

0

Analysis of Video Conferencing on LTE Network with OPNET 16.0

School of Engineering Science Simon Fraser University

ENSC 427, Spring 14, Team 08

http://www.sfu.ca/~kjavanma/

April 9th , 2014

Petar Arnaut	301095130
Kamyar Javanmardi	301120403
Janine Li	301132839

- Introduction
- Scope of the Project
- Simulation Design
- Analysis
- Conclusions, Challenges, and Future Work
- References

- Why LTE (Long-Term Evolution)?
- Definition [1]
- Advantage [2]
- Economic growth [3]
- Why opplets and Applications Perform*?
- More simulation features than other simulators
 Ability to access with a wide range of available standards and vendors
- Used by large companies

- Video Conference
- Video frame inter-arrival rates range from 10 fps to 30 fps
- Sent bit rate is constant
- Classify the quality of video content by some factors such as frame inter-arrival rate and pixel color depth

- Introduction
- <u>Scope of the Project</u>
- Simulation Design
- Results Analysis
- Conclusions, Challenges, and Future Work
- References

Case I. Single-Base Station

Bandwidth	E2E delay (s)
Dandwiddin	Throughput (bps)
	Traffic sent/received (bps)
Distance Between Base	E2E delay (s)
Station and Destination	-
Quality of Video	E2E delay (s)
Content	Throughput (bps)
Content	Traffic sent/received (bps)

E2E delay: End-to-End delay refers to the time taken for a packet to be transmitted across a network from source to destination

- Throughput: the rate of successful message delivery over a communication channel
- Traffic s/r: the amount and type of traffic on a particular network is sent or received

Case II. Multiple-Base Stations

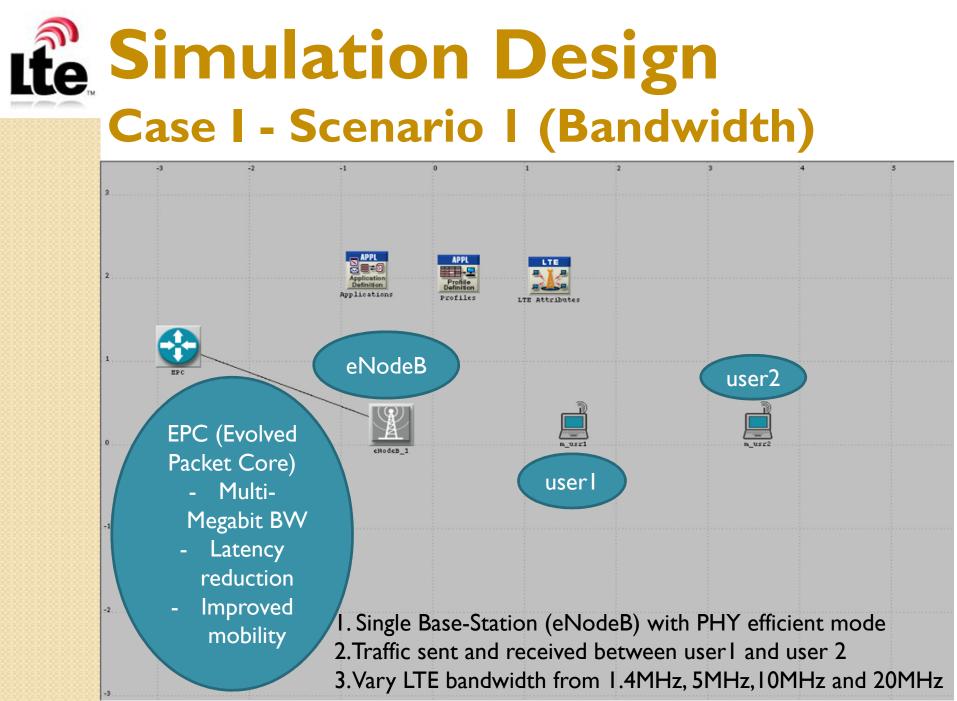
vs. Single Base Station

E2E delay (s)

Throughput (bps)

Traffic sent/received (bps)

Single User vs. Multiple Users E2E delay (s)


Throughput (bps)

E2E delay: End-to-End delay refers to the time taken for a packet to be transmitted across a network from source to destination

- Throughput: the rate of successful message delivery over a communication channel
- Traffic s/r: the amount and type of traffic on a particular network is sent or received

- Introduction
- Scope of the Project
- <u>Simulation Design</u>
- Results Analysis
- Conclusions, Challenges, and Future Work
- References

Lte Simulation Design Case I – Scenario 2 (Distance)

👪 (LTE Attr	ibutes) Attributes	3	-Battery Capacity	5.0	1
			-Maximum Transmission Power	0.5	
Type: Utilities		1	-Modulation and Coding Sche	9	
		(?)	- Multipath Channel Model	Disabled	
Attribute	Value	- 🕐	- Operating Power	100mW	
?-name	LTE Attributes		Pathloss Parameters	()	
① EPS Bearer Definitions	()		Pathloss Model	Suburban Fixed (Erceg)	
① Efficiency Attributes	Physical Layer Enabled	0	-Terrain Type (Suburban Fix	Terrain Type A	
① ELTE PHY Profiles	()		-Shadow Fading Standard D	Disable Shadow Fading	
			A: corresponds to hilly	y terrain with moderat	e-to
1		heav	y tree densities		
			'		
C	APPL ==+0 pplication pefinition	Pro		LTE LTE Attributes	

Distance between eNodeB and destination

rang from 0.5 km

eNodeB 1

0.5 km

n usr1

Lte Simulation Design Case I – Scenario 2 (Distance)

(LTE Attrib	utes) Attributes		Battery Capacity	5.0	
		(2)	Maximum Transmission Power		
Type: Utilities		0	- Modulation and Coding Sche		
Attributo	Value	0	- Multipath Channel Model	Disabled	
Attribute		- 0	- Operating Power	100mW	
⑦ rname	LTE Attributes		Pathloss Parameters	()	
EPS Bearer Definitions	()		Pathloss Model	Suburban Fixed (Erceg)	
Efficiency Attributes	Physical Layer Enabled		-Terrain Type (Suburban Fix	Terrain Type A	
① E LTE PHY Profiles	()	(2)	-Shadow Fading Standard D	Disable Shadow Fading	
Applica Defini Rpplica	ion	Profil	-) LTT	Attributes	
	Distance rang from		eNodeB and dest	ination	
			0.75 km		
	X	n_usri		m_usr2	
	eNodeB_1	_			

Lte Simulation Design Case I – Scenario 2 (Distance)

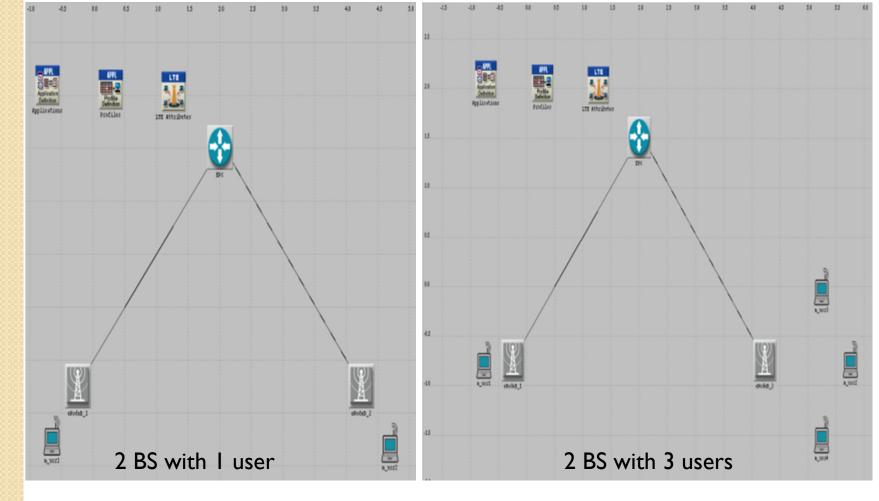
		0.0	APPL Profile Definite Profile		0.5	1.0
	LTE Attribute	s) Attributes			Battery Capacity Maximum Transmission Power	5.0
	Type: Utilities				Modulation and Coding Sche	
88	Attribute	Value	(?			Disabled
	(?) name	LTE Attributes	î (2		Operating Power	100mW
88	⑦	()			Pathloss Parameters	()
883	⑦ ■ Efficiency Attributes	Physical Layer Enabled)		Suburban Fixed (Erceg)
88	TE PHY Profiles Section 2019 Section 2019	()		<u>)</u>	Terrain Type (Suburban Fix Shadow Fading Standard D	Terrain Type A
883			Distar	nce t	between elNodel	3 and destination
88	68		rang f	rom	l km	
88			i ang i		1 km	
	The	_	-		1 KIII	
	0.0	eHodes_1	R_NS21			n_usr2

Ite Simulation Design Case I – Scenario 2 (Distance)

-0.5		0.0	0.5		1.0	
1	(LTE Attributes	Attributes	(?)	-Battery Capacity	5.0	-
	~				0.5	
Type: Utilities	s		ð		9	
Alleiburke		Value	()	-Multipath Channel Model	Disabled	_
Attribute		Value	- 0	- Operating Power	100m₩	
🕐 name		LTE Attributes		Pathloss Parameters	()	
		()		-Pathloss Model	Suburban Fixed (Erceg)	
		Physical Layer Enabled		-Terrain Type (Suburban Fix		_
🕐 🖲 LTE PH	HY Profiles	()	ð	Shadow Fading Standard D		_
		Distance betw rang from 1.5	5 km	NodeB and destir	nation	
	EFC C		1.5	cm		

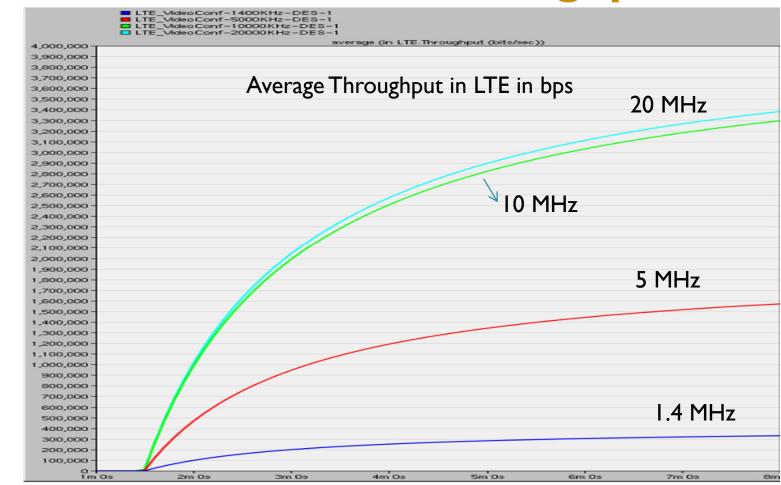


	Quality of Video Content	Bandwidth(MHz)	
+1	Low	20	
	Low	10	
-2	High	20	
	High	10	


Case II – Scenario I

(Single Base Station vs. Multiple Base Stations)

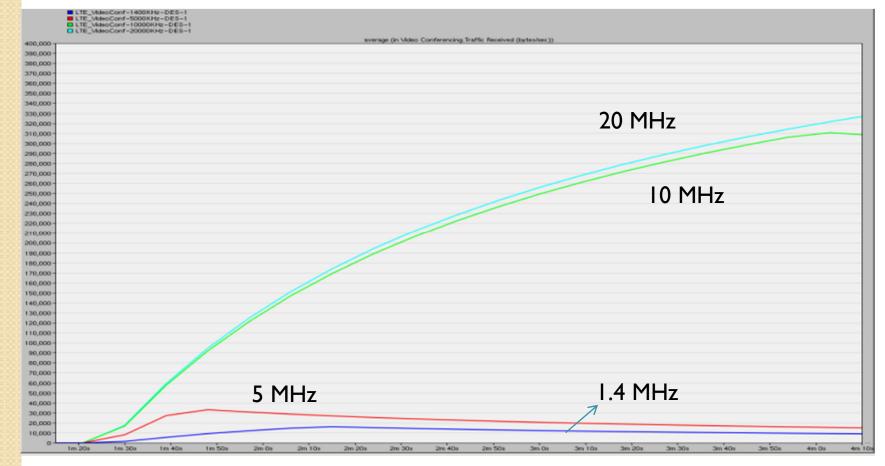
Case II – Scenario 2 (Multiple Base Stations single user vs. multiple users)



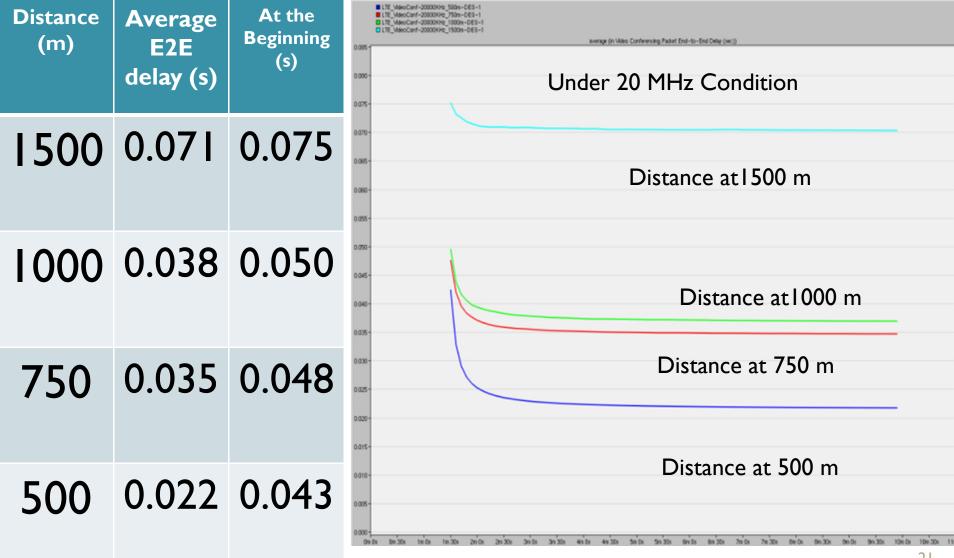
- Introduction
- Scope of the Project
- Simulation Design
- <u>Results Analysis</u>
- Conclusions, Challenges, and Future Work
- References

Results Analysis Case I – Scenario I – E2E delay

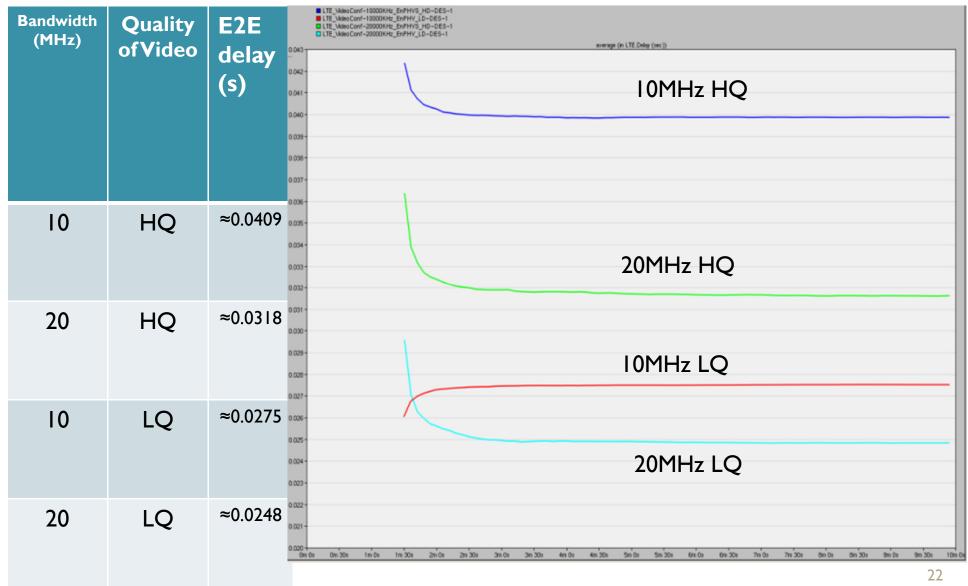
Bandwidth (MHz)	E2E delay at peak (s)	I LTE_Make/Conf-1400Ret-DES-1 average (in Video Confirmining,Packet End-to-End Delay (sec)) 3 3 15
Ι.4	≈ 22	10- 5- 0 II //E_/VdeoCorf-5008/Ve-DES-1 4 35- 3- 25- 2- 2-
5	≈3.8	1 1 05- 0 ITE_MaleoConf-10000KH2-DES-1 average (in Video Confirmencing Packet End-to-End Delay (sec)) 4 3 25-
10	≈3.4	2- 15- 1- 05- 0- 0 LTE_VMee/Carf-20000R/b-DES-1 0 040- 0.005- 0.000-
20	≈0.036	0.025- 0.025- 0.005- 0.005- 0.005- 0.005- 1.005 Im 205 In 405 2m 05 2m 205 2m 405 3m 05 3m 205 3m 405 4m 05 4m 205 4m 405 5m 205 5m 405 6m 05 6m 205 6m 405 7m 205 7m 405 8m 05 6m 205 8m 405 7m 205 7m 405 8m 205 8m 405 9m 85 1.005 Im 205 In 405 2m 05 2m 205 2m 405 3m 05 3m 205 3m 405 4m 205 4m 405 5m 05 5m 205 5m 405 6m 05 6m 205 7m 205 7m 405 8m 05 6m 205 8m 405 7m 205 7m 405 8m 205 8m 405 9m 85 1.005 Im 205 Im 405 2m 05 2m 205 2m 405 3m 05 3m 205 3m 405 4m 205 4m 405 5m 05 5m 205 5m 405 6m 05 8m 205 7m 205 7m 405 8m 205 8m 405 9m 85 1.005 Im 205 Im 405 2m 05 2m 205 2m 405 3m 05 3m 205 3m 405 4m 205 4m 405 5m 05 5m 205 5m 405 6m 05 8m 205 7m 205 7m 405 8m 205 8m 405 9m 85 1.005 Im 205 Im 405 2m 05 2m 205 2m 405 3m 405 4m 205 4m 405 5m 05 5m 205 5m 405 6m 05 8m 205 7m 205 7m 405 8m 205 8m 405 8m 205 1m 405 8m 205 8m 8m 2

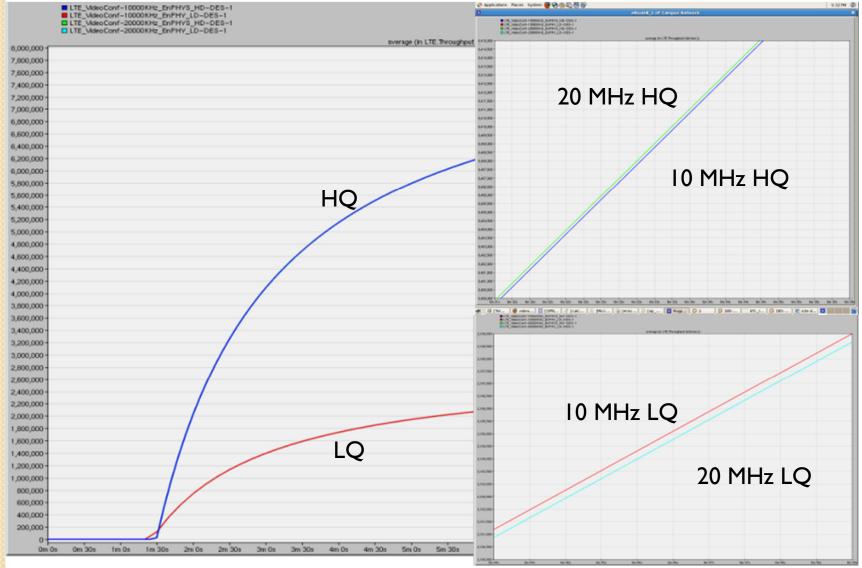

Results Analysis Case I – Scenario I – Throughput

Comparing with 20MHz and 1.4MHz, 20 MHz has the greatest throughput, while 1.4 MHz, the throughput drops dramatically. However, there is not large difference Between 10 and 20 MHz of the throughput.

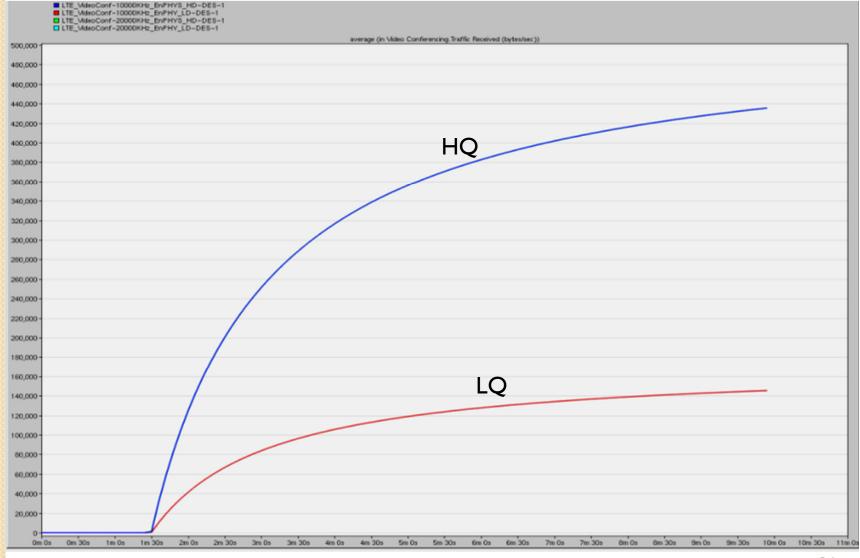


Case I – Scenario I – Traffic Received

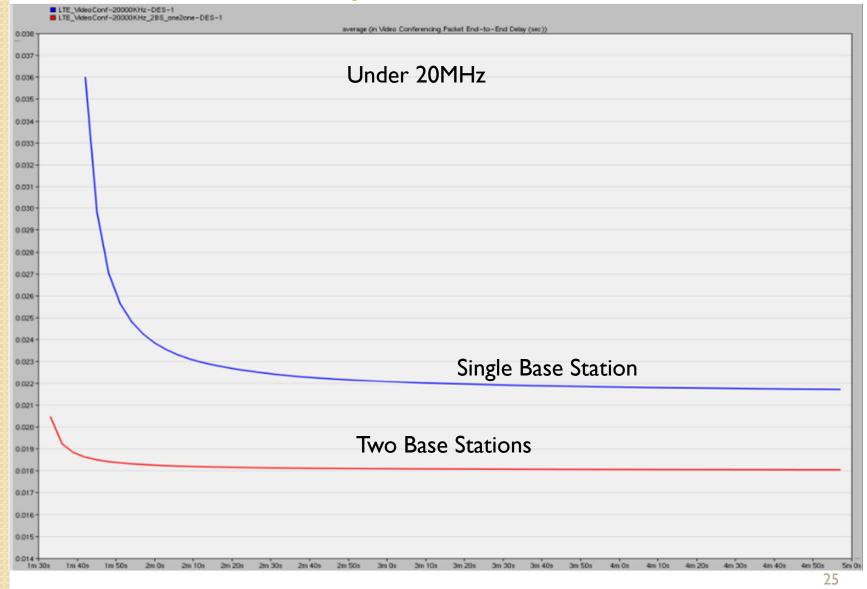

Comparing 20MHz and 10 MHz in traffic received, the traffic received (bps) of 10 MHz just slightly differs with 20 MHz traffic received (bps).



Case I – Scenario 3 – E2E delay

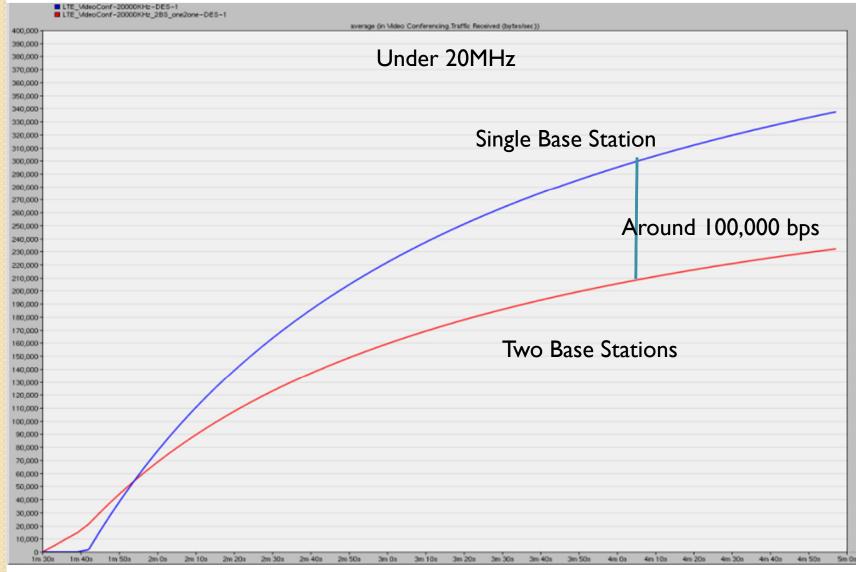


Case I - Scenario 3- Throughput (bps)



Case I – Scenario 3– traffic received

Case II–Scenario I – E2E Delay



Case II-Scenario I – Throughput (bps)

9,500,000 -					ا ا ا م	20	MI I_							
9,000,000 -					Und	er 20	ITHZ							
8,500,000 -			Г							~				
8,000,000 -						Circ				_				
7,500,000 -						Sin	gie D	ase St	tatior	1				
7,000,000 -														
6,500,000 -														
6,000,000 -														
5,500,000 -														
5,000,000 -														
4,500,000 -														
4,000,000 -														
3,500,000 -														
3,000,000 -														
2,500,000 -						-	P	C.	, •					
2,000,000 -						IV	vo Ba	se St	ation	S				
1,500,000 -	After abo	ut 102 s												
1,000,000 -														
500,000 -														
0-		1m 0s 1m 20s	1m 40s	2m 0s	2m 20s	2m 40s	3m 0s	3m 20s	3m 40s	4m Os	4m 20s	4m 40s	5m 0s	5m 20s

Case II–Scenario I–Traffic Received (bps)

Case II-Scenario 2- E2E delay

	Single user	Multiple users	11% (4eeCorr*-20000Hz 285 ore/bet-0E5-1 20000 00204 002
E2E delay (s) when stable	≈0.0180	≈0.0210	0018- 00

Case II-Scenario 2-Throughput (bps)

800,000 -							
,							
600,000 -	Г						
00,000 -							
00,000 -		Mi	ultiple us	sers (5	5.600.0	00 bps`	
00,000 -					.,,.	P-,	
00,000 -							
00,000 -							
0,000 -	/						
00,000 -							
00,000 -							
00,000 -							
00,000 -							
00,000 -							
00,000 -							
00,000 -							
00,000 -		S	nglause	or (2.80		hns)	
00,000 -		S	ngle use	er (2,80	00,000	bps)	
00,000 - 00,000 - 00,000 -		S	ngle use	er (2,80	00,000	bps)	
00,000 - 00,000 - 00,000 - 00,000 -		S	ngle use	er (2,80	00,000	bps)	
00,000 - 00,000 - 00,000 - 00,000 - 00,000 -		S	ngle use	er (2,80	00,000	bps)	
00,000 - 00,000 - 00,000 - 00,000 - 00,000 - 00,000 -		S	ngle use	er (2,80	00,000	bps)	
00,000 - 00,000 - 00,000 - 00,000 - 00,000 - 00,000 - 00,000 - 00,000 - 00,000 -		S	ngle use	er (2,80	00,000	bps)	
00,000 - 00,000 - 00,000 - 00,000 - 00,000 - 00,000 - 00,000 -		S	ngle use	er (2,80	00,000	bps)	
00,000 - 00,000 - 00,000 - 00,000 - 00,000 - 00,000 - 00,000 - 00,000 - 00,000 -		S	ngle use	er (2,80	00,000	bps)	
30,000 - 00,000 - 30,000 - 30,000 - 30,000 - 30,000 - 30,000 - 30,000 - 30,000 - 30,000 -		S	ngle use	er (2,80	00,000	bps)	
00,000 - 00,000 - 00,000 - 00,000 - 00,000 - 00,000 - 00,000 -		S	ngle use	er (2,80	00,000	bps)	

- Introduction
- Scope of the Project
- Simulation Design
- Results Analysis
- <u>Conclusions, Challenges, and Future</u> Work
- References

The effects of:

- Signal bandwidth more BW, lower delay and higher throughput
- Distance from eNodeB closer, lower delay and higher throughput
- Video quality (load) lower load, lower delay and higher throughput
- Number of users more users, more BW needed

Challenges

- Understanding of LTE configuration within the new software tool
- No previous academic work to be used as a reference

- Analysis of LTE networks with different applications
- Using all the LTE and network attributes
- Studying and comparing LTE against another wireless data technology (WiMAX)

- Introduction
- Scope of the Project
- Simulation Design
- Results Analysis
- Conclusions, Challenges, and Future Work
- <u>References</u>

 [1] F.Zivkovic, J.Priest, H.Haghshenas "Quantitative Analysis of Streaming Multimedia over WiMAX and LTE Networks Using OPNET v. 16.0 ".[Online] Available: http://www2.ensc.sfu.ca/~ljilja/ENSC427/Spring13/Projects/team9/ENSC_427_Group_9_Final_Report.pdf [Accessed: 01 March 2014].

[2] "LTE: Long Term Evolution". [Online] Available: http://www.sfu.ca/~srajara1/Index.html [Accessed: 14 Febuary 2014].

[3] M. Torad, A.E. Qassas and H.A. Henawi, "Comparison between LTE and WiMAX based on System Level Simulation Using OPNET modeler", 28th National Radio Science Conference, Apr. 2011, pp 1-9. [Online] Available: IEEE Xplore, http://ieeexplore.ieee.org/Xplore/guesthome.jsp [Accessed: 14 February 2014].

[4]E. Boyer and A. Chowdhury, "Analysis of Quality of Service (QoS) for Video Conferencing in WiMAX Networks" [Online]. Available: http://www.sfu.ca/~asc13/ensc427/afrin_eric_final_report_2010.pdf (Accessed: April 10 2014).

[5] X. Jiang, Z. Zhao, and F. Feng , " http://www.sfu.ca/~zza36/report-427.pdfâ€. [Online] Available: http://www.sfu.ca/~zza36/report-427.pdf [Accessed: 01 April 2014].

