
VoIP in NS2 Simulation
Connecting the world

one node at a time

Ensc 427 Communication NetworksSpring 2012
Web Address: http://www.sfu.ca/~bja7/Group 10Behdad Jamshidi – 301068521(bja7@sfu.ca)Victor Mateescu – 301071298 (vam2@sfu.ca)

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 2

Table of Contents
Abstract .. 3

Introduction.. 3

Background... 3

VoIP Advantages .. 3

Voice over TCP ... 3

Voice over UDP .. 4

Voice over RTP ... 4

Implementation .. 5

Simulation with NS-2 ... 5

Filtering the Trace File with AWK... 6

Parsing and Plotting with MATLAB .. 7

Throughput ... 7

Packet Loss.. 7

End-to-End Delay .. 7

Jitter .. 8

Results and Discussion.. 9

VoIP using UDP: ... 9

Throughput ... 9

Delay ... 10

Packet Loss.. 11

Jitter .. 12

VoIP using TCP ... 12

Throughput ... 12

Delay ... 13

Packet Loss.. 13

Jitter .. 15

VoIP using RTP ... 15

Conclusion .. 15

References .. 16

Appendix A: NS-2 Code ... 16

UDP: ... 16

TCP: .. 20

RTP: .. 24

Appendix B: MATLAB Code ... 29

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 3

Abstract
Due to the recent technological advancement in packet switching networks, VoIP (Voice over Internet
Protocol) has become an industry favorite over Public Switching Telephone Networks (PSTN) with
regards to voice communication. The cheap cost of making a call through VoIP internationally and
paying just one bill for data usage is a huge benefit. Recently, Rogers has taken advantage of VoIP with
their Rogers one number promotion where calls can be transferred and made through your computer.
Although, there are huge advantages to using VoIP there are some known issues such as, packet loss,
jitter and latency due to the connection through the computer internet. Our project consists of creating
a VoIP network (in NS2-2.35) and testing for its known faults. Through this we want to get a better
understanding of the underlying layers of the network and see if and where improvements can be made.

Introduction
For this project we are using NS2 to implement our VoIP network. We will be setting up several nodes
on either side of two routers. We are going to be using an exponential traffic source to re-create a
typical voice conversation over VoIP. Different protocols will be used to send voice information between
terminals, starting with User Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Real-
time Transport Protocol (RTP). We are going to be measuring packet loss, throughput, end-to-end delay,
and if the protocol permits, jitter. We will be plotting our results and comparing them to our theory-
based predictions.

Background

VoIP Advantages
VoIP offers several advantages over traditional circuit switching networks. These include:

 Low cost: Utilizes the widespread availability of Internet to make phone calls using standard,
readily available computer parts.

 Integrate different web services with VoIP: An example would be calling a retail establishment
while online shopping directly from your computer to make product inquiries.

 Possibility for greater bandwidth efficiency: Due to the vast amounts of codecs available for
VoIP networks (which may also be available to circuit-switching networks but are not
implemented due to cost restrictions), voice data may be transmitted at rates different from the
standard 64kbps, including variable bit rates [1].

Voice over TCP
Since IP is a best-effort protocol, it does not prevent errors such as packet loss from occurring. The
Transmission Control Protocol (TCP) serves to mitigate this flaw by detecting errors, retransmitting lost

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 4

packets, and ensuring data is ordered properly in order to provide reliable service. TCP is a connection-
oriented protocol that lies in the Transport layer. The connection is formed via a handshake between
two hosts with connection requests and acknowledgments. Once the connection is formed, the data
being transmitted is broken into segments. Before the segment is transmitted, a header is attached
which contains a sequence number. The receiver will respond to the arriving packet with an
acknowledgement if no errors are found. If no acknowledgement arrives at the original sender after a
certain timeout period, the sender will re-transmit the packet [4].

Despite its reliable service, the main drawbacks of TCP are the long delays inherent in taking such
preventative measures. One of the main challenges of VoIP is the delay restriction in a real-time phone
call. According to the ITU-T Recommendation G.114, one-way delay should be no more than 400
milliseconds for international calls [5]. However, maintaining constant high quality audio during the
phone call is also an important aspect – one that is challenged by packet loss and errors during
transmission. In general, large delays are more undesirable than data loss with regards to voice
communications due to the “real-time” aspect. Investigation of a TCP-based VoIP network is necessary
to determine how much of a benefit the added reliability is at the cost of longer delay times.

Voice over UDP
The UDP is a simple protocol that passes data along from the application layer to IP to be transmitted. It
performs none of the error checks that TCP does, and is therefore unreliable. A UDP header merely
consists of an optional source port, a destination port, the length of the datagram, and a checksum [4].
As previously mentioned, the main reason for using UDP over TCP in VoIP applications is the reduced
delay. In general, the sporadic loss of packets in a conversation will not be as disruptive as excessively
long delay times. In fact, a packet loss of about 5% is said to be tolerable depending on how the losses
are distributed [1]. We will investigate how well a UDP-based VoIP network performs in contrast to its
TCP counterpart.

Voice over RTP
The RTP is an application layer protocol that attaches itself to UDP to provide added benefits for real-
time applications. An RTP header includes a sequence number to help preserve the order of the
transmitted packets. It also includes a timestamp, which is meant to provide information to the
destination application so that it may compensate for problems such as delay or jitter if they arise. The
optional companion protocol, RTCP (specified in RFC 3550), is used as a means of exchanging
information on session quality, which can include the number of lost packets or the average delay time
[2].

RTP strikes a balance between UDP and TCP for VoIP applications. It is designed to operate rapidly like
UDP and it provides the receiver with valuable information pertaining to the VoIP session. The receiving
application can then use this information to alleviate problems caused by out-of-sequence packets and
jitter, thus improving the quality of the session. RTP is the protocol of choice for streaming media over
the Internet and is widely used in VoIP applications [2].

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 5

Implementation

Simulation with NS-2
In a standard circuit-switching network, an analog voice signal must be sampled at twice its maximum
frequency at 8 bits per sample. Standard human speech reaches about 4000kHz, thus a bandwidth of
64kbps is required. The advancement of codec technology has improved bandwidth efficiency in
telephony by only transmitting information when a person is talking [1]. Therefore, a variable bit rate on
each end is required to accurately simulate a VoIP call.

In our implementation, we assume the commonly used G.711 codec, which transmits information at a
rate of 64kbps [2]. The size of the transmitted packets was chosen to be 128 bytes for UDP. TCP
payloads are 1040 bytes and the ACK packets are 40 bytes. The phone call is established between Nodes
0 and 4 as shown in Figure 1. Node 0 transmits data with an average “on” time of 1200ms and idle time
of 800ms. Node 4 is setup to transmit fewer packets over the 60 second simulation with an average “on”
time of 800ms and idle time of 1200ms.

Figure 1: NS-2 implementation of a VoIP network

The scale of the simulation was chosen to be nation-wide, thus the link between routers represented by
Node 8 and 9 was chosen to be an Optical Carrier Level-1 (OC-1) line, which has a bandwidth of
51.84Mbps [4]. The link used in the simulation is a duplex link and thus has its bandwidth set to
25.92Mbps to properly mimic the OC-1 and a delay of 35ms, which is the end-to-end delay of a ping sent
from Vancouver to Toronto.

The background traffic of the network is supplied by Nodes 1, 2, 3, 5, 6, and 7 at constant bit rates. As
the simulation begins, Nodes 1 and 5 create background traffic at a rate of 25.89Mbps each (while all
other background sources are turned off), providing a sub-maximal load for the duplex link between the
two routers. Then from 20s to 40s, Nodes 2 and 6 are turned on (while Nodes 1 and 5 turn off) to

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 6

provide background traffic of 25.91Mbps each. This was chosen to slightly overload the link’s capacity
and thus cause congestion within the network. Finally, when the simulation reaches 40 seconds, Nodes
3 and 7 are tasked with providing the background traffic at a rate of 25.92Mbps each, greatly exceeding
the network’s bandwidth. At this point, it is expected that the queues become full and resulting in many
dropped packets.

Depending on our simulation, UDP, TCP, or RTP agents were attached to Nodes 0 and 4. For the
background traffic, we used UDP for all three scenarios. Furthermore, Traffic from Node 0 to Node 4 is
color coded as blue, whereas traffic from Node 4 to Node 0 is color coded as red. The simulation can be
visualized in NAM.

Filtering the Trace File with AWK
The NS2 code opens an output trace file, out.tr, and records every single event of the simulation for
each individual packet, such as entering queues or being dropped. An important step in identifying the
data pertaining to the phone call itself is to assign unique flow IDs – packets transmitted from Node 0
have a flow ID of 1, while packets transmitted from Node 4 have a flow ID of 2.

The NS-2 trace file is structured in columns as follows:

1. Event type
 “+”: packet enters queue
 “-“: packet leaves queue
 “r”: packet received
 “d’ packet dropped

2. Timestamp
3. Source Node
4. Destination Node
5. Packet Type (ie: “exp” for the variable bit rate used to simulate the call)
6. Packet Size
7. Flags (unused)
8. Flow ID
9. Source Address
10. Destination Address
11. Sequence Number
12. Unique Packet ID

A 60 second simulation with such a large amount of background traffic could result in trace files that are
hundreds of MBs large, making parsing impossible. Since we are only interested in the data pertaining to
the VoIP session between Nodes 0 and 4, the trace file is filtered using an AWK command:

awk '$8==1 || $8==2' out.tr > out.txt

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 7

This command takes lines containing flow ID 1 or 2 and transfers them to a new file.

Parsing and Plotting with MATLAB
The filtered output file is then parsed with MATLAB, by saving the data in each column into different
vectors. This data can then be used to calculate and plot throughput, packet loss, end-to-end delay, and
jitter. The main challenge is the fact that these measurements must be done based on intervals of time;
however, the trace file only tracks events the exact moment when they occur and so the data inside the
file is not listed at equal time intervals. Therefore, all calculations done in MATLAB must be based on the
vector indices of the parsed data. For example, we wish to make measurements at 2 second intervals.
For the interval 2 to 4s, we scan the timestamp vector, time, to find the first index i1 where time[i1] ≥ 2
and similarly we find first index i2, where time[i2]≥ 4. Thus, indices i1and i2 essentially correspond to the
beginning and end of a time interval, respectively. These indices are then used as upper and lower limits
when scanning all other vectors necessary to compute our desired quantities.

Throughput
In the case of data transmission from Node A to Node B, throughput refers to the total amount of data,
measured in bytes/sec, received at Node B. As an example, for our simulation Node 0’s throughput was
measured in kbps as follows:

Throughput = Bytes Received∆ × 10 (1)

The event type “r” in the first column of the trace was the primary tool used to track throughput.

Packet Loss
Packet loss is simply a measure of the amount of packets that are dropped at any point as they travel
from Node A to Node B. Two measures were taken: one of instantaneous packet loss which describes
how many packets are lost at each time interval and the other of cumulative loss which describes the
total number of packets lost throughout the simulation. The main tool in tracking the loss of packets was
the event type “d” in the first column of the trace file.

End-to-End Delay
End-to-end delay is the time it takes for a packet to travel from Node A to Node B. The end-to-end delay
is measured as follows:

1. Obtain the time when a packet is created/transmitted
2. Obtain the time when the same packet reached its destination
3. Take the difference of the two times

To implement this procedure, first we find the time when the packet is created by checking for event
type “+” at the node of creation. The unique packet ID specified in column 12 must be saved and a new
search for the same packet ID with the event type “r” is performed, yielding the received time. The delay

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 8

is then calculated as mentioned and the next packet with event “+” at the node of creation is found,
thus repeating the process. The procedure is performed for all transmitted/received packets within a
time interval and the resulting differences are averaged.

Jitter
Jitter, also more formally known as IP Packet Delay Variation (IPDV), is defined as the difference in end-
to-end delay of the transmitted packets. There are numerous ways of calculating this quantity.

Figure 2: Illustration of packets with varying end-to-end delays

RFC 3393 suggests a simple method: An interval of time is selected where the first packet P1 and last
packet PNtransmitted during that interval have delay times of Δt1 and ΔtN, respectively. The jitter is then
given by ΔtN - Δt1[3].

RFC 1889 suggest another method as shown below (this is also referenced in RFC 3393):= + , (2)

where J is the IPDV as calculated using the simple method mentioned above [3]. Due to the heuristic
basis of (2), we have decided not to measure jitter this way. Instead we use the simple method from RFC
3393 mentioned above except instead of finding the difference between the delay of the first and last
packet of each time interval, we find the difference in delay between each adjacent packet of in an
interval and take an average.

Jitter = ∑ ∆ − ∆− 1 (3)

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 9

Results and Discussion

VoIP using UDP:

Figure 3: VoIP simulation using UDP in NAM

Throughput
Initially, we see a throughput of 64kbps. As expected, with increase in background traffic, we see a drop
in throughput from both ends. At around 30 seconds, the background traffic is taking up a large portion
of the bandwidth and so a large decrease in throughput is observed from Node 0 to Node 4. The large
spike on the plot to the right at 40 seconds occurs because the user at Node 0 is not talking and thus not
transmitting any data. This frees up a lot of bandwidth so that the user at Node 4 is able to transmit well
despite the heavy background traffic

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 10

Figure 4: UDP throughput

Delay
The delay for UDP is around 90ms which is well below the recommended limit of 150ms specified
earlier. We note that the delay varies very little regardless of increasing background traffic.

Figure 5: UDP end-to-end delay

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 11

Packet Loss

Figure 6: UDP packet loss for data sent from Node 0 to Node 4

As the simulation reaches about 10 seconds, we begin to see some packet losses due to the sudden
congestion caused by a combination of background traffic and both users speaking at the same time.
The background traffic is upped at 20 seconds and we begin to see the consequences at around 30
seconds with the dramatic increase of lost packets. At this point, the queues are growing exceedingly
large causing many packets to be dropped. Since the background traffic remains constant, the queues
don’t have time to relieve themselves and as the background traffic is further increased, more packets
are consistently dropped. A total of about 900 packets are lost on their way from Node 0 to Node 4 and
a total of 300 are lost from Node 4 to Node 0. For reference, a total of 3603 packets are sent from Node
0 to Node 4 and a total of 2008 are sent from Node 4 to Node 0.

Figure 7: UDP packet loss for data sent from Node 4 to Node 0

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 12

Jitter
We observe a very low variation in the end-to-end delay times for UDP, which is ideal for VoIP.

Figure 8: UDP jitter

VoIP using TCP

Figure 9: VoIP simulation using TCP in NAM

Throughput
While there is low to moderate background traffic present in the network, we see a steady throughput
of about 64kbps. There seems to be no loss in performance unless the network is under a maximal load,
at which large drops in throughput are observed from both ends.

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 13

Figure 10: TCP throughput

Delay
Large delays varying from 0.4 to 1.4 seconds are observed, which greatly exceeds the recommendation
of 150ms and even the limit of 400ms for national calls.

Figure 11: TCP delay

Packet Loss
For the first 40 seconds of simulation, we do see a fair bit of dropped packets; however, since the
throughput did not drop during this interval, we may conclude that the only packets lost are ACK
packets, which are small in size and are not of real concern. Packets containing actual voice data are lost
only after 40 seconds of simulation when the network is under a maximal load. We see a total of about

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 14

20 voice data packets lost from both end. A total of 310 packets containing voice data are sent from
each end.

Figure 12: TCP packet loss for data sent from Node 0 to Node 4

Figure 13: TCP packet loss for data sent from Node 4 to Node 0

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 15

Jitter
Very large delay variation is observed, growing exceedingly larger as the simulation progresses.

Figure 14: TCP jitter

VoIP using RTP
The performance of RTP is identical to that of UDP in every aspect. As previously mentioned, RTP merely
attaches additional data to the UDP stream to provide valuable information to the application at the
other end. It does not directly prevent issues such as jitter, however the information it provides can
warn the application that such issues are present so that the application can take whatever preventative
actions it needs to.

Conclusion
With regards to our criteria of low packet loss to maintain a high voice quality, we see that TCP out-
performs UDP/RTP. Packet losses were not observed for TCP unless the background traffic was at
maximum load. Afterwards, only about 20 packets were dropped out of a total of 310 sent which results
in a 6.5% loss throughout the simulation. The percentage lost for UDP/RTP throughout the simulation is
much higher at approximately 25% for traffic sent from Node 0 to Node 4, however this is mostly due to
massive losses caused by the exceedingly large background traffic later into the simulation. Up until
about 30 seconds (low to moderate load), we observe a very acceptable 5% loss for traffic flowing either
way.

Nonetheless, low delay and jitter are a higher priority than loss of quality. TCP’s sluggish delay and large
jitter is unacceptable for VoIP applications and any benefits obtained in terms of improved voice quality

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 16

are nullified by this problem. Conversely, the simple, “best effort” nature of UDP/RTP allows for very
small delay and jitter. This, along with acceptable voice quality during low/moderate background traffic,
is what makes UDP or RTP the protocols of choice for VoIP applications. In general, RTP is almost always
used over UDP due to the identical performance and added features.

Currently, Session Initiated Protocol (SIP) is growing in popularity as the choice signaling protocol of VoIP
networks. For future work, an implementation of SIP in NS-2 can be done and the numerous capabilities
provided by it, such as conference calls and call-switching can be simulated.

References
[1] D. Collins, "Carrier Grade Voice Over IP," McGraw-Hill, 2002.
[2] O. Hersent, "IP Telephony: Deploying VoIP Protocols and IMS Infrastructure," West Sussex, UK:
Wiley, 2011.
[3] C. Demichelis and P. Chimento, “IP Packet Delay Variation Metric for IP Performance Metrics (IPPM),”
RFC 3393, November 2002: http://www.ietf.org/rfc/rfc3393.txt (accessed in March 2012).
[4] A. Leon-Garcia and I. Widjaja, “Communication Networks: Fundamental Concepts and Key
Architectures,” 2nd edition,
McGraw -Hill, 2004.
[5] Jishu Das Gupta, Srecko Howard, and Angela Howard (2006), “Traffic Behaviour of VoIP in a
Simulated Access Network,” Proceedings of World Academy of Science, Engineering and Technology
(PWASET), 18, pp. 189-194,. Available: http://www.waset.org/journals/waset/v24/v24-15.pdf (accessed
in March 2012)

Appendix A: NS-2 Code

UDP:
start new simulator
set ns [new Simulator]

set nf [open out.nam w]
$ns namtrace-all $nf

#open tracefile
set nd [open out.tr w]
$ns trace-all $nd

proc finish {} {

global ns nf
$ns flush-trace
close $nf
exec nam out.nam &
exit 0

}
#set the colors of the packets being sent
$ns color 1 Blue

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 17

$ns color 2 Red
$ns color 3 black
$ns color 4 gold
$ns color 5 orange

nodes for users and routers connect
set U0 [$ns node]
set U1 [$ns node]
set U2 [$ns node]
set U3 [$ns node]
set U4 [$ns node]
set U5 [$ns node]
set U6 [$ns node]
set U7 [$ns node]
set R1 [$ns node]
set R2 [$ns node]

#colors for the nodes
$U0 color darkgreen
$U1 color darkgreen
$U2 color darkgreen
$U3 color darkgreen
$U4 color darkgreen
$U5 color darkgreen
$U6 color darkgreen
$U7 color darkgreen
$R1 color purple
$R2 color purple

labeling the nodes
$U0 label "User 1"
$U1 label "CBR1 L 25.89Mb"
$U3 label "CBR2 L 25.91Mb"
$U3 label "CBR3 L 25.93Mb"
$U4 label "User 2"
$U5 label "CBR1 R 25.89Mb"
$U6 label "CBR2 R 25.91Mb"
$U7 label "CBR3 R 25.92Mb"
$R1 label "router1"
$R2 label "router2"

shapes for the routers
$R1 shape box
$R2 shape box

how connections are established and bandwidth for our lines
$ns duplex-link $U0 $R1 64kb 5ms DropTail
$ns duplex-link $U1 $R1 26Mb 5ms DropTail
$ns duplex-link $U2 $R1 26Mb 5ms DropTail
$ns duplex-link $U3 $R1 26Mb 5ms DropTail

$ns duplex-link $U4 $R2 64kb 5ms DropTail
$ns duplex-link $U5 $R2 26Mb 5ms DropTail
$ns duplex-link $U6 $R2 26Mb 5ms DropTail
$ns duplex-link $U7 $R2 26Mb 5ms DropTail

link between routers
$ns duplex-link $R1 $R2 25.92Mb 50ms DropTail

#more control over the layout

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 18

$ns duplex-link-op $U0 $R1 orient right-down
$ns duplex-link-op $U1 $R1 orient right
$ns duplex-link-op $U2 $R1 orient right-up
$ns duplex-link-op $U3 $R1 orient up
$ns duplex-link-op $R1 $R2 orient right
$ns duplex-link-op $U4 $R2 orient left-down
$ns duplex-link-op $U5 $R2 orient left
$ns duplex-link-op $U6 $R2 orient left-up
$ns duplex-link-op $U7 $R2 orient up

creating our udp agents and attaching it to the correct nodes
set udp0 [new Agent/UDP]
$ns attach-agent $U0 $udp0
$udp0 set fid_ 1

set udp1 [new Agent/UDP]
$ns attach-agent $U1 $udp1
$udp1 set fid_ 3

set udp2 [new Agent/UDP]
$ns attach-agent $U2 $udp2
$udp2 set fid_ 4

set udp3 [new Agent/UDP]
$ns attach-agent $U3 $udp3
$udp3 set fid_ 5

set udp4 [new Agent/UDP]
$ns attach-agent $U4 $udp4
$udp4 set fid_ 2

set udp5 [new Agent/UDP]
$ns attach-agent $U5 $udp5
$udp5 set fid_ 6

set udp6 [new Agent/UDP]
$ns attach-agent $U6 $udp6
$udp6 set fid_ 7

set udp7 [new Agent/UDP]
$ns attach-agent $U7 $udp7
$udp7 set fid_ 8

#to find out what is going on in the queue
$ns duplex-link-op $U0 $R1 queuePos 0.5
$ns duplex-link-op $R1 $R2 queuePos 0.5
$ns duplex-link-op $U4 $R2 queuePos 0.5

#create a exponential traffic source and attach it to ud0
set vbr1 [new Application/Traffic/Exponential]
$vbr1 set packetSize_ 128
$vbr1 set burst_time_ 1200ms
$vbr1 set idle_time_ 800ms
$vbr1 set rate_ 64k
$vbr1 attach-agent $udp0
$udp0 set class_ 1

#create a CBR traffic source and attach it to udp1
set cbr1 [new Application/Traffic/CBR]
$cbr1 set packetSize_ 128

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 19

#sending at 25.89MB
$cbr1 set interval_ 0.000039552
$cbr1 attach-agent $udp1
$udp1 set class_ 3

#create a CBR traffic source and attach it to udp2
set cbr2 [new Application/Traffic/CBR]
$cbr2 set packetSize_ 128
#sending it at 25.91MB
$cbr2 set interval_ 0.000039521
$cbr2 attach-agent $udp2
$udp2 set class_ 4
#create a CBR traffic source and attach it to udp3
set cbr3 [new Application/Traffic/CBR]
$cbr3 set packetSize_ 128
sending at 25.92MB
$cbr3 set interval_ 0.000039506
$cbr3 attach-agent $udp3
$udp3 set class_ 5

#create a CBR traffic source and attach it to udp4
set vbr2 [new Application/Traffic/Exponential]
$vbr2 set packetSize_ 128
$vbr2 set burst_time_ 880ms
$vbr2 set idle_time_ 1280ms
$vbr2 set rate_ 64k
$vbr2 attach-agent $udp4
$udp4 set class_ 2
#create a CBR traffic source and attach it to udp5
set cbr4 [new Application/Traffic/CBR]
$cbr4 set packetSize_ 128
#sending at 25.89MB
$cbr4 set interval_ 0.000039552
$cbr4 attach-agent $udp5
$udp5 set class_ 3
#create a CBR traffic source and attach it to udp6
set cbr5 [new Application/Traffic/CBR]
$cbr5 set packetSize_ 128
#sending it at 25.91MB
$cbr5 set interval_ 0.000039521
$cbr5 attach-agent $udp6
$udp6 set class_ 4
#create a CBR traffic source and attach it to udp7
set cbr6 [new Application/Traffic/CBR]
$cbr6 set packetSize_ 128
sending at 25.92MB
$cbr6 set interval_ 0.000039506
$cbr6 attach-agent $udp7
$udp7 set class_ 5
#Use LossMonitor agents instead of Null agents as sinks to allow collection of data
set sink0 [new Agent/Null] ;
$ns attach-agent $U0 $sink0
set sink1 [new Agent/Null] ;
$ns attach-agent $U1 $sink1
set sink2 [new Agent/Null] ;
$ns attach-agent $U2 $sink2
set sink3 [new Agent/Null] ;
$ns attach-agent $U3 $sink3
set sink4 [new Agent/Null] ;
$ns attach-agent $U4 $sink4

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 20

set sink5 [new Agent/Null] ;
$ns attach-agent $U5 $sink5
set sink6 [new Agent/Null] ;
$ns attach-agent $U6 $sink6
set sink7 [new Agent/Null] ;
$ns attach-agent $U7 $sink7

connecting sinks to the udp agents
$ns connect $udp0 $sink4
$ns connect $udp1 $sink5
$ns connect $udp2 $sink6
$ns connect $udp3 $sink7
$ns connect $udp4 $sink0
$ns connect $udp5 $sink1
$ns connect $udp6 $sink2
$ns connect $udp7 $sink3
#setting up the time for when the simulation start and when certain background traffics turn on
and off and when the users begin to speak
$ns at 0.0 "$vbr1 start"
$ns at 0.0 "$vbr2 start"
$ns at 0.0 "$cbr1 start"
$ns at 0.0 "$cbr4 start"
$ns at 20.0 "$cbr1 stop"
$ns at 20.0 "$cbr4 stop"
$ns at 20.0 "$cbr2 start"
$ns at 20.0 "$cbr5 start"
$ns at 40.0 "$cbr5 stop"
$ns at 40.0 "$cbr2 stop"
$ns at 40.0 "$cbr3 start"
$ns at 40.0 "$cbr6 start"
$ns at 55.0 "$cbr6 stop"
$ns at 55.0 "$cbr3 stop"
$ns at 55.0 "$vbr1 stop"
$ns at 55.0 "$vbr2 stop"

$ns at 60.0 "finish"
$ns run

TCP:
#starting the simulator
set ns [new Simulator]

set nf [open out.nam w]
$ns namtrace-all $nf

#open tracefile
set nd [open out.tr w]
$ns trace-all $nd

proc finish {} {

global ns nf
$ns flush-trace
close $nf
exec nam out.nam &

exit 0

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 21

}

#set the colors of the packets being sent
$ns color 1 Blue
$ns color 2 Red
$ns color 3 black
$ns color 4 gold
$ns color 5 orange

nodes for users and routers connect
set U0 [$ns node]
set U1 [$ns node]
set U2 [$ns node]
set U3 [$ns node]
set U4 [$ns node]
set U5 [$ns node]
set U6 [$ns node]
set U7 [$ns node]
set R1 [$ns node]
set R2 [$ns node]

#colors for the nodes
$U0 color darkgreen
$U1 color darkgreen
$U2 color darkgreen
$U3 color darkgreen
$U4 color darkgreen
$U5 color darkgreen
$U6 color darkgreen
$U7 color darkgreen
$R1 color purple
$R2 color purple

labeling the nodes
$U0 label "User 1"
$U1 label "CBR1 L 25.89Mb"
$U3 label "CBR2 L 25.91Mb"
$U3 label "CBR3 L 25.93Mb"
$U4 label "User 2"
$U5 label "CBR1 R 25.89Mb"
$U6 label "CBR2 R 25.91Mb"
$U7 label "CBR3 R 25.92Mb"
$R1 label "router1"
$R2 label "router2"

shapes for the routers
$R1 shape box
$R2 shape box

how connections are established and bandwidth for our lines
$ns duplex-link $U0 $R1 64kb 5ms DropTail
$ns duplex-link $U1 $R1 26Mb 5ms DropTail
$ns duplex-link $U2 $R1 26Mb 5ms DropTail
$ns duplex-link $U3 $R1 26Mb 5ms DropTail

$ns duplex-link $U4 $R2 64kb 5ms DropTail
$ns duplex-link $U5 $R2 26Mb 5ms DropTail
$ns duplex-link $U6 $R2 26Mb 5ms DropTail
$ns duplex-link $U7 $R2 26Mb 5ms DropTail

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 22

link between routers
$ns duplex-link $R1 $R2 25.92Mb 50ms DropTail

#more control over the layout
$ns duplex-link-op $U0 $R1 orient right-down
$ns duplex-link-op $U1 $R1 orient right
$ns duplex-link-op $U2 $R1 orient right-up
$ns duplex-link-op $U3 $R1 orient up
$ns duplex-link-op $R1 $R2 orient right
$ns duplex-link-op $U4 $R2 orient left-down
$ns duplex-link-op $U5 $R2 orient left
$ns duplex-link-op $U6 $R2 orient left-up
$ns duplex-link-op $U7 $R2 orient up

creating our TCP agents for the two users speaking
set tcp0 [new Agent/TCP]
$ns attach-agent $U0 $tcp0
$tcp0 set fid_ 1

set tcp1 [new Agent/TCP]
$ns attach-agent $U4 $tcp1
$tcp1 set fid_ 2

#creating the UDP agents for background traffic
set udp1 [new Agent/UDP]
$ns attach-agent $U1 $udp1
$udp1 set fid_ 3

set udp2 [new Agent/UDP]
$ns attach-agent $U2 $udp2
$udp2 set fid_ 4

set udp3 [new Agent/UDP]
$ns attach-agent $U3 $udp3
$udp3 set fid_ 5

set udp5 [new Agent/UDP]
$ns attach-agent $U5 $udp5
$udp5 set fid_ 6

set udp6 [new Agent/UDP]
$ns attach-agent $U6 $udp6
$udp6 set fid_ 7

set udp7 [new Agent/UDP]
$ns attach-agent $U7 $udp7
$udp7 set fid_ 8

#to find out what is going on in the queue
$ns duplex-link-op $U0 $R1 queuePos 0.5
$ns duplex-link-op $R1 $R2 queuePos 0.5
$ns duplex-link-op $U4 $R2 queuePos 0.5

creating the file transfer agent
set ftp0 [new Application/FTP]
$ftp0 attach-agent $tcp0
$ftp0 set class_ 1

set ftp1 [new Application/FTP]
$ftp1 attach-agent $tcp1

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 23

$ftp1 set class_ 1

#create a CBR traffic source and attach it to udp1
set cbr1 [new Application/Traffic/CBR]
$cbr1 set packetSize_ 128
#sending at 25.89MB
$cbr1 set interval_ 0.000039552
$cbr1 attach-agent $udp1
$udp1 set class_ 3

#create a CBR traffic source and attach it to udp2
set cbr2 [new Application/Traffic/CBR]
$cbr2 set packetSize_ 128
#sending it at 25.91MB
$cbr2 set interval_ 0.000039521
$cbr2 attach-agent $udp2
$udp2 set class_ 4

#create a CBR traffic source and attach it to udp3
set cbr3 [new Application/Traffic/CBR]
$cbr3 set packetSize_ 128
sending at 25.92MB
$cbr3 set interval_ 0.000039506
$cbr3 attach-agent $udp3
$udp3 set class_ 5

#create a CBR traffic source and attach it to udp5
set cbr4 [new Application/Traffic/CBR]
$cbr4 set packetSize_ 128
#sending at 25.89MB
$cbr4 set interval_ 0.000039552
$cbr4 attach-agent $udp5
$udp5 set class_ 3

#create a CBR traffic source and attach it to udp6
set cbr5 [new Application/Traffic/CBR]
$cbr5 set packetSize_ 128
#sending it at 25.91MB
$cbr5 set interval_ 0.000039521
$cbr5 attach-agent $udp6
$udp6 set class_ 4

#create a CBR traffic source and attach it to udp7
set cbr6 [new Application/Traffic/CBR]
$cbr6 set packetSize_ 128
sending at 25.92MB
$cbr6 set interval_ 0.000039506
$cbr6 attach-agent $udp7
$udp7 set class_ 5

#Use LossMonitor agents instead of Null agents as sinks to allow collection of data
set sink0 [new Agent/TCPSink] ;
$ns attach-agent $U0 $sink0
set sink1 [new Agent/Null] ;
$ns attach-agent $U1 $sink1
set sink2 [new Agent/Null] ;

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 24

$ns attach-agent $U2 $sink2
set sink3 [new Agent/Null] ;
$ns attach-agent $U3 $sink3
set sink4 [new Agent/TCPSink] ;
$ns attach-agent $U4 $sink4
set sink5 [new Agent/Null] ;
$ns attach-agent $U5 $sink5
set sink6 [new Agent/Null] ;
$ns attach-agent $U6 $sink6
set sink7 [new Agent/Null] ;
$ns attach-agent $U7 $sink7

attaching the agents to the sinks
$ns connect $tcp0 $sink4
$ns connect $udp1 $sink5
$ns connect $udp2 $sink6
$ns connect $udp3 $sink7
$ns connect $tcp1 $sink0
$ns connect $udp5 $sink1
$ns connect $udp6 $sink2
$ns connect $udp7 $sink3

#setting up the time for when the simulation start and when certain background traffics turn on
and off and when the users begin to speak

$ns at 0.0 "$ftp0 start"
$ns at 0.0 "$ftp1 start"
$ns at 0.0 "$cbr1 start"
$ns at 0.0 "$cbr4 start"
$ns at 20.0 "$cbr1 stop"
$ns at 20.0 "$cbr4 stop"
$ns at 20.0 "$cbr2 start"
$ns at 20.0 "$cbr5 start"
$ns at 40.0 "$cbr5 stop"
$ns at 40.0 "$cbr2 stop"
$ns at 40.0 "$cbr3 start"
$ns at 40.0 "$cbr6 start"
$ns at 55.0 "$cbr6 stop"
$ns at 55.0 "$cbr3 stop"
$ns at 60.0 "$ftp0 stop"
$ns at 60.0 "$ftp1 stop"

$ns at 60.0 "finish"

$ns run

RTP:
starting the simulator
set ns [new Simulator]

set nf [open out.nam w]
$ns namtrace-all $nf

#open tracefile
set nd [open out.tr w]
$ns trace-all $nd

proc finish {} {

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 25

global ns nf
$ns flush-trace
close $nf
exec nam out.nam &

exit 0

}

#set the colors of the packets being sent
$ns color 1 Blue
$ns color 2 Red
$ns color 3 black
$ns color 4 gold
$ns color 5 orange

nodes for users and routers connect
set U0 [$ns node]
set U1 [$ns node]
set U2 [$ns node]
set U3 [$ns node]
set U4 [$ns node]
set U5 [$ns node]
set U6 [$ns node]
set U7 [$ns node]
set R1 [$ns node]
set R2 [$ns node]

#colors for the nodes
$U0 color darkgreen
$U1 color darkgreen
$U2 color darkgreen
$U3 color darkgreen
$U4 color darkgreen
$U5 color darkgreen
$U6 color darkgreen
$U7 color darkgreen
$R1 color purple
$R2 color purple

labeling the nodes
$U0 label "User 1"
$U1 label "CBR1 L 25.89Mb"
$U3 label "CBR2 L 25.91Mb"
$U3 label "CBR3 L 25.93Mb"
$U4 label "User 2"
$U5 label "CBR1 R 25.89Mb"
$U6 label "CBR2 R 25.91Mb"
$U7 label "CBR3 R 25.92Mb"
$R1 label "router1"
$R2 label "router2"

shapes for the routers
$R1 shape box
$R2 shape box

how connections are established and bandwidth for our lines
$ns duplex-link $U0 $R1 64kb 5ms DropTail
$ns duplex-link $U1 $R1 26Mb 5ms DropTail

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 26

$ns duplex-link $U2 $R1 26Mb 5ms DropTail
$ns duplex-link $U3 $R1 26Mb 5ms DropTail

$ns duplex-link $U4 $R2 64kb 5ms DropTail
$ns duplex-link $U5 $R2 26Mb 5ms DropTail
$ns duplex-link $U6 $R2 26Mb 5ms DropTail
$ns duplex-link $U7 $R2 26Mb 5ms DropTail

link between routers
$ns duplex-link $R1 $R2 25.92Mb 50ms DropTail

#more control over the layout
$ns duplex-link-op $U0 $R1 orient right-down
$ns duplex-link-op $U1 $R1 orient right
$ns duplex-link-op $U2 $R1 orient right-up
$ns duplex-link-op $U3 $R1 orient up
$ns duplex-link-op $R1 $R2 orient right
$ns duplex-link-op $U4 $R2 orient left-down
$ns duplex-link-op $U5 $R2 orient left
$ns duplex-link-op $U6 $R2 orient left-up
$ns duplex-link-op $U7 $R2 orient up

creating our udp agents
set rtp0 [new Agent/UDP]
$ns attach-agent $U0 $rtp0
$rtp0 set fid_ 1

set udp1 [new Agent/UDP]
$ns attach-agent $U1 $udp1
$udp1 set fid_ 3

set udp2 [new Agent/UDP]
$ns attach-agent $U2 $udp2
$udp2 set fid_ 4

set udp3 [new Agent/UDP]
$ns attach-agent $U3 $udp3
$udp3 set fid_ 5

set rtp1 [new Agent/UDP]
$ns attach-agent $U4 $rtp1
$rtp1 set fid_ 2

set udp5 [new Agent/UDP]
$ns attach-agent $U5 $udp5
$udp5 set fid_ 6

set udp6 [new Agent/UDP]
$ns attach-agent $U6 $udp6
$udp6 set fid_ 7

set udp7 [new Agent/UDP]
$ns attach-agent $U7 $udp7
$udp7 set fid_ 8

#to find out what is going on in the queue
$ns duplex-link-op $U0 $R1 queuePos 0.5
$ns duplex-link-op $R1 $R2 queuePos 0.5
$ns duplex-link-op $U4 $R2 queuePos 0.5

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 27

#create a exponential traffic source and attach it to RTP0
set vbr1 [new Application/Traffic/Exponential]
$vbr1 set packetSize_ 128
$vbr1 set burst_time_ 1200ms
$vbr1 set idle_time_ 800ms
$vbr1 set rate_ 64k
$vbr1 attach-agent $rtp0
$rtp0 set class_ 1

#create a CBR traffic source and attach it to udp1
set cbr1 [new Application/Traffic/CBR]
$cbr1 set packetSize_ 128
#sending at 25.89MB
$cbr1 set interval_ 0.000039552
$cbr1 attach-agent $udp1
$udp1 set class_ 3

#create a CBR traffic source and attach it to udp2
set cbr2 [new Application/Traffic/CBR]
$cbr2 set packetSize_ 128
#sending it at 25.91MB
$cbr2 set interval_ 0.000039521
$cbr2 attach-agent $udp2
$udp2 set class_ 4

#create a CBR traffic source and attach it to udp3
set cbr3 [new Application/Traffic/CBR]
$cbr3 set packetSize_ 128
sending at 25.92MB
$cbr3 set interval_ 0.000039506
$cbr3 attach-agent $udp3
$udp3 set class_ 5

#create a CBR traffic source and attach it to RTP1
set vbr2 [new Application/Traffic/Exponential]
$vbr2 set packetSize_ 128
$vbr2 set burst_time_ 880ms
$vbr2 set idle_time_ 1280ms
$vbr2 set rate_ 64k
$vbr2 attach-agent $rtp1
$rtp1 set class_ 2

#create a CBR traffic source and attach it to udp5
set cbr4 [new Application/Traffic/CBR]
$cbr4 set packetSize_ 128
#sending at 25.89MB
$cbr4 set interval_ 0.000039552
$cbr4 attach-agent $udp5
$udp5 set class_ 3

#create a CBR traffic source and attach it to udp6
set cbr5 [new Application/Traffic/CBR]
$cbr5 set packetSize_ 128
#sending it at 25.91MB
$cbr5 set interval_ 0.000039521
$cbr5 attach-agent $udp6
$udp6 set class_ 4

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 28

#create a CBR traffic source and attach it to udp7
set cbr6 [new Application/Traffic/CBR]
$cbr6 set packetSize_ 128
sending at 25.92MB
$cbr6 set interval_ 0.000039506
$cbr6 attach-agent $udp7
$udp7 set class_ 5

#Use LossMonitor agents instead of Null agents as sinks to allow collection of data
set sink0 [new Agent/Null] ;
$ns attach-agent $U0 $sink0
set sink1 [new Agent/Null] ;
$ns attach-agent $U1 $sink1
set sink2 [new Agent/Null] ;
$ns attach-agent $U2 $sink2
set sink3 [new Agent/Null] ;
$ns attach-agent $U3 $sink3
set sink4 [new Agent/Null] ;
$ns attach-agent $U4 $sink4
set sink5 [new Agent/Null] ;
$ns attach-agent $U5 $sink5
set sink6 [new Agent/Null] ;
$ns attach-agent $U6 $sink6
set sink7 [new Agent/Null] ;
$ns attach-agent $U7 $sink7

attaching the sinks to the agents
$ns connect $rtp0 $sink4
$ns connect $udp1 $sink5
$ns connect $udp2 $sink6
$ns connect $udp3 $sink7
$ns connect $rtp1 $sink0
$ns connect $udp5 $sink1
$ns connect $udp6 $sink2
$ns connect $udp7 $sink3

#setting up the time for when the simulation start and when certain background traffics turn on
and off and when the users begin to speak

$ns at 0.0 "$vbr1 start"
$ns at 0.0 "$vbr2 start"
$ns at 0.0 "$cbr1 start"
$ns at 0.0 "$cbr4 start"
$ns at 20.0 "$cbr1 stop"
$ns at 20.0 "$cbr4 stop"
$ns at 20.0 "$cbr2 start"
$ns at 20.0 "$cbr5 start"
$ns at 40.0 "$cbr5 stop"
$ns at 40.0 "$cbr2 stop"
$ns at 40.0 "$cbr3 start"
$ns at 40.0 "$cbr6 start"
$ns at 55.0 "$cbr6 stop"
$ns at 55.0 "$cbr3 stop"
$ns at 55.0 "$vbr1 stop"
$ns at 55.0 "$vbr2 stop"

$ns at 60.0 "finish"

$ns run

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 29

Appendix B: MATLAB Code
Parsing Script:

function [event, time, from, to, ptype, psize, flow_id, src, dst, seqnum, pid] =
ns2_parse(filename)

%Initialize Variables
event = '';
time = 0;
from = 0;
to = 0;
ptype = '';
psize = 0;
flow_id = 0;
src = 0;
dst = 0;
seqnum = 0;
pid = 0;

fid = fopen(filename, 'r');
tline = fgetl(fid);

while ischar(tline)
s = regexp(tline, ' ', 'split')';

event = [event; s{1}];
time = [time; str2double(s{2})];
from = [from; str2double(s{3})];
to = [to; str2double(s{4})];
ptype = [ptype; s{5}];
psize = [psize; str2double(s{6})];
flow_id = [flow_id; str2double(s{8})];
src = [src; str2double(s{9})];
dst = [dst; str2double(s{10})];
seqnum = [seqnum; str2double(s{11})];
pid = [pid; str2double(s{12})];

tline = fgetl(fid);
end

i = size(time,1);
%Remove the first entries to get rid of the initialized values (only
%necessary for non-character arrays)
time = time(2:i);
from = from(2:i);
to = to(2:i);
psize = psize(2:i);
flow_id = flow_id(2:i);
src = src(2:i);
dst = dst(2:i);
seqnum = seqnum(2:i);
pid = pid(2:i);

fclose(fid);

end

Measure and Plot Script:
%% HOW TO USE
% This plotting script script has been broken apart into segments denoted by the
% "%%" symbols. It is only necessary to parse the data from a trace file

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 30

% ONCE. Afterwards, each measurement can be done independently by right
% clicking on the segment of code and "Evaluate Current Cell" (or Ctrl+Enter).
% Before parsing, it is ideal to filter the data in the trace file to
% remove any unnecessary backgrouhd traffic source data is removed. This
% can be done simply as shown below:
% awk '$8==1 || $8==2' out.tr > out.txt
% In the above example, only data pertaining to packets with flow IDs 1 and
% 2 is preserved.

%% Parse File
[event, time, from, to, ptype, psize, fid, src, dst, seqnum, pid] = ns2_parse('TCP.txt');

%% Measure Throughput
%Measure throughput using the following formula:
%bytes_rec*8 / int*1e3
%Where "int" is the time interval and "bytes_rec" is the total amount
%of bytes received during the time interval.

%---------------------- USER SPECIFICATION ------------------------------
int = 1; %time interval in seconds

%Flow ID: If measuring traffic from Node 0 --> Node 4 then pick 1.
% If measuring traffic from Node 4 --> Node 0 then pick 2.
flow_id = 2;
%--

i1 = 1;
j = 1;

if (flow_id == 1)
Rx = [9 4];

elseif (flow_id == 2)
Rx = [8 0];

end

%Measurement specific variables
bytes_rec = 0;

while (max(time) > int*j)
%Find indices for the specified time interval
%NOTE: i1 and i2 refer to indices corresponding to the beginning and
%end of a time interval, respectively
i2 = find(time >= int*j, 1, 'first');

for i = i1:i2
if (event(i) == 'r' && from(i) == Rx(1) && ...

to(i) == Rx(2) && fid(i) == flow_id)
bytes_rec = psize(i) + bytes_rec;

end
end

%Perform Calculation and keep track of the time
if (i1 == 1)

throughput = (bytes_rec*8)/(int*1e3);
t = time(i2);

else
throughput = [throughput, (bytes_rec*8)/(int*1e3)];
t = [t time(i2)];

end

%Reinitialize variable
bytes_rec = 0;

%Update counter and previous time
i1 = i2 + 1;
j = j + 1;

end

plot(t, throughput)

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 31

xlabel('Time (s)')
ylabel('Throughput (kbit/s)')
if (flow_id == 1)

title('RTP: Node 0 --> Node 4 Throughput');
elseif (flow_id == 2)

title('RTP: Node 4 --> Node 0 Throughput');
end

%% Measure Packet Loss
%Measures lost packets as they travel between two specified nodes. Lost
%packets are measured both by time interval and cumulatively.

%---------------------- USER SPECIFICATION ------------------------------
int = 1; %time interval in seconds

%Flow ID: If measuring traffic from Node 0 --> Node 4 then pick 1.
% If measuring traffic from Node 4 --> Node 0 then pick 2.
flow_id = 2;
%--

i1 = 1;
j = 1;

%Measurement specific variables
lost = 0;

while (max(time) > int*j)
%Find indices for the specified time interval
%NOTE: i1 and i2 refer to indices corresponding to the beginning and
%end of a time interval, respectively
i2 = find(time >= int*j, 1, 'first');

for i = i1:i2
if (event(i) == 'd' && fid(i) == flow_id)

lost = lost + 1;
end

end

%Perform Calculation and keep track of the time
if (i1 == 1)

lost_p = lost;
lost_p_total = lost;
t = time(i2);

else
lost_p = [lost_p lost];
lost_p_total = [lost_p_total sum(lost_p)];
t = [t time(i2)];

end

%Reinitialize variable
lost = 0;

%Update counter and previous time
i1 = i2 + 1;
j = j + 1;

end

subplot(1,2,1); plot(t,lost_p);
%subplot(1,2,1); title('Instantaneous Packet Loss');
if (flow_id == 1)

subplot(1,2,1); title('RTP: Node 0 --> Node 4 Instantaneous Packet Loss');
elseif (flow_id == 2)

subplot(1,2,1); title('RTP: Node 4 --> Node 0 Instantaneous Packet Loss');
end
subplot(1,2,1); xlabel('Time (s)')
subplot(1,2,1); ylabel('Lost Packets')
subplot(1,2,2); plot(t,lost_p_total, 'r');
%subplot(1,2,2); title('Cumulative Packet Loss');
if (flow_id == 1)

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 32

subplot(1,2,2); title('RTP: Node 0 --> Node 4 Cumulative Packet Loss');
elseif (flow_id == 2)

subplot(1,2,2); title('RTP: Node 4 --> Node 0 Cumulative Packet Loss');
end
subplot(1,2,2); xlabel('Time (s)')
subplot(1,2,2); ylabel('Lost Packets')

%% Measure End-to-End Delay
%The delay is measured by:
%1) Obtaining the time when a packet was created/transmitted
%2) Obtaining the time when the same packet reached its destination
%3) Taking the difference of the two times
%This procedure is performed for all transmitted/received packets within a
%time interval and the resulting differences are averaged.

%---------------------- USER SPECIFICATION ------------------------------
int = 4; %time interval in seconds

%Flow ID: If measuring traffic from Node 0 --> Node 4 then pick 1.
% If measuring traffic from Node 4 --> Node 0 then pick 2.
flow_id = 2;
%--

i1 = 1;
j = 1;

%Measurement specific variables
t1 = 0; %transmission time
t2 = 0; %receiving time
flag = 1; %flag = 1 indicates that packet was transmitted and received within the interval
delay_int = 0; %array that stores the delay of individual packets within an invterval

if (flow_id == 1)
Tx = [0 8];
Rx = [9 4];

elseif (flow_id == 2)
Tx = [4 9];
Rx = [8 0];

end

while (max(time) > int*j)
%Find indices for the specified time interval
%NOTE: i1 and i2 refer to indices corresponding to the beginning and
%end of a time interval, respectively
i2 = find(time >= int*j, 1, 'first');

%Find transmission time
for i = i1:i2

flag = 1;

if (event(i) == '+' && fid(i) == flow_id && from(i) == Tx(1) && to(i) == Tx(2))
t1 = time(i);
packet_id = pid(i);

%Find receiving time
for k = i:i2

if (event(k) == 'r' && fid(k) == flow_id && from(k) == Rx(1) ...
&& to(k) == Rx(2) && pid(k) == packet_id)

t2 = time(k);
delay_int = [delay_int, t2 - t1];
break

end
end

end
end

%Remove first entry of delay_int
delay_int = delay_int(2:size(delay_int,2));

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 33

%Perform Calculation and keep track of the time
if (i1 == 1)

delay = mean(delay_int);
t = time(i2);

else
delay = [delay mean(delay_int)];
t = [t time(i2)];

end

%Reinitialize variable
delay_int = 0;

%Update counter and previous time
i1 = i2 + 1;
j = j + 1;

end

plot(t, delay);
xlabel('Time (s)')
ylabel('Delay (s)')
if (flow_id == 1)

title('RTP: Node 0 --> Node 4 End-to-End Delay');
elseif (flow_id == 2)

title('RTP: Node 4 --> Node 0 End-to-End Delay');
end

%% Measure Jitter
%The end-to-end delay is measured as in the previous section for all
%packets within a time interval. The absolute value of the difference in
%delay between the ith and i+1th received packet is found for all packets
%within the interval and the result is averaged to determine jitter.

%---------------------- USER SPECIFICATION ------------------------------
int = 4; %time interval in seconds

%Flow ID: If measuring traffic from Node 0 --> Node 4 then pick 1.
% If measuring traffic from Node 4 --> Node 0 then pick 2.
flow_id = 2;
%--

i1 = 1;
j = 1;

%Measurement specific variables
t1 = 0; %transmission time
t2 = 0; %receiving time
flag = 1; %flag = 1 indicates that packet was transmitted and received within the interval
delay_int = 0; %array that stores the delay of individual packets within an invterval

if (flow_id == 1)
Tx = [0 8];
Rx = [9 4];

elseif (flow_id == 2)
Tx = [4 9];
Rx = [8 0];

end

while (max(time) > int*j)
%Find indices for the specified time interval
%NOTE: i1 and i2 refer to indices corresponding to the beginning and
%end of a time interval, respectively
i2 = find(time >= int*j, 1, 'first');

%Find transmission time
for i = i1:i2

flag = 1;

if (event(i) == '+' && fid(i) == flow_id && from(i) == Tx(1) && to(i) == Tx(2))

VoIP in NS2 Simulation
Connecting the world

one node at a time

Page: 34

t1 = time(i);
packet_id = pid(i);

%Find receiving time
for k = i:i2

if (event(k) == 'r' && fid(k) == flow_id && from(k) == Rx(1) ...
&& to(k) == Rx(2) && pid(k) == packet_id)

t2 = time(k);
delay_int = [delay_int, t2 - t1];
break

end
end

end
end

%Remove first entry of delay_int
delay_int = delay_int(2:size(delay_int,2));

%Perform Calculation and keep track of the time
if (i1 == 1)

%delay = mean(delay_int);
jitter = mean(abs(diff(delay_int)));
t = time(i2);

else

