

1

ENSC427
Communication Network

BitTorrent Protocol:

Priority Evaluation

Team 7

Charanpreet Parmar – csp6_at_sfu.ca

Feifan Jiang – feifanj_at_sfu.ca

Izaak Lee – igl_at_sfu.ca

http://www.sfu.ca/~csp6/

S i m o n F r a s e r U n i v e r s i t y

8 8 8 8 U n i v e r s i t y D r i v e
B u r n a b y , B C
V 5 A 1 S 6

http://www.sfu.ca/~csp6/

i

TABLE OF CONTENTS

List of Figures ... iii

List of Tables ... iv

Abstract ... 1

Introduction ... 1

Main Section .. 2

BitTorrent .. 2

Seeder ... 2

Peers and leechers ... 2

Tracker ... 3

File Transfer .. 3

BitTorrent File Structure .. 4

Protocol ... 4

Tit-for-Tat Strategy .. 5

Discussion ... 5

Problem: Tracker .. 6

Implementation ... 6

Data ... 7

Conclusion ... 12

Future Work .. 12

Works Cited .. 13

Appendix ... 14

Definition ... 14

Uploading .. 14

Downloading .. 14

Handshake .. 14

Random First Piece and Rarest First Piece ... 14

Super Seeding .. 15

Choking Algorithm/ Interested mechanism ... 15

Code Description .. 16

Files .. 16

Function Description ... 16

Flow Chart: BitTorrent Upper Level ... 18

ii

Flow chart: RECV Function ... 19

Flow chart: Peers ... 20

Flow charts: Seeds .. 21

Code Listing.. 22

Log File ... 31

5 clients: 1 seed, 5 peers .. 31

5 clients: 3 seeds, 5 peers .. 32

10 clients: 1 seeds, 10 peers ... 33

10 clients: 5 seeds, 10 peers ... 35

iii

LIST OF FIGURES

Figure 1 - Traffic Usage in North America over last 3 years .. 1

Figure 2- A Figure of a swarm with seeder with complete file ... 2

Figure 3- peers obtain files and share file to other peers in the swarm ... 3

Figure 4 - Tracker acts like a circuit switch between peers .. 3

Figure 5- graphical demonstration of p2p file sharing .. 5

Figure 6 - A simulation in NS2 of 1 seed, 4 peers ... 7

Figure 7 - node 8 - left: totaly download speed. right: upload speed from other nodes. 9

Figure 8 - Node 8 - Left: Top uploading speed. Right: Amount uploaded to individual nodes. 9

Figure 9 – Node 8 – Left: Total Download Speed. Right: Download Speed from other Nodes 10

Figure 10 – Node 8 – Left: Top Uploading Speed. Right: Amount Uploaded to Individual Nodes 11

Figure 11 - demonstration of 3 way handshaking in Bittorrent .. 14

Figure 12 - The Upper level script which is responsible for calling functions to create all the nodes
and links .. 18

Figure 13 - Recv Function .. 19

Figure 14 - Peers .. 20

Figure 15 - Seeds .. 21

iv

LIST OF TABLES

Table 1- Paramater in a .torrent file .. 4

Table 2 - seeder and peer parameters .. 7

Table 3 - Log statistics of 5 seed, 10 peers. No priority ... 8

Table 4 - log statstics: 5 seeds, 10 peers. 1 second priority ... 8

Table 5- Log Statistics: 5 seeds, 10 peers. 5 second priority. .. 10

Table 6 – Log Statistics: 5 Seeds, 10 Peers. 10 Second Priority .. 11

Table 7 - File Description ... 16

Table 8 - Function Description ... 16

Table 9 - 5 Peers, 1 Seed - No Priority .. 31

Table 10 - 5 Peers, 1 Seed - Priority 1 Second ... 31

Table 11 - 5 Peers, 1 Seed - Priority 5 Seconds ... 31

Table 12 - 5 Peers, 1 Seed - Priority 10 Seconds .. 32

Table 13 - 5 Peers, 3 Seeds - No Priority .. 32

Table 14 - 5 Peers, 3 Seeds - Priority 1 Second ... 32

Table 15 - 5 Peers, 3 Seeds - Priority 5 Seconds ... 32

Table 16 - 5 Peers, 3 Seeds - Priority 10 Seconds .. 33

Table 17 - 10 Peers, 1 Seed - No Priority ... 33

Table 18 - 10 Peers, 1 Seed - Priority 1 Second .. 33

Table 19 - 10 Peers, 1 Seed - Priority 5 Seconds .. 34

Table 20 - 10 Peers, 1 Seed - Priority 10 Seconds .. 34

Table 21 - 10 Peers, 5 Seeds - No Priority ... 35

Table 22 - 10 Peers, 5 Seeds - Priority 1 Second .. 35

Table 23 - 10 Peers, 5 Seeds - 5 Seconds ... 36

Table 24 - 10 Peers, 5 Seeds - Priority 10 Seconds .. 36

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

1

ABSTRACT

Peer-to-peer file sharing is one of the biggest consumers of bandwidth in the Internet. BitTorrent is
one of the most used file sharing protocols and thus, we will examine its effectiveness. Using ns2 as
our simulator, we can examine the protocol in more depth. The key to the BitTorrent protocol
operation is established via a TCP connection between the peers, and seeds in the swarm. The more
clients in the swarm, the faster file transfer may occur. However, some users choose to limit their
sharing ratio, hurting the health of the swarm. Using ns2 we will examine priority sharing in a
swarm where good sharing ratio users get priority in downloading in hopes to allow the swarm as a
whole to finish downloading sooner.

INTRODUCTION

Peer-to-peer (P2P) network is extremely common on the internet today. A specific protocol used
for P2P networking is the BitTorrent. Up to 18% of internet traffic revolving around Peer-to-peer
file sharing uses the BitTorrent protocol in North America.

FIGURE 1 - TRAFFIC USAGE IN NORTH AMERICA OVER LAST 3 YEARS

Our report will break down the BitTorrent protocol and focus on interaction of the seeders and
peers in the swarm. By gaining a deeper understanding of how peers share data with one another,
we can implement a different protocol in hopes to improve the speed of the swarm. In particular we
will be looking at the interaction between seeds and multiple peers, to see if prioritizing certain
peers will improve the overall system.

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

2

MAIN SECTION

BITTORRENT

BitTorrent classifies its users with different names: seeds, peers and leechers, and the tracker. The
two different users and the tracker combined form what BitTorrent refer to as the ‘swarm’. Let us
first understand the responsibility of each of these users.

SEEDER

A seeder is a user who has 100% of the data. A seeders job is to send out data to those who are
missing it. If any users have collected 100% of the data, it will automatically become the seeder. The
seeder will try its best to maximize the efficiency of the network by imploring certain protocols
such as Rarest First Pieces of Super Seeding.

FIGURE 2- A FIGURE OF A SWARM WITH SEEDER WITH COMPLETE FILE

PEERS AND LEECHERS

Peers are the users who do not have 100% of the data. Peers will upload and download data. This is
how a peer-to-peer network is created. Generally, the more peers in a network, the better, however,
certain users are reluctant to share their data and only take from the network. These users are
referred to as leechers. A high number of leechers in a swarm cause a negative effect.

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

3

FIGURE 3- PEERS OBTAIN FILES AND SHARE FILE TO OTHER PEERS IN THE SWARM

TRACKER

The tracker is not a user. It is a server which keeps track of all the seeders and peers in the swarm,
like an address book. Peers report to the tracker periodically to receive information from other
peers and seeders. The tracker is no involved in the transferring of data directly; it does not have
any data.

FIGURE 4 - TRACKER ACTS LIKE A CIRCUIT SWITCH BETWEEN PEERS

FILE TRANSFER

BitTorrent does not transfer files as a whole, but in parts. These parts are referred to as “pieces”. A
file is broken into many pieces and is transferred from amongst peers. By using this technique,
BitTorrent is extremely efficient at transferring large files. The amount of pieces a file is broken up
to depends on the creator. To begin, a user creates a file called a .torrent file and places this file on
the server. This file contains numerous amounts of information about the file.

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

4

BITTORRENT FILE STRUCTURE

When a peer requests for the file, only part of it is sent at a time. The created .torrent file contains
information about the parts and size of each piece. The .torrent files stores metadata with specific
parameters:

TABLE 1- PARAMATER IN A .TORRENT FILE

Parameters
Definition

Announce Determines the URL of the tracker

Info
Maps the files to a directory specified by user so
that BitTorrent knows where to send data to and
from

Name Directory where the file is saved

Piece length Number of bytes per piece

Pieces A hash list

Length Size of entire file (bytes)

Files Request data

The selection on the number of pieces and piece length is important. These parameters can result in
faster or slower downloads for other peers. A user who creates this .torrent file, will become the
first seeder of the network.

PROTOCOL

Now that we have defined and understood the filing system BitTorrent implements, we can begin to
understand the protocol. To begin, a seeder creates a .torrent file and places the file on the World
Wide Web or a server. A client seeking to obtain a file finds the torrent file on the server. The client
who is interested in the file will download the .torrent file and connect to the server and register
itself with the tracker.

The peer begins by asking for the first piece of data and the tracker will redirect this message to an
available user in the network. In this case a seeder will respond and begin data transferring. If more
peers enter the network, the seeder may start uploading to others and the peer may do the same
thing. At any moment, if any of the peers obtain 100% of the file, they become seeders and continue
to help the swarm, assuming they are not leechers as leecher usually leave the swarm immediately
after it has obtained the file.

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

5

FIGURE 5- GRAPHICAL DEMONSTRATION OF P2P FILE SHARING

Once a peer completes the download of the piece and checks that the hash table matches, it will
announce to the swarm that it has obtained the piece. The user will then begin to upload the piece
to other users who need it. The peers will continue repeating this process and obtaining pieces
needed to complete the file.

TIT-FOR-TAT STRATEGY

We note that the peers will automatically begin to upload to other peers. If they do not, then other
clients will refuse to let him download. This is known as the Tit-for-Tat Strategy. Tit-for-Tat is one
of the important principles in BitTorrent Protocol. The strategy is implemented through choking
algorithm. The basic idea is to have peers upload pieces that another doesn’t have thus exchanging
these types of pieces – hence the name tit-for-tat. The method can enable the peers who have
higher upload speed have higher likelihood for faster download time. Thus, the Tit-for-Tat strategy
aims to improve the efficiency of distributing data.

DISCUSSION

We will be using ns-2.29 for our simulations. A BitTorrent like simulation is written by Kolja Edger.
He quotes “BitTorrent like” because it does not completely implements a specific version of
BitTorrent. This code aims at assessing the difference between a full simulation of network layers
and simplified simulation on the application layer. Thus some functionality was simplified and
others were not implemented.

When looking at the BitTorrent protocol, we can see that seeders choose to upload to peers who
have high download speeds. By doing this, the protocol ensures helps ensure at least one file is
floating in the network. In addition, by uploading to peers with higher download, those peers can
help seed. However, most users leech and do not remain in the network after completion. When this
occurs, it will slow down the download speed of other users who upload more.

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

6

To combat this, we look at the possibilities of having the seeder upload to those who upload fastest
as opposed to those who download fast. The higher the upload speed, the faster other peers can
receive pieces of the file. Therefore, we wish for these clients to receive files faster. If they become
the seeders, the entire swarm benefits from their high sharing ratio.

PROBLEM: TRACKER

The easiest way to accomplish this is by looking at the tracker. The tracker will have all the
information of all peers and seeds. However, the ns2 simulation is missing some functionalities and
one such function is the tracker. Instead, the tracker is implemented in each node. So there is no
stand-alone entity.

Because of this implementation by Kolja Edger, the changes needed to be made became difficult.
Instead, we simulated a situation where those who upload faster start in the network earlier. By
doing this, those who upload quickly will have the benefit of getting files first. Since the high
uploaders receive the file first, the new peers entering the swarm will benefit from their high
upload rate. Overall, by doing this we should see an improvement on the overall swarms download
time.

In reality, this sort of implementation would involve the tracker having a long term average of each
peers upload and downloads rate and would mean having a more calculation heavy tracker.
Realistically, this would most likely only be possible on smaller private trackers rather than on
larger public ones due to added complexity. Many private trackers already having similar systems
in place where different user classes, typically divided based on their sharing ratio, get access to
torrents after a certain time period after their initial release.

IMPLEMENTATION

What we are interested in seeing is the overall quality of the swarm. We want to observe the time it
takes all peers to download a single file. One swarm will have the original coding where peers with
highest download rate get priority from the seeder, and on the other hand the other swarm will use
the code we edited.

In our code, we will implement a timing which determines which peer enters the network first. The
peer which enters the network first will be those who have highest upload rates. This is to simulate
the priority given to peers with higher upload rates. The next fastest peers will have priority and
will be enter the swarm at an even interval of 1, 5, or 10 seconds. This will continue until all the
peers have entered the network.

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

7

FIGURE 6 - A SIMULATION IN NS2 OF 1 SEED, 4 PEERS

By doing this, those who have highest upload rates will be allowed in first and they will download
first.

DATA

We first begin with a base line test. This test will be simulated with a client size of 10. In the swarm,
there will be 5 seeders and 10 peers. The seeders will be uploading at a rate of 0.5 MB/s. One of the
peers that is downloading will be uploading at 1.0 MB/s and while others are at 0.5 MB/s. In
addition, the download rate of all peers is set constant at 1.0 MB/s.

TABLE 2 - SEEDER AND PEER PARAMETERS

 Upload Speed (MB/s) Download Speed (MB/s)

Seeder 0.5 N/A
Peers 1.0 or 0.5 1.0

We begin the first simulation and allow all the peers to join at once. With this, the peers who have
the highest download rate will have priority and begin downloading first. With this, we have the log
file.

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

8

TABLE 3 - LOG STATISTICS OF 5 SEED, 10 PEERS. NO PRIORITY

ID Start_time first_chunk_time download_finished stop_time download_finished -
start time

1 0 0 -1 118.708 -1

2 0 0 -1 118.708 -1

3 0 0 -1 118.708 -1

4 0 0 -1 118.708 -1

5 0 0 -1 118.708 -1

6 0 5.93705 114.619 118.708 114.619

7 0 15.6919 118.071 118.708 118.071

8 0 26.4805 115.687 118.708 115.687

9 0 23.8726 118.708 118.708 118.708

10 0 25.4215 116.26 118.708 116.26

From the table, we can see that the start time of all peers are the same. The script ignores who has
the fastest uploading speeds. As a result, the total time it took for all the peers to attain the file took
a total of 118.708 seconds simulation time.

Now we can look at the upload priority. The script is set such that those who have the highest
uploaded speed enter the network first. By doing this, that specific peer will be downloading first
regardless of its download rate. We can see this in the table below.

TABLE 4 - LOG STATSTICS: 5 SEEDS, 10 PEERS. 1 SECOND PRIORITY

ID Start_time first_chunk_time download_finished stop_time download_finished -
start time

1 0 0 -1 112.33 -1

2 0 0 -1 112.33 -1

3 0 0 -1 112.33 -1

4 0 0 -1 112.33 -1

5 0 0 -1 112.33 -1

6 1 13.2152 112.33 112.33 111.33

7 1 7.93149 111.994 112.33 110.994

8 0 3.69505 110.626 112.33 110.626

9 1 24.7416 111.535 112.33 110.535

10 1 17.4676 111.307 112.33 110.307

In this case, the other peers start 1 second later than peer 8. With that, the total time it took for
every peer to get the file decreased. If we graph the flow level of the packets, we can examine the
amount of data being transferred and between nodes and seeds. We will first examine node 8 which
is the first to receive pieces from seeds.

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

9

FIGURE 7 - NODE 8 - LEFT: TOTALY DOWNLOAD SPEED. RIGHT: UPLOAD SPEED FROM OTHER NODES.

We can see from this graph, that the total download speed for node 8 is immediate from time 0.
Next we look at the upload of node 8.

FIGURE 8 - NODE 8 - LEFT: TOP UPLOADING SPEED. RIGHT: AMOUNT UPLOADED TO INDIVIDUAL NODES.

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

10

We can see that the peer does not begin to upload until time = 1. This is correct since node 8 has no
peers to share with until time =1. We continue testing with other start times and yield the following
results.

TABLE 5- LOG STATISTICS: 5 SEEDS, 10 PEERS. 5 SECOND PRIORITY.

ID Start_time first_chunk_time download_finished stop_time download_finished -
start time

1 0 0 -1 111.765 -1

2 0 0 -1 111.765 -1

3 0 0 -1 111.765 -1

4 0 0 -1 111.765 -1

5 0 0 -1 111.765 -1

6 5 10.8781 108.697 111.765 103.697

7 5 21.4159 110.345 111.765 105.345

8 0 6.88248 105.088 111.765 105.088

9 5 24.8195 111.765 111.765 106.765

10 5 20.5582 109.527 111.765 104.527

Again with this, we can see that the overall system improved. The graphs are relatively the same as
the previous simulation except the peers join the swarm at timer = 5 seconds. This resulted in a
slight improvement once again.

FIGURE 9 – NODE 8 – LEFT: TOTAL DOWNLOAD SPEED. RIGHT: DOWNLOAD SPEED FROM OTHER NODES

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

11

FIGURE 10 – NODE 8 – LEFT: TOP UPLOADING SPEED. RIGHT: AMOUNT UPLOADED TO INDIVIDUAL NODES

Lastly, we test the system with a 10 second delay for other peers.

TABLE 6 – LOG STATISTICS: 5 SEEDS, 10 PEERS. 10 SECOND PRIORITY

ID Start_time first_chunk_time download_finished stop_time download_finished -
start time

1 0 0 -1 118.203 -1

2 0 0 -1 118.203 -1

3 0 0 -1 118.203 -1

4 0 0 -1 118.203 -1

5 0 0 -1 118.203 -1

6 10 15.5714 116.189 118.203 106.189

7 10 19.7144 118.203 118.203 108.203

8 0 6.90978 116.741 118.203 116.741

9 10 14.3465 117.786 118.203 107.786

10 10 28.8848 115.676 118.203 105.676

In this simulation, this total time is only slightly below the base line test. This could be the result of
the other peers joining too late. The seeds spend a lot of time on the single node in the swarm, node
8 can only upload 1mb/s and no more. If the seeds spend too long on a single peer then they waste
their multitasking capabilities. Node 8 can only upload 1mb/s and no more.

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

12

CONCLUSION

From the simulations, we can see that a swarm can benefit from using upload priority instead of
download priority. However, we notice that if seeds spend too much time on small number of
individuals, it can have a reverse effect on the swarm.

FUTURE WORK

From our work, we can see that there is a slight improvement in the overall network. However, our
implementation is a static network where no one leaves or enters after the nodes are all started, as
in there are no leechers, the tracker already has knowledge of each peers potential bandwidth. This
clearly would never occur in a real network. In order for us to further investigate this priority
protocol, we need a complete implementation of the BitTorrent protocol on ns2. A complete
BitTorrent protocol will include the tracker which will contain information about peers. This will
significantly help in terms of priority implementation.

Currently, our priority implementation allows peers who have high upload speeds to enter the
network first. However, once other peers join, the seeds give them priority because of their
download speeds. Our algorithm forces the seeders to only upload to the good peers. In the future,
seeders need to give peers with greater upload speed priority automatically. Until then, the system
is not truly autonomous.

In addition, we have run a small sample size and yielded mostly positive result. However, we need
to continue to scale upwards to more realistic numbers to obtain a better understanding of the
swarm. With our results, we hope others, with greater coding ability than us, can look into upload
priority in BitTorrent and further improve the algorithm.

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

13

WORKS CITED

[1] B. Cohen, "BitTorrent," 10 1 2008. [Online]. Available:
http://www.bittorrent.org/beps/bep_0003.html. [Accessed 1 3 2012].

[2] D. Schoder, K. Fischbach and C. Schmitt, "Core Concepts in peer to peer networking," University
Cologne, Germany, 2005.

[3] K. Aberer, "Distributed Data Management Peer-to-Peer System," 2006.

[4] R. Steunmetz and K. Wehrle, "Peer-to-peer Systems," 2005.

[5] J. E. Berkes, "Descentralized Peer-to-Peer Network ArchitectureL Gnutella and Freenet,"
Winnipeg, 2003.

[6] J. Chung and M. Claypool, "NS By Example," Worcester polytechic institue, [Online]. Available:
nile.wpi.edu/NS/. [Accessed 03 04 2012].

[7] M. M. Sasan Hezarkhani, "Analysis of Live Video Streaming Over Bittorrent Peer-to-Peer
Protocol," Simon Fraser University, Vancouver, 2011.

[8] "Liberty Voice," 26 october 2010. [Online]. Available: http://www.libertyvoice.net/2010-
10/bittorrent-still-dominates-global-internet-traffic/.

[9] A. Leon-garcia and I. Widjaja, Communication Networks: Fundamental Concepts and Key
Architecture, New York: New York: Elizabeth A. Johns, 2004.

[10] D. Erman, D. Ilie and A. Popescu, "BitTorrent Session Characteristcs and Models".

[11] L. A., "Rarest First and Choke Algorithm are Enough".

[12] A. R. Bharambe and C. Herley, "Analyzing and Improving BitTorrent Performance".

[13] M. Baker and R. Lakhoo, "Peer-to-Peer Simulator".

[14] E. Ayele, "Analysis and deployment of the BitTorrent protocol for community Ad-hol Network".

[15] K. Eger, "BitTorrent in ns-2," 11 January 2012. [Online]. Available:
https://sites.google.com/site/koljaeger/bittorrent-simulation-in-ns-2. [Accessed 3 April
2012].

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

14

APPENDIX

DEFINITION

UPLOADING

defined as sending data from a local system to a remote system.

DOWNLOADING

defined as receiving data from a remote system.

HANDSHAKE

Handshake includes peer id and info field hash. During the handshake process, peers send the
information of the pieces of data they are processing to each other. Peers send a 20 byte SHA1 hash
of the encoded info value from the metainfo and a 20 byte peer id. If the peer id or harsh value does
not match the one expected, the connection is close.

FIGURE 11 - DEMONSTRATION OF 3 WAY HANDSHAKING IN BITTORRENT

RANDOM FIRST PIECE AND RAREST FIRST PIECE

In BitTorrent Protocol, pieces of data are requested followed by the principles of random first piece
and rarest first piece. In most case scenarios of Peer-to-Peer network, tracker will find the minimal
occurrence piece and set that piece to a high value, which is rarest first piece. For the cases that
rarest first piece doesn’t fit, peer will request a random piece i.e. random first piece.

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

15

SUPER SEEDING

In the case of super seeding, a seeder masquerades itself as peer, and as peers enter the swarm. The
masqueraded seed will announce to new peer it has a piece he is willing to give them. This piece of
the file will be a piece which does not exist in the swarm. The seeder will continue to masquerade
itself and continue delivering non-existing pieces until all pieces of the file exist in the swarm. Once
this is accomplished, the seeder will act as a normal seeder once again. By doing this, it protects the
swarm from dying.

CHOKING ALGORITHM/ INTERESTED MECHANISM

Choke/unchoke and interested/not interested are responsible for the fairness in BitTorrent
Protocol. Choked peers are not allowed to download data from the one who enable the choke
algorithm on peers. The choked peers will be enabled to upload and download until the peers go
back to the unchoke state. Interested/not interested provide peers information about who are
holding the peers’ missing pieces of data.

The choking algorithm and interested mechanism cooperate to give peers certain priority that in
general punishes the peers who share less resource. However, we cannot compare the algorithm
benefits the peers share the most and the one share moderately. This consideration becomes our
motivation to simulate 4 different tests to find out some interested data for the peers with
outstanding upload speed.

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

16

CODE DESCRIPTION

FILES

A list of files use to create our simulation.

TABLE 7 - FILE DESCRIPTION

Name Description

BitTorrent.tcl

Contains the number of seeds and peers to be generated. Sets the
start time of peers, allowing those who upload fastest to have
priority.

BitTorrent_app.cc

Contains the Constructor and destructor of nodes. Algorithm for
handshakes, creating messages, choking, super seeding, receiving
and sending messages.

BitTorrent_app_flowlevel.cc
Creates channels between peers and checks channel. Also
responsible for checking choking and handle requests.

BitTorrent_connections.cc

Generates TCP agent and blinds to application node. Stores all
connection ID and destination IDs.

BitTorrent_data.cc
Creates all packet and header lengths.

BitTorrent_tracker.cc

A simple tracker which keep tracks of file size and chunk size. Also
responsible for deleting and adding peers to list.

BitTorrent_tracker_flowlevel.cc
Responsible for keeping track of rarest piece in network. Also keeps
track of peer list.

FUNCTION DESCRIPTION

There are many functions in this program. We will be naming a few of the important ones.

TABLE 8 - FUNCTION DESCRIPTION

Function name Description

Fully_meshed2
Links the nodes to with a TCP connection and sets them with a
specific upload and download speed.

Priority_tracker

Determines and set the starting time of nodes depending on their
upload speeds. This is used to set priority for those who have high
upload speeds.

BitTorrentApp
Constructs the nodes to be either seeds or peers.

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

17

Tracker_request
Gets ID from tracker and checks connections.

get_ids_from_tracker
Send out list of id from tracker, if peer ID not in set, add.

Check_connections
Checks connections otherwise timeout.

make_new_peer_list_entry
Post all information about itself to tracker and adds it to the peer
list.

Connect

Builds TCP agents on both the source side and destination side. Also
calls upon connect_step_2 and connect_step_3

RECV

Handles the connection of agents and handles all situations of
messages received.

Handle_recv_msg
If messages are at least one message size or greater, this function
will handle the received message.

Check_interest
See which peers are interested.

Check_connections
Check connections between all peers.

Check_choking
Checks choking and updates the peer list.

Make_request
Function makes a request to peers and seeds for file.

Chunk_complete

Function disconnects peers from others and makes himself a seeder
before rejoining the swarm.

Handle_handshake
This function will handle the 3 way handshake.

BitTorrentAppFlowlevel
Sets the download, chunk and request of the pieces needed.

BitTorrentConnection
Sets all the destination and source addresses between peers and is
responsible for closing connections.

BitTorrentData
Determines the size of all data.

BitTorrentTracker
Contains the information about file size and piece size.

Reg_peer
Register peer for the tracker.

Del_peer
Deletes peer from the tracker.

Return_rarest_chunk Returns the rarest piece existing in the network.

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

18

FLOW CHART: BITTORRENT UPPER LEVEL

FIGURE 12 - THE UPPER LEVEL SCRIPT WHICH IS RESPONSIBLE FOR CALLING FUNCTIONS TO CREATE ALL
THE NODES AND LINKS

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

19

FLOW CHART: RECV FUNCTION

FIGURE 13 - RECV FUNCTION

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

20

Flow chart: Peers

FIGURE 14 - PEERS

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

21

FLOW CHARTS: SEEDS

FIGURE 15 - SEEDS

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

22

CODE LISTING

data.m

%%Open
% Parameters
File = 'bt.tr';
samp_rate = 80;
num_peers = 10;
packets = 1;
upload_rate = 1;
download_rate = 1;
downloaded = 1;
save_fig = 1;
fig_type = 'fig';
% Open File
fID = fopen(File);
%% Reading all Data
indx = 1;
while(~feof(fID))
 event(indx) = {fscanf(fID, '%s', 1)};
 time(indx) = {fscanf(fID, '%s', 1)};
 node_from(indx) = {fscanf(fID, '%s', 1)};
 node_to(indx) = {fscanf(fID, '%s', 1)};
 packet_type(indx) = {fscanf(fID, '%s', 1)};
 packet_size(indx) = {fscanf(fID, '%s', 1)};
 flags(indx) = {fscanf(fID, '%s', 1)};
 fid(indx) = {fscanf(fID, '%s', 1)};
 src_addr(indx) = {fscanf(fID, '%s', 1)};
 dest_addr(indx) = {fscanf(fID, '%s', 1)};
 seq_num(indx) = {fscanf(fID, '%s', 1)};
 pkt_id(indx) = {fscanf(fID, '%s', 1)};
 indx = indx + 1;
end
%%
fclose(fID);
%%Extract Received bits only (ingnore queue and enqueue since they get
%%received eventually)
j = 1;
for i = 1:indx-1
 if cell2mat(event(i)) == 'r'
 time_r(j) = str2double(cell2mat(time(i)));

bits_r(j,floor(str2double(cell2mat(dest_addr(i)))),floor(str2double(cell2mat(

src_addr(i))))) = str2double(cell2mat(packet_size(i)));
 j = j + 1;
 end
end
clear indx
%%
%plot(time_r, bits_r(:,peer it's to, peer it's from))
%num_peers = 10;%max(floor(str2num(cell2mat(transpose(unique(dest_addr))))));
for i = 1:num_peers
 for j = 1:num_peers
 for k = 1:length(bits_r)-samp_rate-1

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

23

 bps(k:k+samp_rate-1,i,j) = (sum(bits_r(1:k+samp_rate-1,j,i)) -

sum(bits_r(1:k,j,i)))/(time_r(k+samp_rate)-time_r(k))/(1024*1024);
 u_bps(k:k+samp_rate-1,i,j) = ((sum(bits_r(1:k+samp_rate,i,j)) -

sum(bits_r(1:k,i,j)))/(time_r(k+samp_rate)-time_r(k)))/(1024*1024);
 end
 end
end
%%
num_plots = packets + upload_rate + download_rate + downloaded;
for i = 1:num_plots:num_plots*num_peers
 sp_x = ceil(sqrt(num_peers));
 sp_y = floor(sqrt(num_peers));
 while(sp_x*sp_y < num_peers)
 sp_y = sp_y + 1;
 end
 node_current = ceil(i/num_plots);
 if downloaded
 h = figure(i + downloaded - 1);
 for j = 1:num_peers
 subplot(sp_y,sp_x,j)
 plot(time_r, cumsum(bits_r(:, j, node_current)))
 title(strcat('To node :', num2str(j), ', From node :',

num2str(node_current)))
 xlabel('Time')
 ylabel('Number of bits')
 grid on
 end
 set(gcf, 'Position', get(0,'Screensize'));
 if save_fig
 saveas(h,strcat('Node',

num2str(node_current),'_downloaded'),fig_type);
 end
 end
 if upload_rate
 h = figure(i + upload_rate + downloaded - 1);
 subplot(1,2,1);
 plot(time_r(1:length(u_bps)),

sum(transpose(u_bps(:,1:end,node_current))),'-k');
 title(strcat('Total Upload speed for node :', num2str(node_current)))
 xlabel('Time')
 ylabel('MB per Second')
 grid on
 subplot(1,2,2);
 plot(time_r(1:length(u_bps)), u_bps(:,1:end,node_current));
 title(strcat('Upload speed for node :', num2str(node_current),' per

node'))
 xlabel('Time')
 grid on
 for k = 1:num_peers
 leg(k) = {num2str(k)};
 end
 legend(leg)
 set(gcf, 'Position', get(0,'Screensize'));
 if save_fig
 saveas(h,strcat('Node',

num2str(node_current),'_upload_rate'),fig_type);
 end

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

24

 end
 if packets
 h = figure(i + upload_rate + downloaded + packets - 1);
 for j = 1:num_peers
 subplot(sp_y,sp_x,j);
 plot(time_r, bits_r(:,j,node_current));
 title(strcat('To node :', num2str(j), ', From node :',

num2str(node_current)))
 xlabel('Time')
 ylabel('Packet size')
 grid on
 end
 set(gcf, 'Position', get(0,'Screensize'));
 if save_fig
 saveas(h,strcat('Node',

num2str(node_current),'_packets'),fig_type);
 end
 end
 if download_rate
 h = figure(i + upload_rate + downloaded + download_rate + packets -

1);
 subplot(1,2,1);
 plot(time_r(1:length(bps)),

sum(transpose(bps(:,1:end,node_current))),'-k');
 title(strcat('Total Download speed for node :',

num2str(node_current)))
 xlabel('Time')
 ylabel('MB per Second')
 grid on
 subplot(1,2,2);
 plot(time_r(1:length(bps)), bps(:,1:end,node_current));
 title(strcat('Download speed for node :', num2str(node_current),' per

node'))
 xlabel('Time')
 grid on
 for k = 1:num_peers
 leg(k) = {num2str(k)};
 end
 legend(leg)
 set(gcf, 'Position', get(0,'Screensize'));
 if save_fig
 saveas(h,strcat('Node',

num2str(node_current),'_download_rate'),fig_type);
 end
 end
end

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

25

bittorrent.tcl

#Total number of Peers
set no_of_peers 10
#Number of peers which are seeds
set no_of_seeds 5
#Seed for Random Number Generator
set s 1
#toggle for Seeder Priority
set priority 0
#time_delay
set time_delay 10.0

#Set Upload speed for all Peers
for {set i 0} {$i < $no_of_peers} {incr i} {
 set C_up($i) [expr 500*1024]
}
#Change Upload speed for select peers
set C_up(7) [expr 1000 * 1024]

#Create a simulator object
set ns [new Simulator]

remove-all-packet-headers
add-packet-header IP TCP Flags

#Use Heap Scheduler
$ns use-scheduler Heap

#set the routing protocol
$ns rtproto Manual

Simulation Parameters:
source /home/charanpreet/ns-allinone-2.29/ns-

2.29/bittorrent/bittorrent_default.tcl

BitTorrentApp set leave_option -1

number of peers
set N_P $no_of_peers

number of seeds
set N_S $no_of_seeds

factor that download capacity is higher than upload capacity
set C_down_fac 8

queue size at access links (default 50)
set Q_access 25

delay
set DelayMin 1
set DelayMax 50

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

26

file size
set S_F_MB 10

set S_F [expr $S_F_MB * 1024.0 *1024]
set S_C [expr 256.0 *1024]
set N_C [format %.0f [expr ceil($S_F / $S_C)]]

set the seed for the RNG (0: non-deterministic, 1 - MAXINT (2147483647))
set rng_seed $s

End of SimulationParameters
set peerCount 0
set FinishedPeers 0

Create Directory For Data
set p2ptrace /home/charanpreet/Dropbox/pub_html/Data/bittorrent_data_
append p2ptrace no_peers_
append p2ptrace $no_of_peers
append p2ptrace _no_seeds_
append p2ptrace $no_of_seeds
append p2ptrace _file_size_
append p2ptrace $S_F_MB
append p2ptrace _priority_
if {$priority == 1} {
 append p2ptrace _enabled_
 append p2ptrace $time_delay
 append p2ptrace _
} else {
 append p2ptrace _disabled_
}
append p2ptrace [clock seconds]

exec mkdir $p2ptrace
puts $p2ptrace

#Create NAM object
set nf [open $p2ptrace/bt.nam w]
#Create Tracefile
set f [open $p2ptrace/bt.tr w]

set p2ptrace2 $p2ptrace

exec cp /home/charanpreet/Dropbox/pub_html/Data/bittorrent.tcl $p2ptrace
exec cp /home/charanpreet/Dropbox/pub_html/Data/data.m $p2ptrace
append p2ptrace /log

#Put all data into NAM
$ns namtrace-all $nf

#Put all data in Trace-File
$ns trace-all $f
set MSS for all FullTCP connections
Agent/TCP/FullTcp set segsize_ 1460
Queue set limit_ $Q_access

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

27

Seed the default RNG
global defaultRNG
$defaultRNG seed $rng_seed

Create Connections
proc fully_meshed2 {no_of_peers} {
 global ns peer router C_up C_down_fac DelayMin DelayMax

 set e2eDelayRng [new RNG]
 set e2eDelay [expr round([$e2eDelayRng uniform $DelayMin $DelayMax])]

 # upstream
 $ns simplex-link $peer($no_of_peers) $router $C_up($no_of_peers) [expr

$e2eDelay]ms DropTail
 # downstream
 $ns simplex-link $router $peer($no_of_peers) [expr 1000*1024] [expr

$e2eDelay]ms DropTail

 # do the routing manually between peer and router
 [$peer($no_of_peers) get-module "Manual"] add-route-to-adj-node -default

[$router id]
 [$router get-module "Manual"] add-route-to-adj-node -default

[$peer($no_of_peers) id]

 [$router get-module "Manual"] add-route [$peer($no_of_peers) id] [[$ns

link $router $peer($no_of_peers)] head]

 [$peer($no_of_peers) get-module "Manual"] add-route [$router id] [[$ns

link $peer($no_of_peers) $router] head]

 return 0
}

proc done {} {
 global app FinishedPeers N_P fh ns nf f p2ptrace2

 incr FinishedPeers

 if {$FinishedPeers == $N_P} {
 for {set i 0} {$i < $N_P} {incr i} {
 $app($i) stop
 }

 close $nf
 close $f

 #Open NAM file
 exec nam $p2ptrace2/bt.nam
 puts [$ns now]
 exit 0
 }
}

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

28

proc priority_tracker {} {
 global no_of_peers no_of_seeds C_up start_time_ time_delay
 #put the upload rate into an array
 for {set i 0} {$i < $no_of_peers} {incr i} {
 set peer_array($i) $C_up($i)
 }
 #sort the upload rate from lowest to highest
 set j 1
 while {$j == 1} {
 set j 0
 for {set k 0} {$k < [expr $no_of_peers-1]} {incr k} {
 if {$peer_array([expr $k+1]) < $peer_array($k)} {
 set temp $peer_array($k)
 set peer_array($k) $peer_array([expr $k+1])
 set peer_array([expr $k+1]) $temp
 set j 1
 }
 }
 }
 #finds all the unique values of C_up
 set index 0
 for {set i 0} {$i < [expr $no_of_peers-1]} {incr i} {
 if {$peer_array($i) != $peer_array([expr $i+1])} {
 set unique_array($index) $peer_array($i)
 incr index
 }
 }
 #set the time such that those with the largest value has start time of 0
 set unique_array($index) $peer_array([expr $no_of_peers-1])
 #set start times
 for {set i 0} {$i <= [expr $no_of_peers-1]} {incr i} {
 for {set k 0} {$k <= $index} {incr k} {
 if {$C_up($i) == $unique_array($k)} {
 set start_time_($i) [expr ($index-$k)*$time_delay]
 }
 }
 }
 #start seeds at 0 sec
 for {set i 0} {$i < $no_of_seeds} {incr i} {
 set start_time_($i) 0
 }
}

create tracker
Parameters: File Size [B], Chunk Size [B]
set go [new BitTorrentTracker $S_F $S_C]
#$go tracefile $p2ptrace

uniform start offset for peers
set t_offset_rng [new RNG]
set t_offset [new RandomVariable/Uniform]
$t_offset set min_ 0
$t_offset set max_ [BitTorrentApp set choking_interval]
$t_offset use-rng $t_offset_rng

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

29

set router [$ns node]
$router shape box
$router color blue
$ns at 0.0 "$router label \"The Internet\""

$ns color 1 Red
$ns color 2 Blue
$ns color 3 Green
$ns color 4 Yellow
$ns color 5 Black
$ns color 6 White
$ns color 7 Purple

#call priority function here
if {$priority == 1} {
 priority_tracker
} else {
 for {set i 0} {$i < $no_of_peers} {incr i} {
 set start_time_($i) 0
 }
}

Create Seeds
for {set i 0} {$i < $N_P} {incr i} {

 # make nodes
 set peer($i) [$ns node]

 # make links
 fully_meshed2 $i

 if {$i < $N_S} {
 set app($peerCount) [new BitTorrentApp 1 $C_up($i) $go $peer($i)]

 $app($peerCount) set super_seeding 0
 $app($peerCount) tracefile $p2ptrace

 # start apps
 $ns at start_time_($i) "$app($peerCount) start"

 $peer($i) color Purple
 $ns at 0.0 "$peer($i) label \"Initial Seed \""

 incr FinishedPeers
 } else {
 set app($peerCount) [new BitTorrentApp 0 $C_up($i) $go $peer($i)]

 $app($peerCount) tracefile $p2ptrace

 # start apps
 $ns at $start_time_($i) "$app($peerCount) start"
 $ns at $start_time_($i) "$peer($i) label \"Peer Entered\""
 }

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

30

 incr peerCount
}

Run the simulation
$ns at 300.0 "done"
$ns run

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

31

LOG FILE

The tables below are the log files of the simulation with various numbers of clients in a P2P network.

The number of clients varies from 5 peers, 1 seed to 10 peers, 1 seed. In addition, different start times

are given to peers. This start times are 1, 5 and 10 seconds. The stop time determines when the entire

network is done downloading the single 10mb file.

5 CLIENTS: 1 SEED, 5 PEERS

TABLE 9 - 5 PEERS, 1 SEED - NO PRIORITY

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 275.509 -1

2 0 13.7683 274.246 275.509 274.246

3 0 4.35738 275.278 275.509 275.278

4 0 7.37525 275.509 275.509 275.509

5 0 17.6091 271.449 275.509 271.449

TABLE 10 - 5 PEERS, 1 SEED - PRIORITY 1 SECOND

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 278.338 -1

2 1 12.7364 278.253 278.338 277.253

3 0 4.36126 273.439 278.338 273.439

4 1 7.37913 277.85 278.338 276.85

5 1 17.6301 278.338 278.338 277.338

TABLE 11 - 5 PEERS, 1 SEED - PRIORITY 5 SECONDS

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 272.126 -1

2 5 15.9239 272.126 272.126 267.126

3 0 4.3501 269.831 272.126 269.831

4 5 8.14901 271.864 272.126 266.864

5 5 20.4804 268.546 272.126 263.546

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

32

TABLE 12 - 5 PEERS, 1 SEED - PRIORITY 10 SECONDS

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 285.027 -1

2 10 17.9019 284.829 285.027 274.829

3 0 4.3501 285.027 285.027 285.027

4 10 12.3914 284.529 285.027 274.529

5 10 22.2047 284.481 285.027 274.481

5 CLIENTS: 3 SEEDS, 5 PEERS

TABLE 13 - 5 PEERS, 3 SEEDS - NO PRIORITY

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 96.783 -1

2 0 0 -1 96.783 -1

3 0 0 -1 96.783 -1

4 0 4.19455 88.0406 96.783 88.0406

5 0 9.77674 96.783 96.783 96.783

TABLE 14 - 5 PEERS, 3 SEEDS - PRIORITY 1 SECOND

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 94.8938 -1

2 0 0 -1 94.8938 -1

3 0 0 -1 94.8938 -1

4 0 4.01362 89.4785 94.8938 89.4785

5 1 7.68209 94.8938 94.8938 93.8938

TABLE 15 - 5 PEERS, 3 SEEDS - PRIORITY 5 SECONDS

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 94.605 -1

2 0 0 -1 94.605 -1

3 0 0 -1 94.605 -1

4 0 4.41018 91.312 94.605 91.312

5 5 9.08417 94.605 94.605 89.605

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

33

TABLE 16 - 5 PEERS, 3 SEEDS - PRIORITY 10 SECONDS

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 98.8685 -1

2 0 0 -1 98.8685 -1

3 0 0 -1 98.8685 -1

4 0 4.41018 89.1565 98.8685 89.1565

5 10 14.1141 98.8685 98.8685 88.8685

10 CLIENTS: 1 SEEDS, 10 PEERS

Note: This Scenario did not seem to run 100% correctly, but we decided to include it in the
appendix anyways since it worked correctly until near the end

TABLE 17 - 10 PEERS, 1 SEED - NO PRIORITY

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 322.429 -1

2 0 22.5803 320.507 322.429 320.507

3 0 4.51673 317.51 322.429 317.51

4 0 9.48959 321.555 322.429 321.555

5 0 24.8698 321.547 322.429 321.547

6 0 12.1187 -1 322.429 -1

7 0 16.9306 321.656 322.429 321.656

8 0 29.1623 322.429 322.429 322.429

9 0 27.1566 322.353 322.429 322.353

10 0 26.5542 315.151 322.429 315.151

TABLE 18 - 10 PEERS, 1 SEED - PRIORITY 1 SECOND

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 339.7 -1

2 1 27.7536 333.475 339.7 332.475

3 1 7.50729 334.864 339.7 333.864

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

34

4 0 4.48941 328.082 339.7 328.082

5 1 27.9666 339.457 339.7 338.457

6 1 12.0077 -1 339.7 -2

7 1 16.828 337.133 339.7 336.133

8 1 22.1986 335.447 339.7 334.447

9 1 30.2819 332.063 339.7 331.063

10 1 25.9845 339.7 339.7 338.7

TABLE 19 - 10 PEERS, 1 SEED - PRIORITY 5 SECONDS

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 356.779 -1

2 5 27.5035 355.756 356.779 350.756

3 5 7.6657 346.922 356.779 341.922

4 0 4.4671 355.637 356.779 355.637

5 5 24.5639 356.132 356.779 351.132

6 5 12.1706 355.761 356.779 350.761

7 5 16.9815 356.779 356.779 351.779

8 5 27.5146 346.074 356.779 341.074

9 5 24.0851 -1 356.779 -6

10 5 28.0051 353.436 356.779 348.436

TABLE 20 - 10 PEERS, 1 SEED - PRIORITY 10 SECONDS

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 360.209 -1

2 10 27.7274 351.625 360.209 341.625

3 10 12.5616 348.297 360.209 338.297

4 0 4.4671 360.209 360.209 360.209

5 10 34.8367 358.266 360.209 348.266

6 10 17.6835 358.674 360.209 348.674

7 10 22.952 -1 360.209 -11

8 10 27.3632 349.754 360.209 339.754

9 10 42.6275 354.44 360.209 344.44

10 10 29.1973 349.345 360.209 339.345

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

35

10 CLIENTS: 5 SEEDS, 10 PEERS

TABLE 21 - 10 PEERS, 5 SEEDS - NO PRIORITY

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 118.708 -1

2 0 0 -1 118.708 -1

3 0 0 -1 118.708 -1

4 0 0 -1 118.708 -1

5 0 0 -1 118.708 -1

6 0 5.93705 114.619 118.708 114.619

7 0 15.6919 118.071 118.708 118.071

8 0 26.4805 115.687 118.708 115.687

9 0 23.8726 118.708 118.708 118.708

10 0 25.4215 116.26 118.708 116.26

TABLE 22 - 10 PEERS, 5 SEEDS - PRIORITY 1 SECOND

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 112.33 -1

2 0 0 -1 112.33 -1

3 0 0 -1 112.33 -1

4 0 0 -1 112.33 -1

5 0 0 -1 112.33 -1

6 1 13.2152 112.33 112.33 111.33

7 1 7.93149 111.994 112.33 110.994

8 0 3.69505 110.626 112.33 110.626

9 1 24.7416 111.535 112.33 110.535

10 1 17.4676 111.307 112.33 110.307

ENSC 427 Spring 2012 – BitTorrent Protocol: Priority

36

TABLE 23 - 10 PEERS, 5 SEEDS - 5 SECONDS

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 111.765 -1

2 0 0 -1 111.765 -1

3 0 0 -1 111.765 -1

4 0 0 -1 111.765 -1

5 0 0 -1 111.765 -1

6 5 10.8781 108.697 111.765 103.697

7 5 21.4159 110.345 111.765 105.345

8 0 6.88248 105.088 111.765 105.088

9 5 24.8195 111.765 111.765 106.765

10 5 20.5582 109.527 111.765 104.527

TABLE 24 - 10 PEERS, 5 SEEDS - PRIORITY 10 SECONDS

ID Start_time first_chunk_time download_finished stop_time download_finished - start
time

1 0 0 -1 118.203 -1

2 0 0 -1 118.203 -1

3 0 0 -1 118.203 -1

4 0 0 -1 118.203 -1

5 0 0 -1 118.203 -1

6 10 15.5714 116.189 118.203 106.189

7 10 19.7144 118.203 118.203 108.203

8 0 6.90978 116.741 118.203 116.741

9 10 14.3465 117.786 118.203 107.786

10 10 28.8848 115.676 118.203 105.676

