ENSC 427: Communication Networks Spring 2014

Performance Analysis of a Wireless Home Network

www.sfu.ca/~tszajner

Team 4

Sophia Calzada M.mcalzada@sfu.caCurtis Rietchelcrietche@sfu.caTomasz Szajnertszajner@sfu.ca

Overview

- Introduction
- Implementation
- Results
- Discussion
- Future work
- References

Introduction

- Wireless Home Network
- IEEE 802.11
- Multiple Users simultaneously contend for network resources
- Each User will have unique applications with QoS
- **Goal:** Evaluate QoS and determine the optimal configuration and wireless standard
- OPNET 16.0

Implementation

Custom Applications - Video Stream

3 (Frame Size Information) Table 🗙						
Attribute			Value			
Incoming Stream	Frame Size	(bytes)	scripted	(trace)		
Outgoing Stream	ı Frame Size	(bytes)	scripted	(trace)		
1						
Details	Promote		<u>0</u> K		<u>C</u> ancel	
		_				

- Created a custom video conference application
- Incorporated trace file for a more realistic video model
- Variable frame size
- MPEG 4 compression

Video Stream Throughput

Custom Applications - Game

• Utilized S. Chiu & J. Farber game traffic model

- Modeled Counter Strike 1.6
- Traffic is bursty in nature
- Important to model game traffic properly as experience is susceptible to delay and jitter

	Server	Client	
Interarrival Time (ms)	Extreme (55,6)	Constant (40)	
Packet Size (ms)	Extreme (120,36)	Extreme(80,5.7)	

Results - Game Throughput

WLAN Global Delay

Gamer Perspective - Delay

Gamer Perspective - Delay Cont'd

Netflix Perspective - Delay

Web Browsing Perspective - Delay

VoIP Perspective - Delay

802.11e (with QoS)

Discussion

- 802.11e is optimal for gaming applications due to its QoS properties
- Application with highest throughput has the greatest impact on the other users' QoS
- 802.11g reduces the delay at the same data rate because of its different modulation scheme
- Generally increasing protocol data rate will decrease delay of all applications

Future work

- Adding mobile users to the network
- Experimenting with different server to access point distances
- Test newer 802.11 standards such as 802.11ac
- Determine optimal amount of users per access point

References

- [1] (14 Feb. 2014) "WLAN 802.11 a,b,g and n." National Instruments. [Online]. Available: http://www.ni.com/white-paper/7131/en/
- [2] S. Chiu, "Online Interactive Game Traffic," [Online]. Available: http://www.ensc.sfu.ca/~ljilja/ENSC835/Spring06/Projects/chiu/Report.pdf
- [3] Johannes Farber, Network game traffic modeling, Proceedings of the 1st workshop on Network and system support for games, p.53-57, Apr 16-17, 2002, Braunschweig, Germany.
- [4] G. Auwera, P. David, and M. Reisslein. Traffic characteristics of H.264/AVC variable bit rate video. [Online]. Available: http://trace.eas.asu.edu/h264/index.html (Apr. 2014).
- [5] I. Gupta and P. Kaur, "Comparative Throughput of WiFi and Ethernet LANs using OPNET MODELER," International Journal of Computer Applications, vol. 1, no. 2, December 2010. Available:

http://www.ijcaonline.org/volume8/number6/pxc3871753.pdf