

SIMON FRASER UNIVERSITY

Performance and safety of
VANET

 ENSC 427: COMMUNICATIONS NETWORKS

Group 3

Jeremy Borys 301172228

Jimmy Chenjie Yao 301160093

4/12/2015

www.sfu.ca/~jborys/

Vehicle safety has always been a major concern for automotive engineers. Information carried
by a vehicle can be forwarded to another vehicle using the IEEE 802.11p standard protocol,
providing a driver or autonomous vehicle with information regarding speed and direction of the
approaching vehicle. With the focus on safety, this paper seeks to determine the performance
of a vehicular ad hoc network (VANET) under varying conditions and constraints. This paper
seeks to understand the effect on packet delivery and end to end delay with respect to the
varying number and distances of mobile nodes.

i | P a g e

Table of Contents
Table of Figures ..ii

Table of Acronyms and Abbreviations ...ii

1 Introduction ... 1

2 Vehicular Ad-hoc Network (VANET) Architecture ... 1

2.1 Medium Access Control Layer Protocols IEEE 802.11 .. 2

2.2 Ad-hoc on-Demand Distance Vectoring ... 3

2.3 Scope .. 4

3 Tools ... 4

3.1 The Network Simulator 2 ... 4

3.2 The Network Animator ... 4

3.3 Tracegraph.. 5

3.4 Xgraph .. 5

4 Design of the project ... 6

5 Simulation Results ... 7

5.1 Scenario 1: Varying Highway Network Traffic .. 7

5.2 Scenario 2: Varying Highway Inter Distances ... 9

5.3 Scenario 3: Sudden Four Way Stop .. 11

6 Future Work ... 12

6.1 Simulation of Urban Mobility ... 12

6.2 Distance based vehicle connection initiation .. 13

7 Conclusion ... 14

8 References ... 15

9 Appendix A ... 16

9.1 Top level script ... 16

9.2 Mobility Script .. 18

9.3 Network Traffic script ... 19

9.4 Constant Bitrate traffic ... 20

9.5 OSM to NS2 mobility file generation ... 20

9.6 Generating a distance based solutions .. 21

ii | P a g e

Table of Figures
Figure 1: Wireless Access for Vehicular Environments [3] ... 2

Figure 2: A VANET and MANET Topology [9] .. 3

Figure 3: AODV Discovery Process [4] .. 4

Figure 4: Screenshot of Tracegraph .. 5

Figure 5: Xgraph sample plot .. 6

Figure 6: VANET simulation design flow chart .. 6

Figure 7: Nam Snapshot of Scenario1 ... 7

Figure 8 Number of background connections vs delay .. 8

Figure 9 Number of background connections vs bytes .. 8

Figure 10: Nam Display of 10 nodes interspersed distance of 50 m .. 9

Figure 11 Car to car distance vs End to end delay .. 10

Figure 12 Tx Throughput vs Car to car distance ... 10

Figure 13 Nam snapshot of Scenario1 .. 11

Figure 14 Number of background connections vs End to end delay .. 12

Figure 15: Traffic Simulation of SFU ... 13

Figure 16: Traffic Simulation Granville Street ... 13

Figure 17: Result of genTrafficInRange.py .. 14

Table of Acronyms and Abbreviations

AODV Ad hoc On-Demand Distance Vector

E2E End to End

FTP File Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

MAC Medium Access Control

MANET Mobile Ad-hoc Network

NAM Network Animator

NS-2 Network Simulator 2

RREQ Route Request

RREP Route Reply

RREP-ACK Route Acknowledgment

RERR Route Error

SUMO Simulation of Urban Mobility

TCL Tool Command Line Language

TCP Transmission Control Protocol

VANET Vehicular Ad-hoc Network

V2V Vehicle to Vehicle

1 | P a g e

1 Introduction
The world is currently evolving into a where there are an increasing number of devices

connecting to internet. By including networking technology into everyday objects we are

effectively creating the “internet of things”.

Recently there has been experimentation into communication between vehicles using a vehicle

ad-hoc network (VANET). Allowing cars to communicate between each other has many practical

applications, for example one could transmit the velocity of one vehicle, to the vehicle behind,

allowing the vehicle to match the velocity without driver interaction. [1] As automobiles are

becoming ever increasingly automated and communicating between vehicles is soon to be

commonplace.

The real-time requirements of the vehicular ad-hoc network tend to be more important when

compared to a mobile ad-hoc network (MANET). Knowing relatively accurate average

characteristics of a VANET is very important considering that the network involves humans. If

communication fails to be established or a packet arrives too late someone is potentially at risk

of getting seriously injured.

To understand some of the basic performance of a VANET, this paper plans to run some basic

simulations using the Network Simulator version 2.35 (NS-2) and generate as close as possible

approximations to real world traffic simulations.

2 Vehicular Ad-hoc Network (VANET) Architecture
Vehicular ad-hoc networks are created on the continuously configure themselves without any

infrastructure. A VANET completes this using specific routing protocols such as Ad-hoc on-

Demand Distance Vectoring (AODV) and Destination Sequence Distance Vector (DSDV). Each

node must receive and send traffic as the node is effectively a router.

In general VANET nodes move along similar paths at high velocities which makes them different

from mobile ad hoc networks which do not have the same requirements. Vehicles also tend to

group into clusters while travelling along the same path [2] creating a series of disconnected

clusters along a given path. Between the vehicles there tends to be multiple channels of

communication generating large background traffic. The architecture of 802.11p is summarized

in Figure 1.

2 | P a g e

Figure 1: Wireless Access for Vehicular Environments [3]

Both IEEE 1609 and IEEE 802.11p are fairly new standards. IEEE 1609 outlines the upper layer

protocol stack, and IEEE 802.11p defines the physical and lower mac layer.

2.1 Medium Access Control Layer Protocols IEEE 802.11
The Medium Access Control (MAC) Layer protocol is responsible for controlling the access to

channel and address making it possible for the wireless nodes to communicate. Because VANET

nodes move at relatively high velocities, amendments to the 802.11 protocol had to be made.

The 802.11 standard decreased the total bandwidth from 20MHz down to 10 MHz which

doubles the time a symbol takes to transmit. The increased transmission time reduces errors

caused by the varying channel characteristics that exist in different physical environments

(Grafling, Mahonen, & Riihijarvi, 2010). The 802.11p standard also dedicates the band from

5.850 to 5.925 GHz for use specifically for use with VANETs.

3 | P a g e

Figure 2: A VANET and MANET Topology [9]

While a VANET and MANET are very similar Figure 1 tries to highlight the differences. The

VANET nodes do not move in random and follows strict paths guided by roads, this contrasts

with MANETS whose nodes can follow any path.

2.2 Ad-hoc on-Demand Distance Vectoring
The Ad-hoc on-Demand Distance Vectoring (AODV) is a type of routing protocol commonly used

in VANET and MANETs. A routing protocol decides the way of data exchange between different

communication entities. The protocol provides services of establishing the route, forwarding,

error detection, and error recovery and flow control. Providing optimal paths between

communication nodes via minimum overhead is the main task of routing protocol.

The high mobility in a VANET makes it hard to design a dedicated VANET protocol. The issues

include computing and maintaining routing paths between vehicles. AODV protocol here is

responsible for discovering, establishing, recovering and maintaining routing paths. AODV uses

four types of control message. The messages are Route Request (RREQ), Route Reply (RREP),

Route Acknowledgment (RREP-ACK) and Route Error (RERR) messages. Every communication

nodes maintains a sequence number which is used by other nodes to determine the freshness

of the data contained from the originating node. When originator needs to route to some

certain nodes. AODV protocol starts discovery process. Figure 3 (a) shows the source

broadcasts RREQ signal to all the other nodes. Eventually, the RREQ will arrive at destination

node that routes back to source using an optimal path.

4 | P a g e

Figure 3: AODV Discovery Process [4]

2.3 Scope
There is a lot of research into application of VANETs. Particularly with respect to automation

but most of the research is only just beginning to break into industry. Given the many different

areas that we could measure real time performance, we plan to focus mainly characterizing the

behavior of the IEEE 802.11p and AODV protocol.

3 Tools
3.1 The Network Simulator 2

The Network Simulator version 2.35 (NS-2) is an open source tool used for running event-driven

network simulations. [5]. Using the tool the user can generate a set of TCL scripts to issue

command to the NS2 simulator to specify when to initiate connections between which specific

nodes. The designer can specify which statistics are of interest to the simulation scenario. The

simulator also has lots of external support from researchers and other companies striving to

make the simulator better

3.2 The Network Animator
The Network Animator (NAM) is a tool for visualizing the dataflow and movement of nodes in a

network. The tool was used to visually inspect any concerns that may be of interest during our

simulation.

5 | P a g e

3.3 Tracegraph
Tracegraph is a third party tool developed by Jaroslaw Malek, used for parsing through and

extracting information from trace files output by NS-2 [6]. Using tracegraph the designer can

quickly view certain characteristics of their network such as end-to-end delay (E2E) delay.

Figure 4: Screenshot of Tracegraph shows a screen shot of the tracegraph GUI.

Figure 4: Screenshot of Tracegraph

Tracegraph provided us the ability to quickly analyze a number of different statistics. We could

also view the data generated by our simulations many different ways, Figure 4: Screenshot of

Tracegraph above the shows a histogram of E2E delays for one of our simulations.

3.4 Xgraph
Xgraph is part of ns-all-in-one package, it is a plotting program which can be used to create

graphic representation of an NS-2 simulation result. You can create an output file from your

simulation.tcl script, which can be used as data sets for Xgraph. Below is a sample screenshot of

an Xgraph plot.

6 | P a g e

Figure 5: Xgraph sample plot

4 Design of the project
Network simulation version 2.35 (NS-2) is used to simulate VANET model. Ns provides

substantial support for simulation of TCP, routing, and multicast protocols over wired and

wireless networks. We developed our TCL simulation scripts based on NS-2 tutorial.

The figure below shows the design of our VANET project,

Figure 6: VANET simulation design flow chart

We first tried to generate mobility file using a traffic simulator called Simulation of Urban

Mobilty (SUMO) which would allow us to generate more accurate traffic scenarios. However,

SUMO outputs a large area with many different nodes which are all random. The large

connection files made it difficult to write individual connections for all the nodes for the

7 | P a g e

scenarios we wished to simulate and we left what we had accomplished in mass simulation for

future work.

To generate random background network traffic, we used the CBR traffic generator with UDP

Segments. The background communication traffic will more closely resemble the actual

background communication that is to be expected of a real world VANET network.

FTP network traffic using TCP is applied along the nodes that we wish to monitor. The

simulation TCL file is responsible for generating the trace and NAM files. The NAM files are used

to give visual feedback for node movement and node communication. The trace file is required

to analyze packet delay. We used Xgraph and TraceGraph to quickly analyze and manually

extract useful data.

5 Simulation Results

5.1 Scenario 1: Varying Highway Network Traffic
The scenario models a set of 30 cars each driving down a highway at a speed of 100 Km per

hour. In each of our simulations we increased background traffic by adding in additional

constant bit rate vehicle to vehicle (V2V) connections. The number of V2V background

connections varied from 1 to15 connections. Figure 7 shows a snapshot of the scenario in time.

Figure 7: Nam Snapshot of Scenario1

We chose to initiate a connection from node 0 to node 9. Node 0 was offset from the group of

Nodes so that we could verify that the AODV protocol was actually routing in between the

nodes, and not connecting directly to node 9.

8 | P a g e

Figure 8 Number of background connections vs delay

Figure 8 shows the communication delay between node 0 and node 9 increases as the number

of background connections increase. This is largely because VANET uses cars as mobile nodes to

create mobile network. In this case, data from node 0 has to go through all the nodes between

source and destination, and eventually to node 9. The background traffic would delay the

communication between node 0 and node 9.

Figure 9 Number of background connections vs bytes

Figure 9 shows that the transmit bit rate decreases when the number of background

connections increase. This is largely due to the background communication between

intermediate nodes. The bandwidth has been consumed not only by node 0 and node 9, but

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 3 5 7

En
d

 t
o

 E
n

d
 D

el
ay

 (
in

 s
ec

)

Number of Background Connections

Avg. E2E Delay vs. Background Traffic

0

5000

10000

15000

20000

25000

30000

1 3 5 7

Th
ro

u
gh

p
u

t
(i

n
 B

yt
es

/s
ec

)

Number of Background Connections

Throughput vs. Background Traffic

Avg. Tx Throughput

Avg. Packets dropped

9 | P a g e

also those intermediate nodes. The packets loss is very small because of TCP is used between

node 0 and 9.

5.2 Scenario 2: Varying Highway Inter Distances
Wireless communication distance is an important performance metric with respect to wireless

communication. As the distance between cars varies we wanted to understand the effect that

the additional distance may have on throughput. Figure 10 shows a single test case where we

tested the performance where each car was placed 50m apart from each other.

Figure 10: Nam Display of 10 nodes interspersed distance of 50 m

We increased the inter vehicle distance from 10m to 50m between vehicles and measured the

average delay in between vehicles. The results of average delay vs distance and average

throughput vs distance were plotted in the Figure 11 and Figure 12.

10 | P a g e

Figure 11 Car to car distance vs End to end delay

Figure 11 shows the communication delay increases when the distance between node to node

increases. This is largely because the propagation delay increases when the distance between

source and destination increases.

Figure 12 Tx Throughput vs Car to car distance

In wireless network, bit/s/Hz/area unit is used to measure throughput. In this case, the car to

car distance increases results an increase in area. Hence, a decrement of transmit throughput is

observed.

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50

A
vg

. D
el

ay
 (

in
 s

ec
)

Car-to-Car Distance (in m)

Avg. Delay vs. Distance

AVG E2E Delay

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60

Th
ro

u
gh

p
u

t
in

 (
B

yt
es

/S
ec

)

Car-to-car Distance (in m)

Avg. Throughput vs. Car-to-Car Distance

Throughput Tx

11 | P a g e

5.3 Scenario 3: Sudden Four Way Stop
Scenario 3 models a set of ten cars run into a four way stop at 40 km/h. In each of our

simulations we increased background traffic by adding in additional constant bit rate vehicle to

vehicle (V2V) connections. The number of V2V background connections varied from 1 to 6

connections. Figure 13 shows a snapshot of the scenario in time.

Figure 13 Nam snapshot of Scenario1

When the node 9 approaches node 8 which stays still, node 8 sends information to node 9 and

tells node 9 to prepare to stop.

12 | P a g e

Figure 14 Number of background connections vs End to end delay

Figure 14 shows the communication delay between node 9 and node 8 when the number of

background connections varied from 1 to 6. The average delay increases as the number of

background connections increase. This is because the bandwidth is been consumed by other

nodes. The delay analysis is very crucial to VANET system and the automated driving system in

the future.

6 Future Work
Simulation of VANETs still have a long ways before we can quickly generate real world

scenarios. We envision that it would not be too long to implement a basic method by which a

designer could download a map from Open Street Maps and quickly utilize a vehicle traffic

generator to create more realistic vehicle movements.

NS2’s implementation of wireless connectivity is also a little naïve. One would essentially wish

to implement an enhancement to NS2’s model to broadcast to other nodes and connect to

each node as they move into physical ranges.

6.1 Simulation of Urban Mobility
The Simulation of Urban Mobility (SUMO) tool allows for us to rapidly generate many different

real world topologies that can be imported into the network simulator. We implemented a

script that could take a map downloaded from Open Street Maps and generate a traffic flow

usable in NS2 which is included in the Appendix.

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5

En
d

 t
o

 E
n

d
 D

el
ay

 (
in

 s
ec

)

Number of Background Connections

E2E Delay vs. Background Traffic

Min delay

Average delay

Max delay

13 | P a g e

Below are some quick topologies that were generated to test SUMO’s ability to interface with

NS-2.

Figure 15 and Figure 16 show a vehicle traffic simulation being executed around at Simon Fraser

and University and Granville Street in British Columbia. Each simulation has 100 cars. The maps

were generated for SUMO by downloading maps from openstreetmap.org and the downloaded

maps were then imported into SUMO.

6.2 Distance based vehicle connection initiation
Initially we tried to simulate nodes connecting to each other with the assumption that if a node

was out of range, it would try to connect when the node moved within range. Eventually after

research we found that NS2 has not implemented that functionality and the designer needs to

initiate the connection knowing where the cars are at all points in time.

Ideally we would like to see as cars move within range, a connection is initiated and constant

bit rate data begins to be exchanged. We sought to try and resolve this issue by creating a

python script that browses through a mobility file which tries to automate the process of

connection initiation. And the result of the script that we began to implement is shown in

Figure 17.

Figure 15: Traffic Simulation of SFU

Figure 16: Traffic Simulation Granville Street

14 | P a g e

Figure 17: Result of genTrafficInRange.py

Figure 17 shows the initial implementation. The radio distance was set to 30 m. Using a test

script we could see that as node_(6) moved within range of node_(4) we could output a script

to automatically have the two nodes to connect. Unfortunately we were getting mixed results

as some nodes that were already connected would later try to reconnect again which made

using this script for our project unrealizable. We included the work we accomplished in the

Appendix for future work.

7 Conclusion
In this VANET performance and safety analysis, ns2 is used along with tracegraph to simulate

AODV routing protocol with realistic mobility model for VANET. Graphs are plotted using Excel

for evaluation. The performance is analyzed for up to 30 nodes with respect to various

parameters like car to car distance and number of background connections.

In the future, higher number of nodes can be simulated and analyzed. SUMO could be a

potential tool to generate realistic mobility files. It would be interesting to see how ADOV

performs when in high node density network.

15 | P a g e

8 References

[1] M. Vassiliadis, "Volvo Trucks," 11 March 2015. [Online]. Available:

http://www.volvotrucks.com/trucks/NewZealand-market/en-

nz/newsmedia/pressreleases/Pages/pressreleases.aspx?pubID=14543.

[2] V. Cabrera, F. J. Ros and P. M. Ruiz, "Simulation-Based Study of Common Issues in VANET

Routing Protocols," in Vehicular Technology Conference, Barcelona, 2009.

[3] T. Strang and M. Röckl, "STI Innsbruck," 12 April 2015. [Online]. Available: http://www.sti-

innsbruck.at/sites/default/files/courses/fileadmin/documents/vn-ws0809/11-VN-

WAVE.pdf.

[4] B. G. A. A. Meghna Chhabra1, "A Novel Solution to Handle DDOS Attack in MANET," Journal

of Information Security, vol. 4, p. 15, 2014.

[5] T. Issariyakul and E. Hossain, Introduction to Network Simulator 2, New York: Springer

Science+Business Media, LLC 2012, 2012.

[6] P. V. Estrela, "Pedro Vale Estrela - TraceGraph Help Page," 11 04 2015. [Online]. Available:

http://tagus.inesc-id.pt/~pestrela/ns2/tracegraph.html.

[7] Wiki, "Application layer," 5 Feb 2015. [Online]. Available:

http://en.wikipedia.org/wiki/Application_layer.

[8] S. Grafling, P. Mahonen and J. Riihijarvi, "Performance evaluation of IEEE 1609 WAVE and

IEEE 802.11p for vehicular communications," in Ubiquitous and Future Networks (ICUFN),

Jeju Island, 2010.

[9] S. M. Khan, "College of Engineering, Design and Physical Sciences," 2011. [Online].

Available: http://www.brunel.ac.uk/cedps/electronic-computer-engineering/research-

activities/wncc/student-profiles/shariq-mahmood-khan.

[10] "Information Sciences Institute," 2 April 2015. [Online]. Available:

www.isi.edu/nsnam/ns/tutorial/nsindex.html.

16 | P a g e

9 Appendix A

9.1 Top level script
simulation.tcl

This script reads a mobility.tcl script and networkTraffic.tcl

to generate node movement and traffic

Author: Jeremy Borys

Date: April 12, 2015

Define options

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 500 ;# max packet in ifq

set val(nn) 10 ;# number of mobilenodes

set val(rp) AODV ;# routing protocol

set val(x) 1000 ;# X dimension of topography

set val(y) 20 ;# Y dimension of topography

set val(stop) 20 ;# time of simulation end

set val(sc) "mobility.tcl"

set val(cbr) "networkTraffic.tcl"

set ns_ [new Simulator]

set tracefd [open out1.tr w]

set windowVsTime2 [open windowvtime.tr w]

set namtrace [open simwrls.nam w]

set f0 [open fourwaytraffic.tr w]

set node_size 10

set spacing 50

set num_cars $val(nn)

Record creates periodically records the bandwidth received by

traffic sinc 0 and writes it to the three files f0

proc record {} {

 global sink f0

 set ns_ [Simulator instance]

 # Set the next time to call the prcedure and collect the time and bw

 set time 0.5

 set bw0 [$sink set bytes_]

 set now [$ns_ now]

 # Save the bandwidth to a file and reset the counter and set up the next

 # time to call record again

 puts $f0 "$now [expr $bw0/$time*8/1000000]"

17 | P a g e

 $sink set bytes_ 0

 $ns_ at [expr $now+$time] "record"

}

Printing the window size

proc plotWindow {tcpSource file} {

 global ns_

 set time 0.01

 set now [$ns_ now]

 set cwnd [$tcpSource set cwnd_]

 puts $file "$now $cwnd"

 $ns_ at [expr $now+$time] "plotWindow $tcpSource $file"

}

proc stop {} {

 global ns_ tracefd namtrace f0

 $ns_ flush-trace

 close $tracefd

 close $namtrace

 close $f0

 exec xgraph fourwaytraffic.tr -geometry 800x400 &

 #Execute nam on the trace file

 exec nam simwrls.nam &

 exit 0

}

$ns_ trace-all $tracefd

$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)

Configure the MAC Protocol to use the 802.11p standard

source IEEE802-11p.tcl

Initialize the Topography, god object and area

set topo [new Topography]

set god_ [create-god $val(nn)]

$topo load_flatgrid $val(x) $val(y)

Create and configure all the nodes upto nn number of nodes

$ns_ node-config -adhocRouting $val(rp) \

 -llType $val(ll) \

 -macType $val(mac) \

 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \

 -propType $val(prop) \

 -phyType $val(netif) \

 -channelType $val(chan) \

 -topoInstance $topo \

 -agentTrace ON \

 -routerTrace ON \

 -macTrace OFF \

 -movementTrace ON

18 | P a g e

set num_nodes [expr {$val(nn) * 2}]

for {set i 0} {$i < $val(nn) } { incr i } {

 set node_($i) [$ns_ node]

}

Define traffic model

puts "Loading mobility.tcl file..."

source $val(sc)

puts "Loading networkTraffic.tcl file..."

source $val(cbr)

#Start logging the received bandwidth

$ns_ at 0.0 "record"

$ns_ at 10.1 "plotWindow $tcp $windowVsTime2"

Define node initial position in nam

for {set i 0} {$i < $val(nn)} { incr i } {

 # 30 defines the node size for nam

 $ns_ initial_node_pos $node_($i) 10

}

Telling nodes when the simulation ends

for {set i 0} {$i < $val(nn) } { incr i } {

 $ns_ at $val(stop) "$node_($i) reset";

}

ending nam and the simulation

$ns_ at $val(stop) "$ns_ nam-end-wireless $val(stop)"

$ns_ at $val(stop) "stop"

$ns_ at $val(stop) "puts \"end simulation\" ; $ns_ halt"

#Call the finish procedure after 5 seconds of simulation time

$ns_ run

9.2 Mobility Script

mobility.tcl

Author: Jeremy Borys

Date: April 12, 2015

set TOPO_Y $val(y)

The starting origin for the cars along the highway

set ori_x 10.0

set ori_y [expr {$val(y)/2.0}]

set ori_z 0.0

the final point that the cars move

set final_x 995.0

set final_y [expr {$val(y)/2.0}]

the velocity of the cars along the highway in m/s

set velocity 30

19 | P a g e

set lane 0

set lanecnt 0

set xpos 0

for {set i 0} {$i < $num_cars} {incr i} {

 if {[expr {$i % 10}] == 0} {

 incr lane

 set xpos 0

 }

 $node_($i) set X_ [expr {$ori_x + 50 + $xpos * $spacing}]

 $node_($i) set Y_ [expr {$ori_y - $lane * 15}]

 $node_($i) set Z_ $ori_z

 incr xpos

}

$node_(0) set X_ 5

$node_(0) set Y_ [expr {$ori_y + 30}]

for {set i 0} {$i < $num_cars} {incr i} {

 $ns_ at 0.0 "$node_($i) setdest $final_x $final_y $velocity"

}

9.3 Network Traffic script

networkTraffic.tcl

Author: Jeremy Borys

Date: April 12, 2015

set ns $ns_

$ns_ color 1 Blue

$ns_ color 1 Red

generate the background traffic using a pre-generated script

source cbrconntest1.tcl

Set a TCP connection between node_(0) and node_(1)

set tcp [new Agent/TCP/Newreno]

$tcp set class_ 2

$tcp set color 1 Blue

$tcp set rate_ 1200k

$tcp set packetSize_ 1024

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ns_ at 1.0 "$ftp start"

set sink [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp

$ns_ attach-agent $node_(9) $sink

$ns_ connect $tcp $sink

20 | P a g e

9.4 Constant Bitrate traffic

This script was autogenerated using ns cbrgen.tcl

nodes: 9, max conn: 1, send rate: 0.01, seed: 1

1 connecting to 2 at time 0.28409320874330274

set udp_(0) [new Agent/UDP]

$ns_ attach-agent $node_(1) $udp_(0)

set null_(0) [new Agent/Null]

$ns_ attach-agent $node_(2) $null_(0)

set cbr_(0) [new Application/Traffic/CBR]

$cbr_(0) set packetSize_ 512

$cbr_(0) set interval_ 0.01

$cbr_(0) set random_ 1

$cbr_(0) set maxpkts_ 10000

$cbr_(0) attach-agent $udp_(0)

$ns_ connect $udp_(0) $null_(0)

$ns_ at 0.28409320874330274 "$cbr_(0) start"

9.5 OSM to NS2 mobility file generation

#!/bin/sh

mobilityGen.sh

Convert a map.osm to a mobility file for use with NS-2

Author: Jeremy Borys

Date: April 12, 2015

echo 'File to read:' $1

echo 'Number of Cars:' $2

Extracting the file name from osm

fname=${1%.osm}

Assuming that typemap.xml has been downloadded otherwise have to download

from internet

cp ../typemap.xml ./typemap.xml

SUMO_HOME=~/untarred_files/sumo-0.23.0

create map from open street map, typemap.xml is located on SUMO's

documentation

netconvert --osm-files ./$1 -o ./$fname.net.xml

polyconvert --net-file ./$fname.net.xml --osm-files ./$1 --type-file

./typemap.xml -o $fname.poly.xml

Generates random trips

python $SUMO_HOME/tools/trip/randomTrips.py -n $fname.net.xml -e $2 -l

python $SUMO_HOME/tools/trip/randomTrips.py -n $fname.net.xml -r

$fname.rou.xml -e $2 -l

21 | P a g e

Create a sumocfg file to load with sumo

echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?> \

\n \

<configuration xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"

xsi:noNamespaceSchemaLocation=\"http://sumo.dlr.de/xsd/sumoConfiguration.xsd\

"> \

\n \

 <input>\n \

 <net-file value=\"$fname.net.xml\"/>\n \

 <route-files value=\"$fname.rou.xml\"/>\n \

 <additional-files value=\"$fname.poly.xml\"/>\n \

 </input> \n \

\n \

 <time>\n \

 <begin value=\"0\"/>\n \

 <end value=\"300\"/>\n \

 <step-length value=\"0.1\"/>\n \

 </time>\n \

\n \

</configuration>" > $fname.sumocfg

As of sumo 2.23 location is not a valid xml variable and is commented out

sed -e 's/<location/<!--<location/' -e 's/no_defs\"\/>/no_defs\"\/>-->/'

$fname.poly.xml > tmp && mv tmp $fname.poly.xml

sumo -c $fname.sumocfg --fcd-output $fname.fcd.xml

python ~/untarred_files/sumo-0.23.0/tools/traceExporter.py -i $fname.fcd.xml

--ns2mobility-output=$fname.ns2mob

9.6 Generating a distance based solutions
genNetTrafficInRange.py

This scrip will parse through a mobility file and determine

when a node should connect to another node

Author: Jeremy Borys

Date: April 12, 2015

import re

import math

NODE = 0

FILE = 'testcase1'

RANGE = 30

update_pos = re.compile('.*$node_([0-9]*) setdest ([0-9].*.[0-9].*) ([0-

9].*.[0-9].*)')

update_pos = re.compile('([0-9]*.[0-9]*) "(\$node_\([0-9]*\)) setdest ([0-

9]*.[0-9]*) ([0-9]*.[0-9]*)')

X, Y = 0, 1

22 | P a g e

pos = {}

class Car():

 def __init__(self):

 x = 0

 y = 0

conn_map = {}

def main():

 with open(FILE) as f:

 mobility = f.readlines()

 for line in mobility:

 # read the line and find all important information

 m = update_pos.search(line)

 if not m:

 continue

 # store the current position of the node

 pos.update({m.group(2): [float(m.group(3)), float(m.group(4))]})

 # Maintain a connection map to determine which node is connected to

what

 conn_map.update({m.group(2):{m.group(2):1}})

 # if m.group(1) == '$node_(0)':

 # print pos['$node_(0)']

 # import pdb; pdb.set_trace()

 # for a given node compare the position with other nodes

 for node1, val1 in pos.items():

 # print "comparing %s" % node1

 # print "................"

 for key2, val2 in pos.items():

 # print "%s => %s" % (node1, key2)

 if node1 == key2:

 continue

 # if (node1 == '$node_(4)' or key2 == '$node_(4)') and (node1

== '$node_(6)' or key2 == '$node_(6)'):

 # import pdb; pdb.set_trace()

 dist = math.sqrt((val1[0] - val2[0])**2 + (val1[1] -

val2[1])**2)

 if dist < RANGE:

 if conn_map[node1].get(key2, 0):

 # print "Flipping from 0->1:",

conn_map[node1].get(key2, 0)

 # print "%s already connected to %s" % (node1, key2)

 continue

23 | P a g e

 # import pdb; pdb.set_trace()

 print "DIST: %f, %s will connect to %s" % (dist, node1,

key2)

 conn_map[node1][key2] = 1

 conn_map[key2][node1] = 1

 elif dist > RANGE:

 if conn_map[node1].get(key2, 0):

 # pass

 # import pdb; pdb.set_trace()

 print "DIST: %f, %s is flipping from %s 1->0" %

(dist, node1, key2)

 else: # not connected

 pass

 conn_map[node1][key2] = 0

 conn_map[key2][node1] = 0

 else:

 print "should never go here"

 # for line in mobility:

 # if update_pos.search(line):

 # curpos[X], curpos[Y] = update_pos.search(line)

 # continue

 # elif:

 # else:

 # print "Not found"

if __name__ == '__main__':

 main()

