
ENSC 427 Communication Network

Spring 2012

Performance evaluation of TDMA Vs

802.11(CSMA)

Team 8:

Haishuo Zhang 301100089 hza43@sfu.ca

Changcheng Wang 301084351 ccw11@sfu.ca

Keren Wang 301097533 kwa35@sfu.ca

Abstract

Time division multiple access (TDMA) is a probabilistic media Access Control

(MAC) protocol in which is a channel access method for shared medium network. It

allows several users to share the same frequency channel by dividing the signal into

different time slots[1]. Carrier Sense Multiple Access (CSMA) is also a probabilistic

media Access Control (MAC) in which a node verifies the absence of other traffic

before transmitting on a shared transmission medium [2].

 In this project, we plan to use ns2 to simulate the TDMA to transmit data at first,

and then simulate the data transfer with CSMA. After the simulations, we will use

AWK to analysis data and then Xgraph to plot the end-to-end delay with two

difference amount packet size 48 and 4800 for two protocols. After the simulation,

TDMA have larger delay time than CSMA, but TDMA delay is more stable. Therefore,

TDMA is a better protocol in our two testing cases.

2

Contents

1 Introduction 3

2 Main Sections 4

2.1 The Description of the entire project 5

2.2 TDMA and CSMA 6

2.3 AWK 9

2.4 Xgraph 10

3 Discussion and Conclusion 11

3.1 Conclusion 11

3.2 Difficulty 12

3.3 Future Work 12

4 Reference 13

5 Appendix 14

5.1 Code listing

5.1.1 Tdma.tcl 14

5.1.2 Csma.tcl 16

5.1.3 Delay.awk 19

5.1.4 Result.tcl 21

3

1 Introduction:

Time division multiple access (TDMA), a second-generation (2G) technology used

in digital cell telephone communication, is a probabilistic media Access Control

(MAC) protocol in which is a channel access method for shared medium network

[1]. It is a method that can divides the spectrum into time slots so that the more

amounts of data can be carried [2]. In this way, specific frequency is not one-to

-one to a user, but a single frequency can provide multiple data channels to co

response multiple users. Although TDMA is considered the most inadvanecd

second-generation technology, it was widely used all over the world in the past

few years. The statistics shows that about 9% digital cell phone user chose TDMA

in US in 1999[2].Like TDMA, CSMA (Carrier Sense Multiple Access) is also a

probabilistic media Access Control (MAC). It can detect the absence of other

traffic before transmitting on a shared transmission medium [3]. There are two

modifications of CSMA, the one is called CSMA/CD, and the other one is

CSMA/CA which is used in our project, where CD is short for collision detection

and CA stand for collision avoidance. CSMA/CD refers to use the terminating

transmission to detect and deal with the collision and then prevent the collision

happening again to improve the performance. On the other hand, CSMA/CA, it

acts to reduce the probability of the first-time collision happen on the channel.

Because it checks if the channel is clear or not once a node receives a packet. If

the channel is idle, then the packet is sent; however, if the channel is busy, the

node will wait a period of time and then check it again until the channel is clear.

4

That ensure there is only one node is transmitting at one time so that prevent

the collision fundamentally [4].In this project, we plan to use network simulator

(ns2) to simulate the data transfer with TDMA protocol and 802.11 (CSMA\CA)

protocol. According to the end-to-end delay, we will evaluate their performance

with different amount of packet size. During our simulation, we decide two

setting points of packet size which are 48 and 4800. In the end, we are going to

compare and analysis the result.

2 Main Sections:

2.1 Description of the entire design

In our project, we use “Network Simulator-2” to simulation the data transfer

in TDMA protocol and CSMA protocol, and compare their performances. At

first, we write some codes about TDMA protocol [appendix-tdma.tcl] and

CSMA protocol [appendix-csma.tcl] for NS2, and run the simulation. After

the simulation is done, using the delay.awk [appendix-delay.awk] to filter

out all useful data and save into TDMA or CSMA file. At last, we use Xgraph

to plot the end-to-end delay of two difference protocols in the same graph.

We will run the same simulation twice, but they have the difference packet

sizes which are 48 and 4800 (Figure1)

5

Figure1. Flow chart of the project

2.2 TDMA and CSMA

a) Set some initial options such as channel type, network interface type

and so on. The values which are from val(chan) to val(nn) are for nodes.

Val(x),Val(y), and Val(stop) are for ns2 (Figure2)

Note: Mac/802_11 is CSMA; Mac/Tdma is TDMA

Figure2. Define the options

b) Set up a new Simulator; create TDMA.tr and TDMA.nam or CSMA.tr and

CSMA.nam in order to record the data during the simulation (Figure3)

6

Figure3. Set the simulator and output files

c) Build topography, and sign a God which can manage nodes and make

sure all nodes are in the area.

d) Configure the nodes, but only turn on macTrace; also create 4

nodes(Figure4)

Figure4. Configure the nodes and create nodes

e) Provide the initial location of nodes, so that it is easier to monitor.

(Figure5)

7

f) Assign the node0 is a sender, the node1 is a receiver, and node2,3 are

transporters, where X,Y,Z value represents the coordinate. Since it is a

2D graph, all the Z values are 0. For example, node 0 is located at 5.0,5.0

Figure5. Locating the nodes

g) Set a TCP connection between node0 and node1(Figure6)

Figure6. Set TCP connection between Node0 and Node1

h) Attach the CBR into the TCP, define some parameter; CBR start sending

data every second after 10s later (Figure7)

8

Figure7. Creating the CBR and attach into the TCP

i) Reset the nodes and stop the simulation at 150s, and generate .tr file

and .nam file

Figure8. nam scenario

9

2.3 AWK

The AWK utility is a data extracting and reporting tool that lets

programmers use various forms of statements to write programs that

consists of patterns, which are to be searched for in each line of the

document and the program's action that will take place when a match is

found.[5]

"AWK is a language for processing text files. A file is treated as a sequence of

records, and by default each line is a record. Each line is broken up into a

sequence of fields, so we can think of the first word in a line as the first field,

the second word as the second field, and so on. An AWK program is of a

sequence of pattern-action statements. AWK reads the input a line at a time.

A line is scanned for each pattern in the program, and for each pattern that

matches, the associated action is executed." - Alfred V. Aho[6]

The main purpose of AWK filters out the useful data from TDMA.tr or

CSMA.tr. In TDMA.tcl and CSMA.tcl, we record all of data in the Mac layer,

and store them into TDMA.tr and CSMA.tr; however, we are only interest in

when node0 send the packet to node1, and when node1 receive the same

packet. Once we collect the time about sending and receiving. We just

subtract the sending time from the receiving time in order to get the delay

time for one signal packet. If we get all the delay time for every transported

packets, then we save these data into TDMA and CSMA

10

2.4 Xgraph

After the AWK filters out the useful data and store into 2 files, we just use

Xgraph software to plot the end-to-end graph. Figure9 and Figure10 are the

results, where X axis is the simulating time; Y axis is the delay time and red

curve represents TDMA and green curve stands for CSMA. From these two

figures we can see, End-to-End delay of TDMA is much larger than CSMA’s

with two packet sizes. The delay of TDMA with packet size 48 is about

82.5*10-3 second. Whereas the CSMA is about 30*10-3 second; however, for

the larger packet size 4800, CSMA ETE delay is really unstable and TDMA

delay is stably keep at the level of 142*10-3 second after a significant bomb

from the beginning of simulating time.

Figure9 End-to-End delay with packet size 48

11

Figure10 End-to-End delay with packet size 4800

3 Discussion and Conclusion:

3.1 Conclusion

From the simulation result, we found that if network data volume is within the

network can withstand, TDMA will waste a lot of slot time. On the other hand, in

the same situation, the end to end delay of CSMA is smaller than that of TDMA.

Comparing figure9 and figure10, we can find that with a lager throughput, the

delay of TDMA network transmission tends to stably, but the delay of CSMA

transmission is getting lager and unstable. Even though from the graphs, the

12

delay of CSMA is still smaller than the delay of TDMA, we can expect easily that

with the increasing of the throughput, the delay of CSMA will be large than the

delay of TDMA and because of the instability of CSMA, it may be disconnected in

a very large throughput.

Today, huge amount of data transfer is required. Even though CSMA has a

smaller delay, TDMA is much more stable. Therefore, we conclude that TDMA is

a better protocol in our two testing cases.

3.2 Difficulty

In this simulation, we have to write three tcl codes for CSMA, TDMA and Xgraph.

Since we cannot use the .tr file to get the xgraph directly, we have to write our

simulation result to another file. Then we use the data to get the graph we want.

3.3 Future Work

In this project, only simulate two packet sizes. To make the simulation more

accurate, more packets sizes can be simulated and a new graph, delay vs. size of

packets graph, can be drawn. To make a better protocol, TDMA and CSMA can be

combined to a new protocol. In small amount of data, the new protocol

performs as CSMA and in huge amount of data, the new protocol performs as

TDMA

13

4 Reference:

1. Ian F. Akyildiz and Janise McNair, Medium Access Control Protocols for

Multimedia Traffic in Wireless Networks[A], Georgia Institute of Technology

Loren Carrasco Martorell and Ramon Puigjaner, Universitat de les llles Balears

Yelena Yesha, University of Maryland at Baltimore Count, July/August. 2009.

2. TDMA IS-136 (Time Division Multiple Access).[Online]

http://www.mobilecomms-technology.com/projects/tdma_is136/

3. Carries Sense Multiple Access[Online]

http://en.wikipedia.org/wiki/Carrier_sense_multiple_access#References

4. Nat. Inst. of Inf. & Commun. Technol., Yokosuka, Japan

Harada, H. ; Kato, S. Nat. Inst. of Inf. & Commun. Technol., Yokosuka, Japan[A],

13-16 Sept. 2009

5. Jose Nazario, An Introduction to AWK[A]. Linux Journal, Mar 08, 2006.

6. .The A-Z of Programming Languages: AWK

http://www.computerworld.com.au/index.php/id;1726534212;

7. Leonidas Georgiadis, Carrier-Sence Multiprle Access (CSMA) Protocols[A],

February 13, 2002

8. Jean Torrilhes, The MAC level (link layer), 3 August 2000 [online]

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.mac.ht

ml4.

9. Marek Miśkowicz, Analysis of Mean Access Delay in Variable-Window

CSMA[A], AGH University of Science and Technology, Department of Electronics,

al. Mickiewicza 30,

10.Simon S. Lam, Delay Analysis of Packet-switched TDMA System[A], IBM

Thomas J Watson Research Center Yorktown Heights, New York 10598

http://www.computerworld.com.au/index.php/id;1726534212;pp;2

14

5 Appendix

5.1 Code Listing

5.1.1 tdma.tcl

1. # Define options

2. set val(chan) Channel/WirelessChannel ;# channel type

3. set val(prop) Propagation/TwoRayGround ;# radio-propagation model

4. set val(netif) Phy/WirelessPhy ;# network interface type

5. set val(mac) Mac/Tdma ;# MAC type

6. set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

7. set val(ll) LL ;# link layer type

8. set val(ant) Antenna/OmniAntenna ;# antenna model

9. set val(ifqlen) 50 ;# max packet in ifq

10. set val(nn) 4 ;# number of mobilenodes

11. set val(rp) AODV ;# routing protocol

12. set val(x) 500 ;# X dimension of topography

13. set val(y) 400 ;# Y dimension of topography

14. set val(stop) 150 ;# time of simulation end

15.

16. set ns [new Simulator]

17. set tracefd [open tdma.tr w]

18. set namtrace [open tdma.nam w]

19.

20. $ns trace-all $tracefd

21. $ns namtrace-all-wireless $namtrace $val(x) $val(y)

22.

23.

24. # set up topography object

25. set topo [new Topography]

26.

27. $topo load_flatgrid $val(x) $val(y)

28.

29. create-god $val(nn)

30.

31. #

32. # Create nn mobilenodes [$val(nn)] and attach them to the channel.

33. #

34.

35. # configure the nodes

36. $ns node-config -adhocRouting $val(rp) \

37. -llType $val(ll) \

38. -macType $val(mac) \

15

39. -ifqType $val(ifq) \

40. -ifqLen $val(ifqlen) \

41. -antType $val(ant) \

42. -propType $val(prop) \

43. -phyType $val(netif) \

44. -channelType $val(chan) \

45. -topoInstance $topo \

46. -agentTrace OFF \

47. -routerTrace OFF \

48. -macTrace ON \

49. -movementTrace OFF

50.

51. for {set i 0} {$i < $val(nn) } { incr i } {

52. set node_($i) [$ns node]

53. }

54.

55. # Provide initial location of mobilenodes

56. $node_(0) set X_ 5.0

57. $node_(0) set Y_ 5.0

58. $node_(0) set Z_ 0.0

59.

60. $node_(1) set X_ 490.0

61. $node_(1) set Y_ 285.0

62. $node_(1) set Z_ 0.0

63.

64. $node_(2) set X_ 100.0

65. $node_(2) set Y_ 70.0

66. $node_(2) set Z_ 0.0

67.

68. $node_(3) set X_ 250.0

69. $node_(3) set Y_ 240.0

70. $node_(3) set Z_ 0.0

71.

72. # Set a TCP connection between node_(0) and node_(1)

73. set tcp [new Agent/TCP/Newreno]

74. $tcp set class_ 2

75. set sink [new Agent/TCPSink]

76. $ns attach-agent $node_(0) $tcp

77. $ns attach-agent $node_(1) $sink

78. $ns connect $tcp $sink

79. set e [new Application/Traffic/CBR]

80. $e attach-agent $tcp

81. $e set packetSize_ 4800

82. $e set rate_ 6kb

16

83. $e set interval_ 1

84. $ns at 10.0 "$e start"

85.

86.

87. # Define node initial position in nam

88. for {set i 0} {$i < $val(nn)} { incr i } {

89. # 30 defines the node size for nam

90. $ns initial_node_pos $node_($i) 30

91. }

92.

93. # Telling nodes when the simulation ends

94. for {set i 0} {$i < $val(nn) } { incr i } {

95. $ns at $val(stop) "$node_($i) reset";

96. }

97.

98. # ending nam and the simulation

99. $ns at $val(stop) "$ns nam-end-wireless $val(stop)"

100. $ns at $val(stop) "stop"

101. $ns at 150.01 "puts \"end simulation\" ; $ns halt"

102. proc stop {} {

103. global ns tracefd namtrace

104. $ns flush-trace

105. close $tracefd

106. close $namtrace

107. #Execute nam on the trace file

108. exec nam tdma.nam &

109. exit 0

110. }

111.

112. #Call the finish procedure after 5 seconds of simulation time

113. $ns run

114.

5.1.2 csma.tcl

1. # Define options

2. set val(chan) Channel/WirelessChannel ;# channel type

3. set val(prop) Propagation/TwoRayGround ;# radio-propagation model

4. set val(netif) Phy/WirelessPhy ;# network interface type

5. set val(mac) Mac/802_11 ;# MAC type

6. set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

7. set val(ll) LL ;# link layer type

8. set val(ant) Antenna/OmniAntenna ;# antenna model

17

9. set val(ifqlen) 50 ;# max packet in ifq

10. set val(nn) 4 ;# number of mobilenodes

11. set val(rp) AODV ;# routing protocol

12. set val(x) 500 ;# X dimension of topography

13. set val(y) 400 ;# Y dimension of topography

14. set val(stop) 150 ;# time of simulation end

15.

16. set ns [new Simulator]

17. set tracefd [open csma.tr w]

18. set namtrace [open csma.nam w]

19.

20. $ns trace-all $tracefd

21. $ns namtrace-all-wireless $namtrace $val(x) $val(y)

22.

23.

24. # set up topography object

25. set topo [new Topography]

26.

27. $topo load_flatgrid $val(x) $val(y)

28.

29. create-god $val(nn)

30.

31. #

32. # Create nn mobilenodes [$val(nn)] and attach them to the channel.

33. #

34.

35. # configure the nodes

36. $ns node-config -adhocRouting $val(rp) \

37. -llType $val(ll) \

38. -macType $val(mac) \

39. -ifqType $val(ifq) \

40. -ifqLen $val(ifqlen) \

41. -antType $val(ant) \

42. -propType $val(prop) \

43. -phyType $val(netif) \

44. -channelType $val(chan) \

45. -topoInstance $topo \

46. -agentTrace OFF \

47. -routerTrace OFF \

48. -macTrace ON \

49. -movementTrace OFF

50.

51. for {set i 0} {$i < $val(nn) } { incr i } {

52. set node_($i) [$ns node]

18

53. }

54.

55. # Provide initial location of mobilenodes

56. $node_(0) set X_ 5.0

57. $node_(0) set Y_ 5.0

58. $node_(0) set Z_ 0.0

59.

60. $node_(1) set X_ 490.0

61. $node_(1) set Y_ 285.0

62. $node_(1) set Z_ 0.0

63.

64. $node_(2) set X_ 100.0

65. $node_(2) set Y_ 70.0

66. $node_(2) set Z_ 0.0

67.

68. $node_(3) set X_ 250.0

69. $node_(3) set Y_ 240.0

70. $node_(3) set Z_ 0.0

71.

72. # Set a TCP connection between node_(0) and node_(1)

73. set tcp [new Agent/TCP/Newreno]

74. $tcp set class_ 2

75. set sink [new Agent/TCPSink]

76. $ns attach-agent $node_(0) $tcp

77. $ns attach-agent $node_(1) $sink

78. $ns connect $tcp $sink

79. set e [new Application/Traffic/CBR]

80. $e attach-agent $tcp

81. $e set packetSize_ 4800

82. $e set rate_ 6kb

83. $e set interval_ 1

84. $ns at 10.0 "$e start"

85.

86. # Define node initial position in nam

87. for {set i 0} {$i < $val(nn)} { incr i } {

88. # 30 defines the node size for nam

89. $ns initial_node_pos $node_($i) 30

90. }

91.

92. # Telling nodes when the simulation ends

93. for {set i 0} {$i < $val(nn) } { incr i } {

94. $ns at $val(stop) "$node_($i) reset";

95. }

96.

19

97. # ending nam and the simulation

98. $ns at $val(stop) "$ns nam-end-wireless $val(stop)"

99. $ns at $val(stop) "stop"

100. $ns at 150.01 "puts \"end simulation\" ; $ns halt"

101. proc stop {} {

102. global ns tracefd namtrace

103. $ns flush-trace

104. close $tracefd

105. close $namtrace

106. #Execute nam on the trace file

107. exec nam csma.nam &

108. exit 0

109. }

110.

111. #Call the finish procedure after 5 seconds of simulation time

112. $ns run

5.1.3 delay.awk

1. #Initial the program, and set max packetID# to 0

2. BEGIN {

3. highest_uid = 0;

4.

5. }

6.

7. #Define every column of the tr file

8.

9. {

10.

11. event = $1; #first column means that actions such as receiving and sendin.

12.

13. time = $2; #time

14.

15. node_nb = $3; #node number

16.

17. node_nb=substr(node_nb,2,1); #in tr file, node number is like _3_, but we

only need 3, so we remove ‘_’

18.

19. trace_type = $4; #trac_type such as Mac

20.

21. flag = $5; #

22.

23. uid = $6; #packetID

20

24.

25. pkt_type = $7; #Packet type

26.

27. pkt_size = $8; #packet size

28.

29. # Record the max CBR packet ID in Mac, and assign this ID to highest _uid

30.

31. if (event=="s" && node_nb==0 && pkt_type=="cbr" && uid > highest_uid &&

trace_type=="MAC")

32. {

33.

34. highest_uid = uid;

35. }

36.

37. #record the packet sending time and save into start_time array

38.

39. if (event=="s" && node_nb==0 && pkt_type=="cbr" &&

uid==highest_uid&&trace_type=="MAC" && pkt_size="112")

40. {

41. start_time[uid] = time;

42. }

43. #record the packet receiving time and save into end_time array

44.

45. if (event=="r" && node_nb ==1 && pkt_type=="cbr" && uid==highest_uid&&

trace_type=="MAC" && pkt_size="112")

46.

47. end_time[uid] = time;

48.

49. }

50.

51. END {

52.

53. # calculate the delay time

54.

55. for (packet_id = 0; packet_id <= highest_uid; packet_id++)

56.

57. {

58. start = start_time[packet_id];

59. end = end_time[packet_id];

60. packet_duration = end - start;

61.

62. #print out the positive delay time

63. if (start <end)

64. printf("%d %f\n", packet_id, packet_duration);

21

65. }

66. }

5.1.4 Result.tcl

1. set ns [new Simulator]

2. $ns at 1.0 stop

3. $ns at 1.0 "puts \"print xgraph\" ; $ns halt"

4. proc stop {} {

5. # we save the useful data in tdma and csma file, xgraph plot them in a graph

6. exec xgraph tdma csma -geometry 800x400 &

7.

8. exit 0

9. }

10. #Call the finish procedure after 5 seconds of simulation time

11. $ns run

