ENSC427: Communication Netwroks Spring 2011 Prof. Ljiljana Trajkovic

Analysis of Video Streaming Over the BitTorrent Protocol

Milad Maleksabet Sasan Hezarkhani

Overview

- Introduction
- Technical Information
- ns-2 Implementation
 - Reference models
 - New models and changes
 - Goddard Streaming
- Results of simulations
- Conclusion
- Questions

Introduction

What is BitTorrent?

- Peer-to-Peer Network
- Seeds
- Peers
- Tracker

Introduction Cont'd

Our Project Idea

- Video Streaming with BitTorrent
 - Unlimited File Length
 - Data Validation*
 - Live playback
 - Redefinition of Seeders

Unlimited File Length

- Peers cannot decide which chunks to download
- A new peer might be forced to download a very old chunk

• Each peer and seeder will delete chunks after a specific time

Live Playback

- Peers have to request pieces sequentially
 - BitTorrent's default is rarest piece first

- Chunks with the least pieces should have priority
 - To allow smooth playback of the stream

Redefinition of Seeders

Peers will never take on the role of seeding

 "Seeders" are trusted peers who are directly connection to the media server

ns-2 Implementation

- Why ns-2?
 - ns-2 is open-source and is growing rapidly
 - Larger community and more resources are available

- BitTorrent Streaming vs. Standard Windows Media Streaming
 - Our Implementation of video streaming over BitTorrent
 - The Goddard protocol

Reference Models

- Kolja Eger's implementation of BitTorrent in ns-2
 - Includes Flow and Packet level implementation of Peers, Seeders, and a tracker

- Jae Chung's implementation of Goddard Streaming Server in ns-2
 - Goddard is designed based on the behaviors of Windows Stream Media

Implementation

- New chunk selection algorithm for peers
- Peers have to delete old chunks
- Seeder algorithm to generate new chunks based on time
- Fixed number of chunks on the Tracker

Implementation

- Modified Goddard to use only TCP for Media Streaming
- Changed the Goddard topology to a star network
- Added Timers for graphing purposes

Simulation Image

BitTorrent Simulation

Goddard Simulation

Simulation Video

- Goddard simulation video
 - One main Server
 - 20 nodes
 - Star Topology
 - Random downloading speeds for clients
- BitTorrent simulation video
 - One main server
 - 4 nodes
 - Peer-to-Peer Topology

Results

10 Peers 1 Seeder

Results

20 peers 1 server

ATL XGraph (Vers 1.39

Results

- Advantages of using BitTorrent
 - Lower load on the main server
 - Lower bandwidth needed for media streaming
 - Performance improve as number of seeders grow
- Disadvantages of using BitTorrent
 - More downloading delay for clients
 - Needs high number of seeders for best performance

Conclusion

Difficulties

- Finding Chao to solve "Out of Space" problem
- Installing NS-2 on Windows and Linux
- Defining new search algorithm for finding proper peers
- Defining new algorithm to remove old chunks
- Editing Goddard application to simulate star topology network
- Adding Xgraph function to final code to analyze the result

Conclusion

Pros of using BitTorrent over the standard media streaming

- Lower load on the server
- Decrease the cost
- More efficiency
- Lower bandwidth usage by clients
- Better performance by increasing number of clients

Cons of using BitTorrent.

- Higher buffering time for new clients
- Poor performance when number of clients is low

Sources

- [1] Chung Jae, Mark Claypool, and Robert Kinicki. MTP: A Streaming-Friendly Transport Protocol, Technical Report WPI-CS-TR-05-10, Computer Science Department, Worcester Polytechnic Institute, May 2005.
- [2] Chung, Jae. "Goddard Streaming Media." Network Simulator, Ns-2 Blog. May 2008. Web. 10 Apr. 2011. <<u>http://ns-</u> <u>2.blogspot.com/2007/05/streaming-media-system-for-ns-2.html</u>
- [3] Tewari,, Saurabh, and Leonard Kleinrock. "Analytical Model for BitTorrent-based Live Video Streaming." Computer Science Department University of California at Los Angeles Los Angeles, U.S.A, May 2008. Web.

<<u>http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.9846&rep=r</u> ep1&type=pdf

Sources

 [4] K. Eger, T. Hoßfeld, A. Binzenhöfer, G. Kunzmann, "Efficient Simulation of Large-Scale P2P Networks: Packet-level vs. Flow-level Simulations", 2nd Workshop on the Use of P2P, GRID and Agents for the Development of Content Networks (UPGRADE-CN'07) in conjunction with IEEE HPDC, Monterey Bay, USA, June 2007