm in practice". Internet: www.antnet.wordpress.com/2009/09/11/download-ns2-23-
antnet1-0-by-richardson-lima/, Sep. 11, 2009. [Mar. 18, 2011]
[2] M. Bouhorma, H. Bentaouit, A. Boudhir. Performance comparison of routing protocols AODV
and DSR, International Conference on Multimedia Computing and Systems, Ouarzazate,
Morocco, Apr. 2-4 2009.
[3] M. Gunes, M. Kahmer, I. Bouazizi. "Ant-Routing-Algorithm (ARA) for Mobile Multi-hop Ad-
hoc Networks - New Features and Results", Med-Hoc Net 2003 Workshop, Mahdia, Tunisia,
Jun. 25-27 2003.
[4] C. Perkins, E. Belding-Royer, S. Das. "Ad hoc on-demand distance vector (AODV) routing."
IETF RFC 3561. Jul. 2003.
[5] D. Camara, A.A.F. Loureiro. "A GPS/Ant-Like Routing Algorithm for Ad Hoc Networks", 2000
IEEE Wireless Communications and Networking Conference, page 1232-1236, Chicago, IL,
USA, September 23-28 2000
[6] E. Osagie, P. Thulasiraman, R. K. Thulasiram. "PACONET: Improved Ant Colony
Optimization Routing Algorithm for Mobile Ad-hoc Networks", 22nd International Conference on
Advanced Information Networking and Applications, Ginowan, Okinawa, Japan, Mar. 25-28
2008.

Appendix I – Modifications to Antnet and ns-2

In ns2.34antnet/antnet_rtable.cc (bolded text highlights custom additions or changes)

//

/// Method to implement AntNet algorithm

/// Returns next hop node address

/// Parameters:

/// - source node address

/// - destination node address

/// - parent node (to avoid loopback)

///

nsaddr_t antnet_rtable::calc_next(nsaddr_t source, nsaddr_t dest, nsaddr_t parent) {

 nsaddr_t next, nextn;

 double thisph;

 double thisqueue;

 double thisprob;

 double maxprob = 0.0;

 double maxph = 0.0;

 double lrange = 0.0, urange = 0.0;

 // find routing table entry for destination node

 rtable_t::iterator iter = rt_.find(dest);

 double qtotal = 0.0;

 if(DEBUG)

 fprintf(stdout,"in calc_next at source %d dest %d parent %d\n",source,dest,parent);

 if(iter != rt_.end()) {

 pheromone_matrix vect_pheromone;

 //printf("\n");

 // read vector of pheromone values for the destination node

 vect_pheromone = (*iter).second;

 for(pheromone_matrix::iterator iterPh = vect_pheromone.begin(); iterPh !=
vect_pheromone.end(); iterPh++) {

 next = (*iterPh).neighbor;

 Node *node1 = node1->get_node_by_address(source);

 Node *node2 = node2->get_node_by_address(next);

 int temp_len = get_queue_length(node1,node2);

 qtotal += temp_len;

 }

 if(qtotal == 0.0) {

 qtotal = 1.0;

 }

 // calculate probability range for parent link

 lrange = 0.0;

 urange = 0.0;

 for(pheromone_matrix::iterator iterPh = vect_pheromone.begin(); iterPh !=
vect_pheromone.end(); iterPh++) {

 thisph = (*iterPh).phvalue;

 next = (*iterPh).neighbor;

 Node *node1 = node1->get_node_by_address(source);

 Node *node2 = node2->get_node_by_address(next);

 int thisqueue = get_queue_length(node1,node2);

 thisprob = (thisph + ALPHA*(1 - thisqueue/qtotal)) / (1 + ALPHA*(N-1));

 //printf("\nx: %g, y: %g", node1->meshx,node1->meshy);

 if(next == parent) {

 urange = lrange + (thisph);

 break;

 }

 lrange += (thisph);

 }

 if(urange == 0.0)

 urange = 1.0;

 //printf("lrange %d urange %d\n",lrange,urange);

 // dead end, loopback

 if(lrange == 0.0 && urange == 1.0) {

 // printf("return parent %d\n",parent);

 return parent;

 }

 bool geolocate = false;

 double geoscale = 0.0000001;

 if(geolocate){

 double totalphero = 0;

 double averagephero = 0;

 double icounter = 0;

 vect_pheromone = (*iter).second;

 //printf("\nsource: %d, dest: %d, parent: %d, neighbors:
",source,dest,parent); //useful for debugging!

 for(pheromone_matrix::iterator iterPh = vect_pheromone.begin(); iterPh !=
vect_pheromone.end(); iterPh++) {

 totalphero += (*iterPh).phvalue;

 icounter++;

 //printf("\t#%d",(*iterPh).neighbor); // debug code

 }

 if(icounter > 0){

 averagephero = totalphero/icounter;

 // calculate pheromone variance

 double variance = 0;

 for(pheromone_matrix::iterator iterPh = vect_pheromone.begin();
iterPh != vect_pheromone.end(); iterPh++) {

 double phero = (*iterPh).phvalue - averagephero;

 if(phero > variance){

 variance = phero;

 }

 }

 if(variance < geoscale){

 Node *node1 = node1->get_node_by_address(dest);

 printf("\nx: %g, y: %g", node1->meshx,node1->meshy);

 // no strong pheromone detected, use location detection

 double destx = node1->meshx;

 double desty = node1->meshy;

 nsaddr_t closest;

 double shortestdistance = 100000;

 for(pheromone_matrix::iterator iterPh =
vect_pheromone.begin(); iterPh != vect_pheromone.end(); iterPh++) {

 Node *node2 = node2-
>get_node_by_address((*iterPh).neighbor);

 double locx = node2->meshx;

 double locy = node2->meshy;

 // square roots are expensive, we only need the
distance squared for comparison purposes

 double distance = (destx-locx)*(destx-locx) + (desty-
locy)*(desty-locy);

 if(distance < shortestdistance &&
(*iterPh).neighbor != parent){

 shortestdistance = distance;

 closest = (*iterPh).neighbor;

 }

 }

 if(shortestdistance != 100000){

 //printf("\nsource: %d dest: %d
next: %d\n",source,dest,closest); // outputs list of source and destinations

 return closest;

 }

 }

 }

 }

 // generate random probability value, out of range of parent link

 double tmp_double;

 do {

 tmp_double = rnum->uniform(1.0);

 }while(tmp_double >= lrange && tmp_double < urange);

 // find next hop node corresponding to this range of probability

 lrange = 0.0;

 urange = 0.0;

 for(pheromone_matrix::iterator iterPh = vect_pheromone.begin(); iterPh !=
vect_pheromone.end(); iterPh++) {

 thisph = (*iterPh).phvalue;

 next = (*iterPh).neighbor;

 Node *node1 = node1->get_node_by_address(source);

 Node *node2 = node2->get_node_by_address(next);

 int thisqueue = get_queue_length(node1,node2);

 thisprob = (thisph + ALPHA*(1 - thisqueue/qtotal)) / (1 + ALPHA*(N-1));

 urange += (thisph);

 if(tmp_double >= lrange && tmp_double < urange) {

 //printf("return next %d\n",next);

 return next;

 }

 lrange = urange;

 }

 }

}

In ns2.34/common/node.h

 //routines for supporting routing

 void route_notify (RoutingModule *rtm);

 void unreg_route_notify(RoutingModule *rtm);

 void add_route (char *dst, NsObject *target);

 void delete_route (char *dst, NsObject *nullagent);

 void set_table_size(int nn);

 void set_table_size(int level, int csize);

 // built-in location causes segmentation fault. implement our own coordinate system

 double meshx;

 double meshy;

protected:

 LIST_ENTRY(Node) entry; // declare list entry structure

 int address_;

 int nodeid_; // for nam use

In ns2.34/common/node.cc

else if (strcmp(argv[1], "add-neighbor") == 0) {

 Node * node = (Node *)TclObject::lookup(argv[2]);

 if (node == 0) {

 tcl.resultf("Invalid node %s", argv[2]);

 return (TCL_ERROR);

 }

 addNeighbor(node);

 return TCL_OK;

 }

 }

 if(strcmp(argv[1], "mesh-location") == 0){

 this->meshx = atof(argv[2]);

 this->meshy = atof(argv[3]);

 return TCL_OK;

 }

 return ParentNode::command(argc,argv);

Appendix II – Random Topology Generator

tcl script for AntNet algorithm on a pseudo-random mesh topology

number of total nodes

set population 70

radius of communication between each node

set noderadius 9

minimum delay - ms (when two nodes are close together)

set mindelay 5

maximum delay (used when two nodes are at maximum connection distance)

set maxdelay 20

size of simulation environment

set worldwidth 50

set worldlength 50

seed for pseudo-random generator (same mesh will result for each seed value)

set seed [expr srand(1)]

#Create event Schedular

set ns [new Simulator]

#Open the Trace file

set tf [open antnet_trace.out w]

$ns trace-all $tf

set nf [open out.nam w]

$ns namtrace-all $nf

#Create the nodes

for {set i 0} {$i < $population} {incr i} {

 set n($i) [$ns node]

}

#set node location using rand

for {set i 0} {$i < $population} {incr i} {

 set x [expr rand()*$worldwidth]

 set y [expr rand()*$worldlength]

 puts $x

 #save x and y in an array for later use

 set nodex($i) $x

 set nodey($i) $y

 #use custom mesh-location function to identify location

 $n($i) mesh-location $x $y

 #$n($i) set X_ $x

 #$n($i) set Y_ $y

 #$n($i) set Z_ 0.0

}

#Create links between the nodes that are within noderadius

#brute force with O(n^2)!

for {set i 0} {$i < $population} {incr i} {

 for {set j 0} {$j < $population} {incr j} {

 if {$i != $j} {

 # square roots are expensive, so we just compare squares

 set dx [expr $nodex($i)-$nodex($j)]

 set dy [expr $nodey($i)-$nodey($j)]

 set d2 [expr ($dx*$dx) + ($dy*$dy)]

 if {$d2 < [expr $noderadius*$noderadius]} {

 # make link delay proportional to node distance (inverse square
function)

 #set delay [expr ($maxdelay-
$mindelay)*($d2/($noderadius*$noderadius)) + $mindelay]

 set delay 10

 set ms ms

 $ns duplex-link $n($i) $n($j) 128Kb $delay$ms DropTail

 }

 }

 }

}

#Create Antnet agents

for {set i 0} {$i < $population} {incr i} {

 set nn($i) [new Agent/Antnet $i]

}

#Attach each node with Antnet agent

for {set i 0} {$i < $population} {incr i} {

 $ns attach-agent $n($i) $nn($i)

}

for {set i 0} {$i < $population} {incr i} {

 for {set j 0} {$j < $population} {incr j} {

 if {$i != $j} {

 # square roots are expensive, so we just compare squares

 set dx [expr $nodex($i)-$nodex($j)]

 set dy [expr $nodey($i)-$nodey($j)]

 set d2 [expr ($dx*$dx) + ($dy*$dy)]

 if {$d2 < [expr $noderadius*$noderadius]} {

 $ns connect $nn($i) $nn($j)

 $ns connect $nn($j) $nn($i)

 $ns at now "$nn(0) add-neighbor $n($i) $n($j)"

 }

 }

 }

}

#Set parameters and start time for AntNet algorithm

for {set i 0} {$i < $population} {incr i} {

 #$nn($i) set num_nodes_x_ $sz_x

 #$nn($i) set num_nodes_y_ $sz_y

 $nn($i) set num_nodes_ $population

 $nn($i) set timer_ant_ 0.03

 $nn($i) set r_factor_ 0.01

 $ns at 1.1 "$nn($i) start"

}

#Set stop time for AntNet algorithm

for {set i 0} {$i < $population} {incr i} {

 $ns at 2.1 "$nn($i) stop"

}

#Print routing tables generated by AntNet

for {set i 0} {$i < $population} {incr i} {

 $ns at 4.2 "$nn($i) print_rtable"

}

Final Wrap up

proc Finish {} {

 global ns tf

 $ns flush-trace

 #Close the Trace file

 close $tf

}

$ns at 8.4 "Finish"

Start the simulator

$ns run

Appendix III – Delay Data Generator (AWK script)

BEGIN {

 recvdSize = 0

}

{

 event = $1

 time = $2

 if (event == "+" || event == "-") node_id = $3

 if (event == "r" || event == "d") node_id = $4

 flow_id = $8

 pkt_id = $12

 pkt_size = $6

 flow_t = $5

 if(sendTime[pkt_id] == 0 && (event == "+" || event == "s")) {

 sendTime[pkt_id] = time

 }

 if(sourceNode[pkt_id] == 0 && event == "+"){

 sourceNode[pkt_id] = node_id

 }

 if (event == "r") {

 # Store packet's reception time

 recvTime[pkt_id] = time

 }

}

END{

 delay = avg_delay = recvdNum = 0

 printf("delay(ms)\n")

 for (i in recvTime) {

 delay += recvTime[i] - sendTime[i]

 recvdNum++

 printf("%g\n",(recvTime[i] - sendTime[i])*1000)

 }

}

function vint(y){

if (y < 0){

if(int(y) == y)

return int(y)

else

return int(y)-1

}

else

return int(y)

}

function abs(x){return (((x < 0.0) ? -x : x) + 0.0)}

Appendix IV – Delay vs Distance Statistics

BEGIN {

 recvdSize = 0

}

{

 event = $1

 time = $2

 if (event == "+" || event == "-") node_id = $3

 if (event == "r" || event == "d") node_id = $4

 flow_id = $8

 pkt_id = $12

 pkt_size = $6

 flow_t = $5

 if(sendTime[pkt_id] == 0 && (event == "+" || event == "s")) {

 sendTime[pkt_id] = time

 }

 if(sourceNode[pkt_id] == 0 && event == "+"){

 sourceNode[pkt_id] = node_id

 }

 if (event == "r") {

 # Store packet's reception time

 recvTime[pkt_id] = time

 dest = node_id

 if(sourceNode[pkt_id] != 0){

 src = sourceNode[pkt_id]

 srcx = vint(src/5)

 srcy = src%5

 destx = vint(dest/5)

 desty = dest%5

 distance = abs(destx - srcx) + abs(desty - srcy)

 if(maxDistance[pkt_id] < distance){

 maxDistance[pkt_id] = distance

 }

 }

 }

}

END{

 delay = avg_delay = recvdNum = 0

 printf("distance, delay(ms)\n")

 for (i in recvTime) {

 delay += recvTime[i] - sendTime[i]

 recvdNum++

 printf("%g,%g\n", maxDistance[i], (recvTime[i] - sendTime[i])*1000)

 }

}

function vint(y){

if (y < 0){

if(int(y) == y)

return int(y)

else

return int(y)-1

}

else

return int(y)

}

function abs(x){return (((x < 0.0) ? -x : x) + 0.0)}

	Abstract
	1. Introduction
	2. MANET Routing Related Work
	2.1 Dynamic Source Routing (DSR)
	2.2 Ad-hoc On-demand Distance Vector Routing (AODV)
	2.3 Ant-Inspired Routing Algorithm (ARA)
	2.3.1 Biological Ant Foraging Behaviour
	2.3.2. Previous ARA Related Work
	2.3.3. Antnet

	3. GPS-Assisted Antnet
	3.1. Algorithm Implementation and Assumptions
	3.2. Simulation Setup

	4. Simulation Results/Discussion
	5. Future Work
	6. Conclusion
	Appendix II – Random Topology Generator
	Appendix III – Delay Data Generator (AWK script)
	Appendix IV – Delay vs Distance Statistics

