ENSC 427 Communication Networks

Evaluation of Zigbee Remote Sensor Networks

Group l Jordan Angelov jga21@sfu.ca Stoyan Petrov svp1@sfu.ca Larry Zhao lfz2@sfu.ca www.sfu.ca/~lfz2/index3.html

Overview

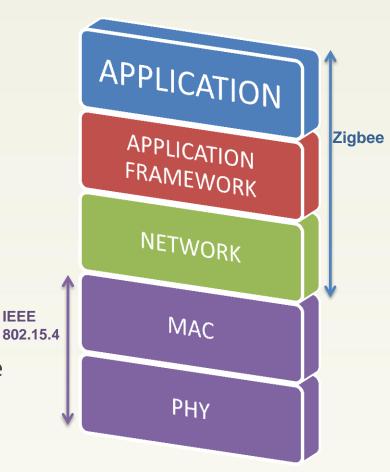
Introduction **ZigBee Protocol Project Overview Design Methodology Results & Conclusion Related Works**

Introduction

What is Zigbee?

- Protocol suite for low power wireless personal area network (WPAN)
- Builds on top of IEEE 802.15.4 standard
- Maintained by ZigBee Alliance
 - http://www.zigbee.org/
- Applications
 - embedded applications with limited power supplies
 - Agricultural networks
 - Medical data collection
 - Building automation

Introduction

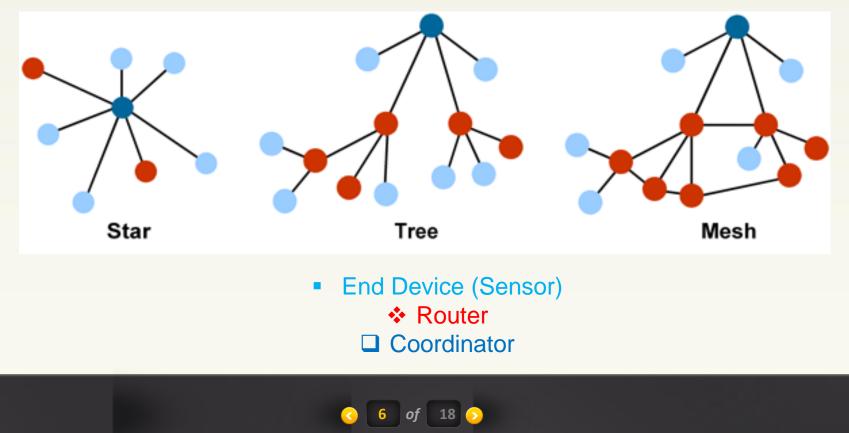

• Why ZigBee ?

	ZigBee	Wi-Fi (802.11n)	Bluetooth
Data Rate	20,40 and 250 Kbps	up to 150Mbps	1Mbps
Range	10-3000m	70-250m	10-100m
Frequency	868MHz, (EU)	2.4 & 5 GHz	2.4GHz
	900-928MHz, (NA)		
	2.4GHz (WL)		
Complexity	Low	High	High
Battery Life	100 to > 1000	1 to 5	1 to 7
(days) [3]			

ZigBee Protocol

- Application and Application
 Framework Layer
 - User defined application specific protocol
- Networking Layer
 - Ad-hoc, Peer to Peer, Mesh and Star topologies
 - Co-ordinator sets up and defines the topology

ZigBee Protocol


• IEEE 802.15.4 Medium Access Control(MAC) Layer

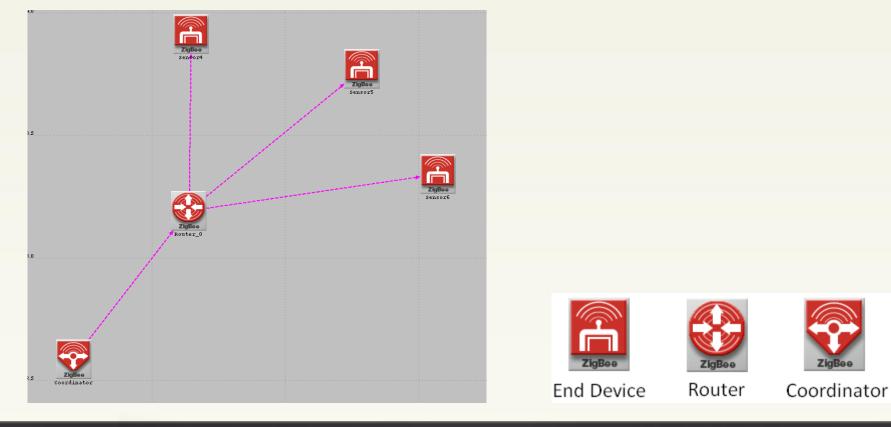
- Provides channel access via CSMA/CA
- Transmits/Receives frames
- IEEE 802.15.4 Physical Layer
 - 2.4GHz/900-928MHz/868MHz Radio
 - Offset Quadrature Phase Shift Keying (OQPSK) modulation for 2.4GHz
 - Binary Phase Shift Keying (BPSK) modulation for others
 - 250 Kbits/s transmission rate per channel for 2.4GHz band
 - 120m range based on 2mW transmitter power [6]

ZigBee Protocol

 Topologies: Star Topology, Mesh Topology, Tree Topology

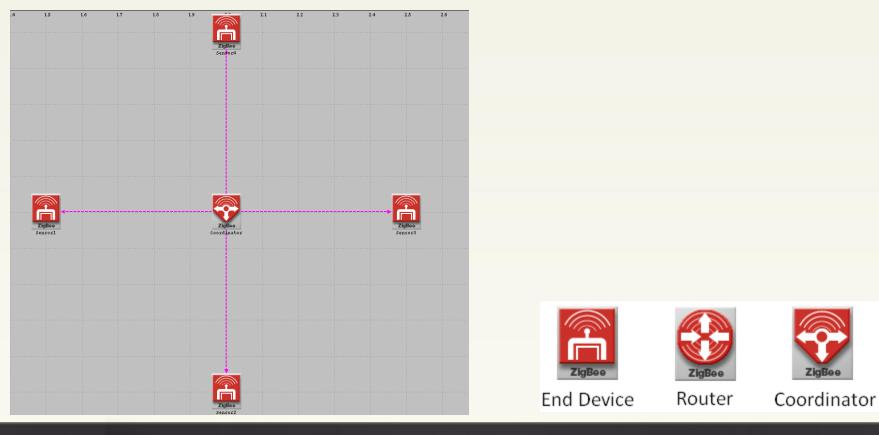
Project Overview

- Analyze the performance of cluster and star topology with OPNET 16.0
- Compare and contrast the two topologies under different scenarios
 - Network coverage
 - Transmission rate
 - Additional sensors
- Parameters of interest
 - End to End Delay (ETED)
 - Throughput
 - Packet Loss (PL)

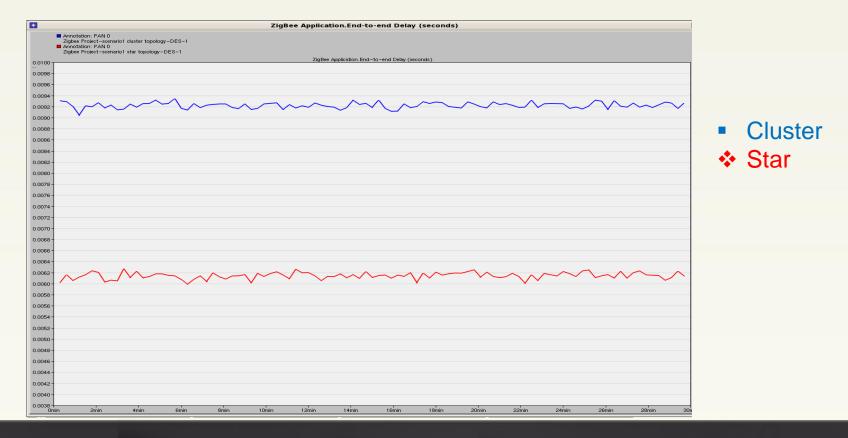

Project Overview

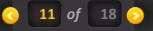
- Scope of the design and interest
 - Simulating a sensor network
 - Fixed nodes
 - Fixed packet size 1024 bits
 - Transmission rate 0.1 packets/sec
 - 6mWatts transmission power
- Assumptions
 - Transmitter power is fixed at 6mW
 - Transmitter Packet size is constant and small (1024 bits)
 - Transmitter packet interval is periodic

Design Methodology

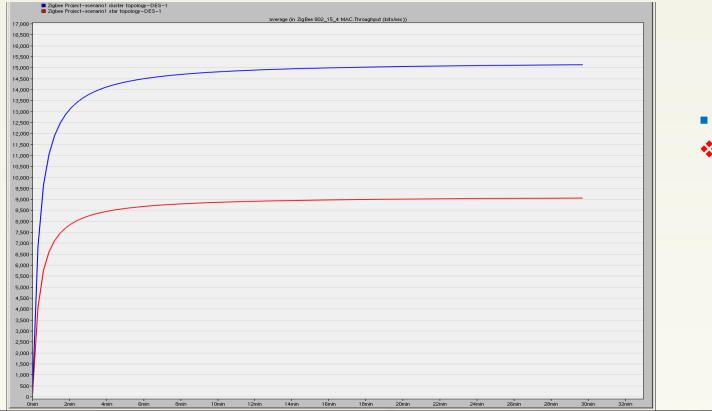

Cluster Setup

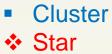
Design Methodology


• Star Network



Results


ETED: Cluster VS Star



Results

• Throughput

Results

Packets lost

- increasing packet size to 50kb

•	ZigBee Application (PAN 0) Zigbee Project-ac ZigBee Application (PAN 0) Zigbee Project-ac ZigBee Application (PAN 0)	enario4 cluster h.Traffic Receive enario4 star tor	topology overfl d (packets/sec)	ow-DES-1												
	Zigbee Project-sc ZigBee Application (PAN 0) Zigbee Project-sc	enario4 cluster h.Traffic Sent (p	topology overfl ackets/sec)													
9-	-															
8.5 -																
8-																
7.5-																
7-																
6.5 -																
6-																
5.5-																
5-																
4.5 -																
4-																
3.5-																
3-																
2.5 -																
2-																
1.5 -																
1 -																
0.5 -																
0 - Omin	2min	4min	6min	8min	10min	12min	14min	16min	18min	20min	22min	24min	26min	28min	30min	32min

13 of 18 📀

- Cluster (Received packets/sec)
- Star (Received packets/sec)
- Cluster|Star
 (packet send/sec)

Discussion

- What we discovered
 - ETED is smooth proportional to increase packet size/transmission rate (as expected)
 - Star topology more prone to Packet Loss (PL)
 - Throughput is higher in cluster topology
 - PL proportional to transmission rate
 - » Distance does not effect PL if the transmission rate is low

Conclusion

- Packet size are relative small
- Not event based
 - Transmission is periodic
- Future Work
 - More realistic application scenarios
 - More nodes
 - Mesh topology and self healing mechanism

Related Works

- Mitsugu Terada, "Application of ZigBee sensor network to data acquisition and monitoring", MEASUREMENT SCIENCE REVIEW ,2009
- S. Ma, M. Zhu, L. Wang, L. Shu, S. Li, S. Huang, "A Remote Monitoring System of IDC Room Based on ZigBee Wireless Sensor Networks", Dalian University of technology, 2009

References

- [1] Zigbee Technology. Internet: http://www.zigbee.org/About/AboutTechnology/ZigBeeTechnology.aspx, Jan.2, 2012 [Feb. 09, 2012].
- [2] Sinem Coleri Ergen. "ZigBee/IEEE 802.15.4 Summary" Internet: http://pages.cs.wisc.edu/~suman/courses/838/papers/zigbee.pdf, Sept.10, 2004 [Feb. 25, 2012]
- [3] Dusan Stevanovic. "Zigbee / IEEE 802.15.4 Standard" Internet:http://www.cse.yorku.ca/~dusan/Zigbee-Standard-Talk.pdf, Jun.20, 2007 [Feb.25, 2012]

References

- [4]Raul Morais. "A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture" Internet: http://ageweb.age.uiuc.edu/classes/abe425/Lectures/Networks/A%20Zig Bee%20multipowered%20wireless%20acquisition%20device%20for%20re mote%20sensing%20applications.pdf, Dec 3, 2007 [Feb. 25, 2012]
- [5]Tuan Le Dinh. "Design and Deployment of a Remote Robust Sensor Network: Experiences from an Outdoor Water Quality Monitoring Network" Internet: http://eprints.qut.edu.au/33774/1/33774.pdf, Oct.11, 2009 [Feb 25, 2012]
- [6] Making Wireless M2M Easy, http://www.digi.com/xbee/, [Feb 25, 2012]

THANK YOU

