Example: Impact of Bit Error Rate

 n_f =1250 bytes = 10000 bits, n_a = n_o =25 bytes = 200 bits Find efficiency for random bit errors with p=0, 10⁻⁶, 10⁻⁵, 10⁻⁴

$$1 - P_f = (1 - p)^{n_f} \approx e^{-n_f p}$$
 for large n_f and small p

	Delay × Bandwidth Product Efficiency			
Bit error p	0	10 ⁻⁶	10 ⁻⁵	10-4
1 Mbps at 1 ms	1 88%	0.99 86.6%	0.905 79.2%	0.368 32.2%

Bit errors impact performance as n_f x p approaches 1