Performance Analysis of Video Streaming over LTE using Riverbed

ENSC 427 – Communication Networks Spring 2016

Group #2 Project URL:

http://www.sfu.ca/~rkieu/ENSC427 Project.html

Amer, Zargham301149920Kieu, Ritchie301149668Xiao, Lei301133381

Roadmap

- Introduction
- Project Overview
- Project Design
- Simulation Results and Analysis
- Summary
- References
- Questions

Introduction

- A lot of internet browsing and video streaming is done over Long Term Evolution (LTE)
- Users prefer watching videos on their cell phones while at work and home, or while travelling
- We analyze the performance of YouTube streaming over LTE using Riverbed

Introduction - LTE Technology

- One of the most commonly used and fastest growing wireless telecommunication technologies
- Used by network operators around the globe for highspeed communication for smart phones or data terminals
- Fast downloading rate: 5-12 Megabits/second(Mbps)

Project Overview

- Scenario Zero Validation Scenario
- Scenario One Single base station with one mobile node and two fixed nodes
- Scenario Two Two base stations with single mobile node
- Scenario Three Three base stations with one then two mobile nodes
- Aim Analyze Throughput and Delay for all scenarios

Project Design - Wireshark

lo.	Time	Source	Destination	Protocol	Length Info
	25 11.375375	199.212.24.16	207.23.168.151	TCP	1450 [TCP segment of a reassembled PDU]
	26 11. 375663	199.212.24.16	207.23.168.151	HTTP	1076 HTTP/1.1 200 OK (text/html)
	27 11.375727	207.23.168.151	199.212.24.16	TCP	54 51664 → 80 [ACK] Seq=288 Ack=2419 Win=65536 Len=0
	28 23.203122	74.125.28.95	207.23.168.151	TCP	6080 → 65134 [FIN, ACK] Seq=1 Ack=2 Win=344 Len=0
	29 23.203245	207.23.168.151	74.125.28.95	TCP	54 65134 → 80 [ACK] Seq=2 Ack=2 Win=256 Len=0
	30 32.332730	207.23.168.151	74.125.28.95	TCP	5465134 → 80 [FIN, ACK] Seq=2 Ack=2 Win=256 Len=0
	31 32.345979	74.125.28.95	207.23.168.151	TCP	60 80 → 65134 [ACK] Seq=2 Ack=3 Win=344 Len=0
	32 45.135637	207.23.168.151	54.243.128.120	TCP	55[TCP Keep-Alive] 51511 → 80 [ACK] Seq=553 Ack=6523 Win=62894 Len=1
	33 45.203336	54.243.128.120	207.23.168.151	TCP	60[TCP Keep-Alive ACK] 80 → 51511 [ACK] Seq=6523 Ack=554 Win=27097 Len=0
	34 53.409429	207.23.168.151	23.235.47.192	TCP	55 [TCP Keep-Alive] 65136 \rightarrow 80 [ACK] Seg=1 Ack=1 Win=256 Len=1
	35 53.434616	23.235.47.192	207.23.168.151	TCP	66 [TCP Keep-Alive ACK] 80 → 65136 [ACK] Seq=1 Ack=2 Win=60 Len=0 SLE=1 SRE=2
	36 55, 689192	207.23.168.151	142.231.1.182	TCP	55[TCP Keep-Alive] 65205 → 80 [ACK] Seq=1 Ack=1 Win=255 Len=1
	37 55.697261	142.231.1.182	207.23.168.151	TCP	66 [TCP Keep-Alive ACK] 80 \rightarrow 65205 [ACK] Seq=1 Ack=2 Win=961 Len=0 SLE=1 SRE=2
	38 56.375730	207.23.168.151	199.212.24.16	TCP	55[TCP Keep-Alive] 51664 → 80 [ACK] Seq=287 Ack=2419 Win=65536 Len=1
	39 56 389421	199.212.24.16	207.23.168.151	TCP	66[TCP Keep-Alive ACK] 80 → 51664 [ACK] Seq=2419 Ack=288 Win=30336 Len=0 SLE=287 SRE=288
	40 65.156487	54.243.128.120	207.23.168.151	TCP	6080 → 51511 [FIN, ACK] Seq=6523 Ack=554 Win=27097 Len=0
	41 65.156532	207.23.168.151	54.243.128.120	TCP	54 51511 → 80 [ACK] Seq=554 Ack=6524 Win=62894 Len=0
	4271.813809	199.212.24.16	207.23.168.151	TCP	6080 → 51664 [FIN, ACK] Seq=2419 Ack=288 Win=30336 Len=0
	43 71.813811	199.212.24.16	207.23.168.151	TCP	60[TCP Out-Of-Order] 80 → 51664 [FIN, ACK] Seq=2419 Ack=288 Win=30336 Len=0
	44 71.813894	207.23.168.151	199.212.24.16	TCP	54 51664 → 80 [ACK] Seq=288 Ack=2420 Win=65536 Len=0
	4571.814106	199.212.24.16	207.23.168.151	TCP	60[TCP Out-Of-Order] 80 → 51664 [FIN, ACK] Seq=2419 Ack=288 Win=30336 Len=0
	4671.814143	207.23.168.151	199.212.24.16	TCP	54 [TCP Dup ACK 44#1] 51664 → 80 [ACK] Seq=288 Ack=2420 Win=65536 Len=0
	47 72.336787	207.23.168.151	54.243.128.120	TCP	5451511 → 80 [FIN, ACK] Seq=554 Ack=6524 Win=62894 Len=0
ŝ.	48 72.637155	207.23.168.151	54.243.128.120	TGP	54 [TCP Retransmission] 51511 → 80 [FIN, ACK] Seq=554 Ack=6524 Win=62894 Len=0
	4972.642488	54.243.128.120	207.23.168.151	TCP	6080 → 51511 [RST] Seq=6524 Win=0 Len=0
	5072.835951	54.243.128.120	207.23.168.151	TCP	6080 → 51511 [RST] Seq=6524 Win=0 Len=0
	5181.385450	207.23.168.151	199.212.24.16	TCP	54 51664 → 80 [FIN, ACK] Seq=288 Ack=2420 Win=65536 Len=0
11. se	5281.387298	199.212.24.16	207.23.168.151	TCP	6080 → 51664 [RST] Seq=2420 Win=0 Len=0
	53 92.339712	207.23.168.151	142.231.1.182	TCP	54 65205 → 80 [FIN, ACK] Seq=2 Ack=1 Win=255 Len=0
	54 92.339913	207.23.168.151	23.235.47.192	TCP	54 65136 → 80 [FIN, ACK] Seq=2 Ack=1 Win=256 Len=0
	55 92.342591	142.231.1.182	207.23.168.151	TCP	6080 → 65205 [FIN, ACK] Seq=1 Ack=3 Win=961 Len=0
	56 92, 342683	207.23.168.151	142.231.1.182	TCP	54 65205 → 80 [ACK] Seg=3 Ack=2 Win=255 Len=0

• Wireshark information of playing the video.

April 17, 2016

Project Design - Wireshark

чећта		199.212.24.21.	Uy Les-JZ	CTILIC-TOURS I	16-20
Reply	from	199.212.24.21:	bytes=32	time=1ms TT	L=58
Reply	from	199.212.24.21:	bytes=32	time=2ms TT	L=58
Reply	from	199.212.24.21:	bytes=32	time=2ms TT	L=58
Reply	from	199.212.24.21:	bytes=32	time=1ms TT	L=58
Reply	from	199.212.24.21:	bytes=32	time=1ms TT	L=58
Reply	from	199.212.24.21:	bytes=32	time=2ms TT	L=58
Reply	from	199.212.24.21:	bytes=32	time=2ms TT	L=58

- Pinged 'www.youtube.com'
- Found that the IP address for YouTube is 199.212.24.21
- Time to live (TTL) for YouTube is 58 seconds

Project Design - Application

T.	(Application	n) Attributes	×
Туре: [utility		1
Attr	ibute	Value	
1 = 1	Application Definitions	()	
1	-Number of Rows	1	j
	B Youtube1080p		
0	-Name	Youtube1080p	
1	Description	()	
1	-Custom	Off	
1	-Database	Off	
1	- Email	Off	
1	Ftp	Off	-
0	Http	()	
0	- Print	Off	
1	-Peer-to-peer File Sharing	Off	
(?)	-Remote Loain	loff	

YouTube Application

Project Design - Application

	(Http) Table
Attribute	Value
HTTP Specification	HTTP 1.1
Page Interarrival T	uniform (0.03333333333, 066666666666)
Page Properties	()
Server Selection	()
RSVP Parameters	None
Type of Service	Best Effort (0)

(Streamed Video P)	roperties) Table	×
Attribute	Value	
Video Existence Probability	All Pages Include a Video	1
Play Start Time Offset (seconds)	constant (5)	
Video Length (seconds)	exponential (300)	
Video Type	On Demand	
Frame Inter-arrival Time (seconds)	exponential (0.1)	
Frame Size (bytes)	poisson (20000)	
Location	HTTP Server	
Back-End Custom Application	Not Used	
Object Group Name	HTTP Video Object	

Hyper Text Transfer Protocol

(HTTP) Settings

Video Properties

		(Automat	(Automatically Loaded Page Objects) Table					
	Object Size (bytes)	Number of Objects (objects per page)	Location	Back-End Custom Application	Object Group Name			
constant (1092227)	constant (109227)	Single Object	HTTP Server	Not Used	Not Used			

Loaded Page Objects

ENSC 427 - Performance Analysis of Video Streaming

over LTE using Riverbed

Project Design - Profile

r	(Profile) A	ttributes	×
Тур	e: Utilities		
	Attribute	Value	
1	Profile Configuration	()	
1	-Number of Rows	1	
- 8	🖻 YouTube1080p		
0	-Profile Name	YouTube1080p	
0	Applications	()	
0	-Operation Mode	Serial (Ordered)	
1	Start Time (seconds)	uniform (100,110)	
1	-Duration (seconds)	End of Simulation	
1	Repeatability	()	
1	-Inter-repetition Time (secon	constant (300)	
1	-Number of Repetitions	constant (0)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
0	L Repetition Pattern	Serial	
(?)	-hostname		

YouTube Profile

Project Design – Scenario Zero

Scenario Zero – Validation Topology

ENSC 427 - Performance Analysis of Video Streaming over LTE using Riverbed

Project Design – Scenario Zero

Topology for Base Station 2

Topology for Base Station 1

ENSC 427 - Performance Analysis of Video Streaming over LTE using Riverbed

Simulation Results and Analysis – Scenario Zero

Throughput of Fixed Workstations

Delay of Fixed Workstations

Project Design – Topology for Scenario One, Two, and Three

Client Subnet

ENSC 427 - Performance Analysis of Video Streaming

over LTE using Riverbed

Project Design – Mobility

r		(Mobility Config) Attributes
Тур	e: Utilities	
	Attribute	Value
0	-Profile Name	Random Waypoint (Auto Create)_1
0	Mobility Model	Random Waypoint
0	Random Waypoint Parameters	()
0	- Mobility Domain Name	Not Used
0	⊷×_min (meters)	-35,000
0	∽y_min (meters)	-30,310.8891325
0		35,000
0	-y_max (meters)	30,310.8891325
0	- Speed (meters/seconds)	constant (5.000000)
0	-Pause Time (seconds)	constant (100)
0	- Start Time (seconds)	constant (10)
0	- Stop Time (seconds)	End of Simulation
0	-Animation Update Frequen	1.0
0	Record Trajectory	Disabled
0	hostname	
0	[!] role	

Mobility

Project Design – Server

r	📔 (Youtube_server) Attributes 🛛 🛛 🗡					
Ту	be: server		_			
	Attribute	Value	$\overline{\Delta}$			
	Applications					
1	Application: Destination Prefere	()				
1	-Number of Rows	1				
	All Applications					
0	- Application	All Applications				
0	-Symbolic Name	HTTP Server				
0	🖻 Actual Name	()				
0	Number of Rows	0				
0	Application: Supported Profiles	()				
0	-Number of Rows	1				
	Youtube_Profile					
0	-Profile Name	Youtube_Profile				
0	Traffic Type	All Discrete				
0	🖻 Application Delay Tracking	()				
0	- Start Time (seconds)	Start of Simulation				
0	-End Time (seconds)	End of Simulation				
0	-Sample Every N Applicat	All				
0	-Maximum Samples	Tracking Disabled				
0	- Application: Supported Services	None				
0	Application: Transaction Model	()				

YouTube Server

Project Design – Scenario One

Client Subnet

ENSC 427 - Performance Analysis of Video Streaming over LTE using Riverbed

Project Design – Scenario One

ľ	i (eNodeB_1) Attributes ×							
Тур	pe: enodeb							
	Attribute	Value	$\overline{\Delta}$					
?	Address	Auto Assigned						
	🖻 LTE							
1	Admission Control Parameters	Default						
	🖻 PHY							
?	- Antenna Gain (dBi)	15 dBi						
1	-Battery Capacity	Unlimited						
0	- MIMO Transmission Technique	Spatial Multiplexing 2 Codewords 2 Layers						
1	-Maximum Transmission Power	0.5						
1	-Number of Receive Antennas	2						
1	-Number of Transmit Antennas	2						
0	- Operating Power	10						
0	PHY Profile	LTE 10 MHz FDD						
2	Pathloss Parameters	()						
0	- Pathloss Model	Free Space						
0	-Model Arguments	Not Applicable						
0	Shadow Fading	Disabled						
0	Enceiver Sensitivity (dBm)	-200dBm						
1	Buffer Status Report Parameters	Default	∇					

Base Station Attributes

ENSC 427 - Performance Analysis of Video Streaming

over LTE using Riverbed

Project Design – Scenario One

	Edit Trajectory Information ×												
Trajectory name: RK_test													
	X Pos (m)	Y Pos (m)	Distance (m)	Altitude (m)	Traverse Time	Ground Speed	Ascent Rate (m/sec)	Wait Time	Accum Time	Pitch (degrees)	Yaw (degrees)	Roll (degrees)	
	1 0.000000	0.000000	n/a	0	n/a	n/a	n/a	0	00.00s	Autocomputed	Autocomputed	Autocomputed	
	2 -25,432.242118	-48,421.005687	54,642.0837	0	15m00.00s	135.8121	0	0	15m00.00s	Autocomputed	Autocomputed	Autocomputed	

Mobile Node Trajectory

April 17, 2016

Simulation Results and Analysis – Scenario One

Throughput of Fixed Nodes (Blue and Red) and Mobile Node (Green) Delay of Fixed Nodes (Blue and Green) and Mobile Node (Red)

ENSC 427 - Performance Analysis of Video Streaming over LTE using Riverbed

Project Design – Scenario Two

Client Subnet with Two Base Stations and a Mobile Node

ENSC 427 - Performance Analysis of Video Streaming over LTE using Riverbed

Project Design – Scenario Two

r	(eNodeB_1)	Attributes ×	ľ	(eNodeB	2) Attributes	>
Тур	Type: enodeb			/pe: enodeb		
	Attribute	Value		Attribute	Value	
	■ PHY			E PHY		
0	– Antenna Gain (dBi)	15 dBi	1	Antenna Gain (dBi)	15 dBi	
0	-Battery Capacity	Unlimited	2	Battery Capacity	Unlimited	
0	- MIMO Transmission Technique	Spatial Multiplexing 2 Codewords	2	MIMO Transmission Techn	iique Spatial Multiplexing 2 Codewo	rds
0	-Maximum Transmission Power	0.5	0	Maximum Transmission Pov	wer 0.5	
0	-Number of Receive Antennas	2	0	Number of Receive Antenn	nas 2	
0	-Number of Transmit Antennas	2	0	Number of Transmit Antenn	nas 2	
0	Operating Power	10	1	Operating Power	10	
0	- PHY Profile	LTE 5 MHz FDD	1	- PHY Profile	LTE 10 MHz FDD	
2	Pathloss Parameters	()	1	Pathloss Parameters	Free Space	
0	Receiver Sensitivity (dBm)	-200dBm	1	Receiver Sensitivity (dBm)	-200dBm	
?	🗉 Buffer Status Report Parameters	Default	1	🖲 🗉 Buffer Status Report Paramete	ers Default	
Ы			2	🕅 🖃 CQI Transmission Parameters	: Default	

Base Stations Attributes

April 17, 2016

Simulation Results and Analysis – Scenario Two

Throughput of Mobile Node going from 10MHz to 5MHz Base Stations

Delay of Mobile Node going from 10MHz to 5MHz Base Stations

Project Design – Scenario Three

Client Subnet with Three Base Stations and Two Mobile Nodes

ENSC 427 - Performance Analysis of Video Streaming over LTE using Riverbed

Project Design – Scenario Three

ľ	(eNodeB_1)	Attributes ×	:	(eNodeB_2)	Attributes	2
ту	pe: enodeb		Туре	e: enodeb		
	Attribute	Value	[Attribute	Value	2
	E PHY			B PHY		
2) - Antenna Gain (dBi)	15 dBi	2	- Antenna Gain (dBi)	15 dBi	
2) Battery Capacity	Unlimited	2	-Battery Capacity	Unlimited	
2	MIMO Transmission Technique	Spatial Multiplexing 2 Codewords		-MIMO Transmission Technique	Spatial Multiplexing 2 Codewords	
2)	0.5			0.5	
2	Number of Receive Antennas	2	2	-Number of Receive Antennas	2	Ē
2	Number of Transmit Antennas	2	2	-Number of Transmit Antennas	2	
2) Operating Power	10	2	- Operating Power	10	
2)	LTE 5 MHz FDD	2	PHY Profile	LTE 10 MHz FDD	
Ĩ	Pathloss Parameters	()	2		Free Space	
Ĩ	Receiver Sensitivity (dBm)	-200dBm	2	Receiver Sensitivity (dBm)	-200dBm	
Ĩ) 🗉 Buffer Status Report Parameters	Default 🗸 🗸	2	🖲 Buffer Status Report Parameters	Default	
Ŕ				🕫 CQI Transmission Parameters	Default	\sum

Base Stations Attributes

April 17, 2016

Project Design – Scenario Three

	1				Edit Tra	jectory	Inforn	natio	n				×	
Т	Trajectory name: RK_test													
	X Pos (m)	Y Pos (m)	Distance (m)	Altitude (m)	Traverse Time	Ground Speed	Ascent Rate (m/sec)	Wait Time	Accum Time	Pitch (degrees)	Yaw (degrees)	Roll (degrees)		
	1 0.000000	0.000000	n/a	0	n/a	n/a	n/a	0	00.00s	Autocomputed	Autocomputed	Autocomputed		
	2 -184,871.759327	-94,624.327773	206,287.0604	0	15m00.00s	512.7233	0	0	15m00.00s	Autocomputed	Autocomputed	Autocomputed		

Mobile Node Trajectories

April 17, 2016

Simulation Results and Analysis – Scenario Three

 Object: eNor Object: eNor Object: eNor 	deB_1 of Wireless Subnet_1 deB_2 of Wireless Subnet_1 deB_3 of Wireless Subnet_1							
			TE.Throughput (pas	:kets/sec)				
-								
-								
-								
-								
					Ν			
					A.			
-								
-								
-								
-								~
-								
-								
		1111						
			~					
	$\neg \land \land \land$	IN	\mathcal{A}			(1)		
	V V V	IVV	1					
1-			1			1		
-			1			X		
-		L	1	_	-	1	 	

Throughput of Single Mobile Node Traversing Three Base Stations Throughput of Two Mobile Nodes Traversing Three Base Stations

April 17, 2016

Simulation Results and Analysis – Scenario Three

Delay of Single Mobile Node TraversingDelay of Two Mobile Nodes TraversingThree Base StationsThree Base Stations

Summary

- Better to start with the basic topology and build on top of it
- Mostly consistent with our expectation of results
- How using mobile nodes with different base stations gave us a better understanding of how the signal handover works and how results vary with distance from the base stations

References

- [1] "LTE (telecommunication)". (2016, March). [Online]. Accessed on: https://en.wikipedia.org/wiki/LTE_(telecommunication).
- [2] J. D. Biersdorfer. "Q& A: The Difference Between 4G and 4G LTE". (2012, March). [Online]. Accessed on: http://mobile.nytimes.com/blogs/gadgetwise/2012/03/26/qa-the-need-for-speed/.
- [3] M. Rouse. "Evolved Packet Core (EPC)." (2011, January). [Online]. Accessed on: http://searchtelecom.techtarget.com/definition/Evolved-Packet-Core-EPC.
- [4] J. Ozer. "Encoding for YouTube: How to Get the Best Results." (2012, July). [Online]. Accessed on: http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/Encoding-for- YouTube-How-to-Getthe-Best-Results-83876.aspx
- [5] Y. Chen, and S. Sheng, and J. Yoo. "High Resolution Video Streaming over Wi-Fi, WiMAX and LTE." 2014, March). [Online]. Accessed on: http://www.sfu.ca/~cyc19/report.pdf.
- [6] G. A. Abed, and M. Ismail, and K. Jumari. "A Realistic Model and Simulation Parameters of LTE- Advanced Networks." [Online]. Fac. Eng. & Built Env., National University of Malaysia, Selangor, Rep. ISSN:2278-1021. August 2012. Accessed on: http://www.ijarcce.com/upload/august/16-A%20Realistic%20Model%20and%20-Ghassan.pdf.
- [7] "LTE Tutorial". (2016). [Online]. Accessed on: http://www.tutorialspoint.com/lte/lte_quick_guide.htm.

