Video Streaming over WiFi using Riverbed Modeler 18.0

Michael Ng – 301136816 – mzng@sfu.ca Ching Ho Weng – 301139567 – chweng@sfu.ca http://www.sfu.ca/~chweng/ENSC427HP.html Group #1

Overview

- Purpose
- WiFi and Wireless LAN (WLAN)
- WiFi in Home Networks
- Network Topology
- Simulated Applications
 - Heavy Browsing
 - Light Browsing
 - Video Streaming
- Streaming a Movie
 - Effect of Frame Rate
 - Effect of Data Rate
 - Movie Content
- Conclusion
- Q&A

Purpose

- Simulating and analyzing a home network system with multiple clients.
- To determine how the network is affected by various levels of activity.
- Viewing modern applications of WiFi usage, like streaming over the Internet or connecting to a local media server.
- Observing how data rate, frame rate, and the movie content affects the Quality of Service (QoS) for the user.

WiFi and Wireless LAN (WLAN)

- WiFi is a technology that allows devices to connect to a Wireless LAN (WLAN) network.
- WiFi is based on IEEE 802.11 standards.
- WiFi standard g is used in our project due to its popularity.
- Gives advantage of mobility and flexibility.

WiFi in Home Networks

- WiFi is the most commonly used technology in home networks.
- Grants Internet access to all devices on the network, wirelessly.
- WiFi as a standard feature in computers, laptops, and smartphones.

Network Topology

- A WLAN Router connected to an Ethernet Server by a 1000BaseX Link
 - 5 WLAN workstations each simulating different applications.
 - 2 workstations browsing the Internet.
 - 1 workstation streaming a video from the Internet.
 - 2 workstations streaming a movie from a home network server.

Simulated Application - Heavy Browsing

• The Heavy Browsing application has a large object size to simulate websites with large data costs. E.g. DeviantArt or reddit.

A)	utomatically Loaded Page Objects) Table		ĺ.		
	Object Size (bytes)	Number of Objects (objects per page)	Location	Back-End Custom Application	Object _ Group
constant (20000)	constant (20000)	constant (1)	HTTP Server	Not Used	HTTP (
uniform_int (5000, 15000)	uniform_int (5000, 15000)	normal (10, 5)	HTTP Server	Not Used	HTTP (
Rows Delet	e Insert I	Duplicate	Move Up	Move Dow	/m

Simulated Application - Light Browsing

 The Light Browsing application has an small object size to simulate websites with a small amount of content. E.g. Email, Google, and class webpages

		(Automatically Loa	ded Page (Objects) Ta	ble	×
		Object Size (bytes)	Number of Objects (objects per page)	Location	Back-End Custom Application	Object 🛆 Group Name
	constant (10000)	constant (10000)	constant (1)	HTTP Server	Not Used	HTTP Objec
ι	uniform_int (100, 4000)	uniform_int (100, 4000)	normal (10, 5)	HTTP Server	Not Used	HTTP Objec
M	1					
2	Rows De	elete <u>I</u> nsert	Duplicate	Move U	p <u>Mo</u> ve	Down
	D <u>e</u> tails <u>P</u> ro	mote Show row	labels		0 <u>K</u>	<u>C</u> ancel

Simulate Application - Video Streaming

- Video streaming is a user broadcasting media content to multiple viewers or clients.
- Video streaming content is being delivered in real time over the Internet.
- Examples of video streaming services are: Twitch and YouTube.

Attrit	oute	Value	i i i i i i i i i i i i i i i i i i i
	Video Streaming		
3	Name	Video Streaming	
2	Description	()	
2	Custom	Off	2
2	Database	Off	
2	Email	Off	
2	Ftp	Off	
2	Http	Video Browsing	
2	Print	Off	
2	-Peer-to-peer File Sharing	Off	
2	Remote Login	Off	i i i
2	- Video Conferencing	Off	1
?)	Video Streamina	loff	

Heavy and Light Browsing vs Video Streaming

- Streaming videos transmits much larger amount of data than browsing websites.
- Depending on the delivery method of the medium, throughput rate will vary.

Streaming a Movie

Network-Attached Storage (NAS)

- Jurassic Park First movie to use large amounts of computer-generated imagery.
- Aladdin Hand Drawn frames.

Image Reference: https://www.synology.com, http://www-tkn.ee.tu-berlin.de/research/trace/ltvt.html

Effect of Frame Rate on Delay

- Choosing 30 FPS and 10 FPS to give more easily comparable options.
- WLAN delay and End-to-End delay are both increased as FPS is increased for Aladdin.

Effect of Frame Rate on Throughput and Traffic

• There is an increase in the throughput rate as well as in the received traffic as frame rate is increased.

Effect of Data Rate on Delay

 Data rate of the router can be increased, resulting in a decrease in delay in both movies.

Effect of Data Rate on Jitter

- Packet delay variation is commonly known as jitter.
- Jitter is decreased as the data rate is increased.
- The router at a rate of 48Mbps is less likely to backup compared to a data rate of 12Mbps.

Effect of Data Rate on Throughput

- Throughput for Jurassic Park increases as data rate for the router increases.
- However, Aladdin shows a decrease in throughput, given a data rate increase.
- Aladdin is possibly being buffered by the router, at the lower data rate case which causes an increase in throughput.

Effect of Data Rate on Traffic Received

- With Jurassic Park, the received traffic increases as the data rate increases.
- However, Aladdin has a similar amount of traffic received with an exception of a large spike.
- This spike can be attributed to a buffer, which would allow the 12Mbps Aladdin movie to be run smoothly.

Effects of Movie Content on Delay

- Jurassic Park contains a lot of heavy computer-generated imagery.
- On the other hand, Aladdin has all of the frames hand-drawn.
- Thus, Aladdin has less information per frame, so it has less delay.

Effects of Movie Content on Jitter

• As a result of Jurassic Park having much more content, it also has an increase in the packet delay variation

Effect of Movie Content on Throughput

- Aladdin has a much higher throughput rate than Jurassic Park.
- The compression ratio for Jurassic Park is smaller than Aladdin's.
- This results in an increased loss of packets for Jurassic Park.

Conclusion

- Our simulations and results show that video streaming has the highest throughput and delay.
- Increasing frame rate has tradeoffs; increasing data rate improves all QoS statistics.
- Streaming Aladdin had increased throughput rates, while having lower delay, End-to-End delay, and jitter, compared to Jurassic Park.
- Algorithm for the compression of Jurassic Park may be inefficient, resulting in packet loss.

References

[1] I. Gupta and P. Kaur, "Comparative Throughput of WiFi and Ethernet LANs using OPNET MODELER," *International Journal of Computer Applications*, vol. 1, no. 2, Dec. 2010. [Online]. Available: http://www.ijcaonline.org/volume8/number6/pxc3871753.pdf.

[2] "Wireless LAN (Wifi) Tutorial." *Tutorial-Reports.com*. Feb. 2013 [Online]. Available: http://www.tutorial-reports.com/wireless/wlanwifi/index.php.

[3] R. Paul, S. Lally, and Lj. Trajkovic, "Simulation and performance evaluation of WiFi and WiMAX using OPNET," *OPNETWORK* 2011, Washington, DC, Aug. 2011. [Online]. Available: http://www2.ensc.sfu.ca/~ljilja/papers/Opnetwork2011_paul_lally_final.pdf.

[4] "How Wi-Fi Works", retrieved Feb 2016. [Online]. Availible: http://nostarch.com/download/wifi_01.pdf.

[5] W. Hrudey and Lj. Trajkovic, "Streaming Video Content Over IEEE 802.16/WiMAX Broadband Access," *OPNETWORK 2008*, Washington, DC, Aug. 2008. [Online]. Available: http://www2.ensc.sfu. ca/~ljilja/papers/hrudey_trajkovic_opnetwork2008_final_revised_again.pdf.

[6]J. Kim, J. Zheng and P. Bertsch, Video Streaming over WiFi, 1st ed. 2015. [Online]. Available:http://www2.ensc.sfu. ca/~ljilja/ENSC427/Spring15/Projects/team2/ENSC427_team2_report.pdf.

[7]"Directory listing for Jurassic", *Www-tkn.ee.tu-berlin.de*, 2016. [Online]. Available: http://www-tkn.ee.tu-berlin. de/research/trace/pics/FrameTrace/mp4/indexaa60.html.

References Cont.

[8]"Directory listing for Aladdin", *Www-tkn.ee.tu-berlin.de*, 2016. [Online]. Available: http://www-tkn.ee.tu-berlin. de/research/trace/pics/FrameTrace/mp4/indexa4f6.html.

[9]"Trace Statistics", *Www-tkn.ee.tu-berlin.de*, 2016. [Online]. Available: http://www-tkn.ee.tu-berlin.de/research/trace/stat.html. [Accessed: 01- Apr- 2016].

[10]"Throughput", *Wikipedia*, 2016. [Online]. Available: https://en.wikipedia.org/wiki/Throughput.

Thank You

