
Chapter 2
Applications and

Layered Architectures
Protocols, Services & Layering

OSI Reference Model
TCP/IP Architecture

How the Layers Work Together
Berkeley Sockets

Application Layer Protocols & Utilities

Chapter 2
Applications and

Layered Architectures

Protocols, Services & Layering

Layers, Services & Protocols

The overall communications process
between two or more machines connected
across one or more networks is very complex
Layering partitions related communications
functions into groups that are manageable
Each layer provides a service to the layer
above
Each layer operates according to a protocol
Let’s use examples to show what we mean

Web Browsing Application
World Wide Web allows users to access resources
(i.e. documents) located in computers connected to
the Internet
Documents are prepared using HyperText Markup
Language (HTML)
A browser application program is used to access the
web
The browser displays HTML documents that include
links to other documents
Each link references a Uniform Resource Locator
(URL) that gives the name of the machine and the
location of the given document
Let’s see what happens when a user clicks on a link

User clicks on http://www.nytimes.com/
URL contains Internet name of machine
(www.nytimes.com), but not Internet address
Internet needs Internet address to send information
to a machine
Browser software uses Domain Name System
(DNS) protocol to send query for Internet address
DNS system responds with Internet address

Q. www.nytimes.com?

A. 64.15.247.200
1. DNS

Browser software uses HyperText Transfer Protocol
(HTTP) to send request for document
HTTP server waits for requests by listening to a
well-known port number (80 for HTTP)
HTTP client sends request messages through an
“ephemeral port number,” e.g. 1127
HTTP needs a Transmission Control Protocol (TCP)
connection between the HTTP client and the HTTP
server to transfer messages reliably

TCP Connection Request
From: 128.100.11.13 Port 1127
To: 64.15.247.200 Port 80

2. TCP
ACK, TCP Connection Request
From: 64.15.247.200 Port 80
To:128.100.11.13 Port 1127

ACK

HTTP client sends its request message: “GET …”
HTTP server sends a status response: “200 OK”
HTTP server sends requested file
Browser displays document

Clicking a link sets off a chain of events across the
Internet!
Let’s see how protocols & layers come into play…

GET / HTTP/1.1

200 OK

3. HTTP
Content

Protocols

A protocol is a set of rules that governs how
two or more communicating entities in a layer
are to interact
Messages that can be sent and received
Actions that are to be taken when a certain
event occurs, e.g. sending or receiving
messages, expiry of timers
The purpose of a protocol is to provide a
service to the layer above

Layers
A set of related communication functions that can be
managed and grouped together
Application Layer: communications functions that
are used by application programs

HTTP, DNS, SMTP (email)
Transport Layer: end-to-end communications
between two processes in two machines

TCP, User Datagram Protocol (UDP)
Network Layer: node-to-node communications
between two machines

Internet Protocol (IP)

Example: HTTP

HTTP is an application layer protocol
Retrieves documents on behalf of a browser
application program
HTTP specifies fields in request messages
and response messages

Request types; Response codes
Content type, options, cookies, …

HTTP specifies actions to be taken upon
receipt of certain messages

HTTP
Client

HTTP Protocol

GET

Response

HTTP
Server

HTTP assumes messages can be exchanged
directly between HTTP client and HTTP server
In fact, HTTP client and server are processes
running in two different machines across the Internet
HTTP uses the reliable stream transfer service
provided by TCP

Example: TCP
TCP is a transport layer protocol
Provides reliable byte stream service between two
processes in two computers across the Internet
Sequence numbers keep track of the bytes that have
been transmitted and received
Error detection and retransmission used to recover
from transmission errors and losses
TCP is connection-oriented: the sender and receiver
must first establish an association and set initial
sequence numbers before data is transferred
Connection ID is specified uniquely by

(send port #, send IP address, receive port #, receiver IP address)

HTTP
server

HTTP
client

TCP

Port 80Port 1127

HTTP uses service of TCP

TCP

Response
GET

TCP80, 1127 GET 1127, 80 bytesResponseGETResponse

Example: DNS Protocol

DNS protocol is an application layer protocol
DNS is a distributed database that resides in
multiple machines in the Internet
DNS protocol allows queries of different types

Name-to-address or Address-to-name
Mail exchange

DNS usually involves short messages and so
uses service provided by UDP
Well-known port 53

Local Name Server: resolve frequently-used names
University department, ISP
Contacts Root Name server if it cannot resolve query

Root Name Servers: 13 globally
Resolves query or refers query to Authoritative Name
Server

Authoritative Name Server: last resort
Every machine must register its address with at least two
authoritative name servers

1
2 345

6

Local
Name
Server

Root
Name
Server

Authoritative
Name
Server

Example: UDP
UDP is a transport layer protocol
Provides best-effort datagram service
between two processes in two computers
across the Internet
Port numbers distinguish various processes
in the same machine
UDP is connectionless
Datagram is sent immediately
Quick, simple, but not reliable

Summary
Layers: related communications functions

Application Layer: HTTP, DNS
Transport Layer: TCP, UDP
Network Layer: IP

Services: a protocol provides a communications
service to the layer above

TCP provides connection-oriented reliable byte
transfer service
UDP provides best-effort datagram service

Each layer builds on services of lower layers
HTTP builds on top of TCP
DNS builds on top of UDP
TCP and UDP build on top of IP

Chapter 2
Applications and

Layered Architectures

OSI Reference Model

Why Layering?
Layering simplifies design, implementation, and
testing by partitioning overall communications
process into parts
Protocol in each layer can be designed separately
from those in other layers
Protocol makes “calls” for services from layer below
Layering provides flexibility for modifying and
evolving protocols and services without having to
change layers below
Monolithic non-layered architectures are costly,
inflexible, and soon obsolete

Open Systems Interconnection
Network architecture:

Definition of all the layers
Design of protocols for every layer

By the 1970s every computer vendor had developed
its own proprietary layered network architecture
Problem: computers from different vendors could
not be networked together
Open Systems Interconnection (OSI) was an
international effort by the International Organization
for Standardization (ISO) to enable multivendor
computer interconnection

OSI Reference Model
Describes a seven-layer abstract reference model
for a network architecture
Purpose of the reference model was to provide a
framework for the development of protocols
OSI also provided a unified view of layers, protocols,
and services which is still in use in the development
of new protocols
Detailed standards were developed for each layer,
but most of these are not in use
TCP/IP protocols preempted deployment of OSI
protocols

7-Layer OSI Reference Model

Application
Layer

Presentation
Layer

Session
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Application
Layer

Presentation
Layer

Session
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Network
Layer

Application Application

Data Link
Layer

Physical
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Communicating End SystemsOne or More Network Nodes

End-to-End Protocols

Physical Layer

Transfers bits across link
Definition & specification of the physical
aspects of a communications link

Mechanical: cable, plugs, pins...
Electrical/optical: modulation, signal strength,
voltage levels, bit times, …
functional/procedural: how to activate, maintain,
and deactivate physical links…

Ethernet, DSL, cable modem, telephone
modems…
Twisted-pair cable, coaxial cable optical fiber,
radio, infrared, …

Data Link Layer
Transfers frames across direct connections
Groups bits into frames
Detection of bit errors; Retransmission of frames
Activation, maintenance, & deactivation of data link
connections
Medium access control for local area networks
Flow control

Data Link
Layer

Physical
Layer

Data Link
Layer

Physical
Layer

frames

bits

Network Layer

Transfers packets across multiple links
and/or multiple networks
Addressing must scale to large networks
Nodes jointly execute routing algorithm to
determine paths across the network
Forwarding transfers packet across a node
Congestion control to deal with traffic surges
Connection setup, maintenance, and
teardown when connection-based

Internetworking
Internetworking is part of network layer and provides
transfer of packets across multiple possibly dissimilar
networks
Gateways (routers) direct packets across networks

G = gateway
H = host

Net 1

Net 5

Net 3

Net 2

H
Net 3

G

H

H

H

G
G

GG

G

Net 1

Net 2 Net 4
Net 5

Ethernet LAN

ATM
Switch

ATM
Switch

ATM
Switch

ATM
Switch

ATM
Network

Transport Layer
Transfers data end-to-end from process in a
machine to process in another machine
Reliable stream transfer or quick-and-simple single-
block transfer
Port numbers enable multiplexing
Message segmentation and reassembly
Connection setup, maintenance, and release

Transport
Layer

Network
Layer

Transport
Layer

Network
Layer

Network
Layer

Network
Layer

Communication Network

Application & Upper Layers
Application Layer: Provides
services that are frequently
required by applications: DNS,
web acess, file transfer, email…
Presentation Layer: machine-
independent representation of
data…
Session Layer: dialog
management, recovery from
errors, …

Application
Layer

Presentation
Layer

Session
Layer

Transport
Layer

Application

Application
Layer

Transport
Layer

Application

Incorporated into
Application Layer

Headers & Trailers
Each protocol uses a header that carries addresses,
sequence numbers, flag bits, length indicators, etc…
CRC check bits may be appended for error detection

Application
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Application
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Application ApplicationAPP DATA

AH APP DATA

TH AH APP DATA

NH TH AH APP DATA

DH NH TH AH APP DATA CRC

bits

OSI Unified View: Protocols
Layer n in one machine interacts with layer n in
another machine to provide a service to layer n +1
The entities comprising the corresponding layers on
different machines are called peer processes.
The machines use a set of rules and conventions
called the layer-n protocol.
Layer-n peer processes communicate by
exchanging Protocol Data Units (PDUs)

n
Entity

n
Entity

Layer n peer protocol

n-PDUs

OSI Unified View: Services
Communication between peer processes is
virtual and actually indirect
Layer n+1 transfers information by invoking the
services provided by layer n
Services are available at Service Access Points
(SAP’s)
Each layer passes data & control information to
the layer below it until the physical layer is
reached and transfer occurs
The data passed to the layer below is called a
Service Data Unit (SDU)
SDU’s are encapsulated in PDU’s

n+1
entity

n-SAP

n+1
entity

n-SAP

n entity n entity

n-SDU

n-SDU

n-SDU

H

H n-SDU

n-PDU

Layers, Services & Protocols

Interlayer Interaction
layer

N+1 user N provider

System A System B

N provider N+1 user

Request
Indication

Response

Confirm

Connectionless & Connection-
Oriented Services

Connection-Oriented
Three-phases:

1. Connection setup
between two SAPs
to initialize state
information

2. SDU transfer
3. Connection release
E.g. TCP, ATM

Connectionless
Immediate SDU
transfer
No connection setup
E.g. UDP, IP

Layered services need
not be of same type

TCP operates over IP
IP operates over ATM

n-PDU

Segmentation & Reassembly
A layer may impose a limit
on the size of a data block
that it can transfer for
implementation or other
reasons
Thus a layer-n SDU may be
too large to be handled as a
single unit by layer-(n-1)
Sender side: SDU is
segmented into multiple
PDUs
Receiver side: SDU is
reassembled from
sequence of PDUs

n-SDU

n-PDU n-PDU n-PDU

Segmentation(a)

n-SDU

n-PDU n-PDU

Reassembly(b)

n+1
entity

n+1
entity

n+1
entity

n+1
entity

Multiplexing
Sharing of layer n service by multiple layer n+1 users
Multiplexing tag or ID required in each PDU to
determine which users an SDU belongs to

n entity n entity

n-SDU
n-SDU

n-SDU
H

H n-SDU

n-PDU

Summary
Layers: related communications functions

Application Layer: HTTP, DNS
Transport Layer: TCP, UDP
Network Layer: IP

Services: a protocol provides a communications
service to the layer above

TCP provides connection-oriented reliable byte
transfer service
UDP provides best-effort datagram service

Each layer builds on services of lower layers
HTTP builds on top of TCP
DNS builds on top of UDP
TCP and UDP build on top of IP

Chapter 2
Applications and

Layered Architectures

TCP/IP Architecture
How the Layers Work Together

Why Internetworking?
To build a “network of networks” or internet

operating over multiple, coexisting, different network
technologies
providing ubiquitous connectivity through IP packet transfer
achieving huge economies of scale

G

G
G

GG

G

H

Net 5Net 5

H Net 5Net 2

H

Net 5Net 3
H

Net 5Net 1

Net 5Net 4

Why Internetworking?
To provide universal communication services

independent of underlying network technologies
providing common interface to user applications

G

G
G

GG

G

H

Net 5Net 5
H

Net 5Net 2

H

Net 5Net 3
H

Net 5Net 1

Net 5Net 4

Reliable Stream Service

User Datagram Service

Why Internetworking?

To provide distributed applications
Any application designed to operate based on
Internet communication services immediately
operates across the entire Internet
Rapid deployment of new applications

Email, WWW, Peer-to-peer
Applications independent of network
technology

New networks can be introduced below
Old network technologies can be retired

Internet Protocol Approach
IP packets transfer information across Internet
Host A IP → router→ router…→ router→ Host B IP
IP layer in each router determines next hop (router)
Network interfaces transfer IP packets across networks

Router

Internet
Layer

Network
Interface

Transport
Layer

Internet
Layer

Network
Interface

Transport
Layer

Internet
Layer

Network
Interface

Host A Host B

Net 5Net 1

Net 5Net 2 Net 5Net 3

Router

Internet
Layer

Network
Interface

Router

Internet
Layer

Network
Interface

Net 5Net 4

TCP/IP Protocol Suite

(ICMP, ARP)

Diverse network technologies

Reliable
stream
service

User
datagram
service

Distributed
applications

HTTP SMTP RTP

TCP UDP

IP

Network

interface 1

Network

interface 3
Network

interface 2

DNS

Best-effort
connectionless
packet transfer

Internet Names & Addresses
Internet Names

Each host a a unique name
Independent of physical
location
Facilitate memorization by
humans
Domain Name
Organization under single
administrative unit

Host Name
Name given to host
computer

User Name
Name assigned to user

leongarcia@comm.utoronto.ca

Internet Addresses
Each host has globally unique
logical 32 bit IP address
Separate address for each
physical connection to a network
Routing decision is done based
on destination IP address
IP address has two parts:

netid and hostid
netid unique
netid facilitates routing

Dotted Decimal Notation:
int1.int2.int3.int4
(intj = jth octet)
128.100.10.13DNS resolves IP name to IP address

Physical Addresses
LANs (and other networks) assign physical
addresses to the physical attachment to the network
The network uses its own address to transfer
packets or frames to the appropriate destination
IP address needs to be resolved to physical address
at each IP network interface
Example: Ethernet uses 48-bit addresses

Each Ethernet network interface card (NIC) has globally
unique Medium Access Control (MAC) or physical address
First 24 bits identify NIC manufacturer; second 24 bits are
serial number
00:90:27:96:68:07 12 hex numbers

Intel

Example internet

(1,1) s

(1,2)

w

(2,1)

(1,3) r (2,2)
PPP

Netid=2
Ethernet
(netid=1)

PCServer
Router

Workstation

-12router

-22PC

Physical
addresshostidnetid

r31router

w21workstation
s11server

*PPP does not use addresses

Encapsulation

Ethernet header contains:
source and destination physical addresses
network protocol type (e.g. IP)

IP
header IP Payload

Ethernet
header FCSIP

header IP Payload

IP packet from workstation to
server

1. IP packet has (1,2) IP address for source and (1,1) IP address for
destination

2. IP table at workstation indicates (1,1) connected to same network, so
IP packet is encapsulated in Ethernet frame with addresses w and s

3. Ethernet frame is broadcast by workstation NIC and captured by
server NIC

4. NIC examines protocol type field and then delivers packet to its IP
layer

(1,1) s

(1,2)

w

(2,1)

(1,3) r (2,2)
PPP

Ethernet

PCServer
Router

Workstation

(1,2), (1,1) w, s

IP packet from server to PC

(1,1) s

(1,2)

w

(2,1)

(1,3) r (2,2)

PCServer
Router

Workstation

1. IP packet has (1,1) and (2,2) as IP source and destination addresses
2. IP table at server indicates packet should be sent to router, so IP packet is

encapsulated in Ethernet frame with addresses s and r
3. Ethernet frame is broadcast by server NIC and captured by router NIC
4. NIC examines protocol type field and then delivers packet to its IP layer
5. IP layer examines IP packet destination address and determines IP packet

should be routed to (2,2)
6. Router’s table indicates (2,2) is directly connected via PPP link
7. IP packet is encapsulated in PPP frame and delivered to PC
8. PPP at PC examines protocol type field and delivers packet to PC IP layer

(1,1), (2,2) s, r

(1,1), (2,2)

How the layers work together

Network interface

IP

TCP

HTTP

Network interface

IP

Network interface

IP

TCP

HTTP

Ethernet PPP
Router

(1,1) s

(2,1)

(1,3) r (2,2)
PPP

Ethernet

(a)

(b) Server PC

PCServer
Router

TCP uses node-to-node
Unreliable packet transfer of IP

Server IP address & PC IP address

Internet

HTTP uses process-to-process
Reliable byte stream transfer of

TCP connection:
Server socket: (IP Address, 80)
PC socket (IP Address, Eph. #)

Encapsulation
TCP Header contains
source & destination

port numbers

IP Header contains
source and destination

IP addresses;
transport protocol type

Ethernet Header contains
source & destination MAC
addresses;
network protocol type

HTTP Request

TCP
header HTTP Request

IP
header

TCP
header HTTP Request

Ethernet
header

IP
header

TCP
header HTTP Request FCS

User clicks on http://www.nytimes.com/
Ethereal network analyzer captures all frames
observed by its Ethernet NIC
Sequence of frames and contents of frame can be
examined in detail down to individual bytes

How the layers work together:
Network Analyzer Example

Internet

Ethereal windowsTop Pane
shows

frame/packet
sequence

Middle Pane
shows

encapsulation for
a given frame

Bottom Pane shows hex & text

Top pane: frame sequence
DNS

Query

TCP
Connection

Setup HTTP
Request &
Response

Middle pane: Encapsulation

Ethernet Frame

Ethernet
Destination and

Source
Addresses

Protocol Type

Middle pane: Encapsulation

IP Packet

IP Source and
Destination
Addresses

Protocol Type

And a lot of
other stuff!

Middle pane: Encapsulation

TCP Segment

Source and
Destination Port

Numbers

HTTP
Request

GET

Summary

Encapsulation is key to layering
IP provides for transfer of packets across
diverse networks
TCP and UDP provide universal
communications services across the Internet
Distributed applications that use TCP and
UDP can operate over the entire Internet
Internet names, IP addresses, port numbers,
sockets, connections, physical addresses

Chapter 2
Applications and

Layered Architectures

Sockets

Socket API
API (Application Programming Interface)

Provides a standard set of functions that can be
called by applications

Berkeley UNIX Sockets API
Abstraction for applications to send & receive data
Applications create sockets that “plug into” network
Applications write/read to/from sockets
Implemented in the kernel
Facilitates development of network applications
Hides details of underlying protocols & mechanisms

Also in Windows, Linux, and other OS’s

Communications through Socket
Interface

Client Server

descriptor

port number

descriptor

port number

• Application references a
socket through a descriptor
• Socket bound to a port number

Application 1

Socket

Socket
interface

User

Kernel

Application 2

User

Kernel

Underlying
communication

protocols

Underlying
communication

protocols

Communications
network

Socket

Socket
interface

Stream mode of service
Connection-oriented

First, setup connection
between two peer
application processes
Then, reliable bidirectional
in-sequence transfer of byte
stream (boundaries not
preserved in transfer)
Multiple write/read between
peer processes
Finally, connection release
Uses TCP

Connectionless
Immediate transfer of one
block of information
(boundaries preserved)
No setup overhead & delay
Destination address with
each block
Send/receive to/from
multiple peer processes
Best-effort service only

Possible out-of-order
Possible loss

Uses UDP

Client & Server Differences
Server

Specifies well-known port # when creating socket
May have multiple IP addresses (net interfaces)
Waits passively for client requests

Client
Assigned ephemeral port #
Initiates communications with server
Needs to know server’s IP address & port #

DNS for URL & server well-known port #
Server learns client’s address & port #

Socket Calls for Connection-
Oriented Mode

socket()

socket()

bind()

read()

close()

Data

Data

Server

Client
listen()

accept()

Blocks

write()

connect()
Connect
negotiation

write()

read()

Server does Passive Open
socket creates socket to listen for connection
requests
Server specifies type: TCP (stream)
socket call returns: non-negative integer descriptor;
or -1 if unsuccessful

close()

Socket Calls for Connection-
Oriented Mode

socket()

socket()

bind()

read()

close()

Data

Data

Server

Client
listen()

accept()

Blocks

write()

connect()
Connect
negotiation

write()

read()

Server does Passive Open
bind assigns local address & port # to socket with
specified descriptor
Can wildcard IP address for multiple net interfaces
bind call returns: 0 (success); or -1 (failure)
Failure if port # already in use or if reuse option not
set

close()

Socket Calls for Connection-
Oriented Mode

socket()

socket()

bind()

read()

close()

Data

Data

Server

Client
listen()

accept()

Blocks

write()

connect()
Connect
negotiation

write()

read()

Server does Passive Open
listen indicates to TCP readiness to receive
connection requests for socket with given descriptor
Parameter specifies max number of requests that may
be queued while waiting for server to accept them
listen call returns: 0 (success); or -1 (failure)

close()

Socket Calls for Connection-
Oriented Mode

socket()

socket()

bind()

read()

close()

Data

Data

Server

Client
listen()

accept()

Blocks

write()

connect()
Connect
negotiation

write()

read()

Server does Passive Open
Server calls accept to accept incoming requests
accept blocks if queue is empty

close()

Socket Calls for Connection-
Oriented Mode

socket()

socket()

bind()

read()

close()

Data

Data

Server

Client
listen()

accept()

Blocks

write()

connect()
Connect
negotiation

write()

read()

close()

Client does Active Open
socket creates socket to connect to server
Client specifies type: TCP (stream)
socket call returns: non-negative integer descriptor;
or -1 if unsuccessful

Socket Calls for Connection-
Oriented Mode

socket()

socket()

bind()

read()

close()

Data

Data

Server

Client
listen()

accept()

Blocks

write()

connect()
Connect
negotiation

write()

read()

close()

Client does Active Open
connect establishes a connection on the local socket
with the specified descriptor to the specified remote
address and port #
connect returns 0 if successful; -1 if unsuccessful

Note: connect
initiates TCP three-way
handshake

Socket Calls for Connection-
Oriented Mode

socket()

socket()

bind()

read()

close()

Data

Data

Server

Client
listen()

accept()

Blocks

write()

connect()
Connect
negotiation

write()

read()

accept wakes with incoming connection request
accept fills client address & port # into address structure
accept call returns: descriptor of new connection socket
(success); or -1 (failure)
Client & server use new socket for data transfer
Original socket continues to listen for new requests

close()

Socket Calls for Connection-
Oriented Mode

socket()

socket()

bind()

read()

close()

Data

Data

Server

Client
listen()

accept()

Blocks

write()

connect()
Connect
negotiation

write()

read()

Data Transfer
Client or server call write to transmit data into a
connected socket
write specifies: socket descriptor; pointer to a buffer;
amount of data; flags to control transmission behavior
write call returns: # bytes transferred (success); or -1
(failure); blocks until all data transferred

close()

Socket Calls for Connection-
Oriented Mode

socket()

socket()

bind()

read()

close()

Data

Data

Server

Client
listen()

accept()

Blocks

write()

connect()
Connect
negotiation

write()

read()

Data Transfer
Client or server call read to receive data from a
connected socket
read specifies: socket descriptor; pointer to a buffer;
amount of data
read call returns: # bytes read (success); or -1 (failure);
blocks if no data arrives

close()

Note: write and read
can be called multiple
times to transfer byte
streams in both
directions

Socket Calls for Connection-
Oriented Mode

socket()

socket()

bind()

read()

close()

Data

Data

Server

Client
listen()

accept()

Blocks

write()

connect()
Connect
negotiation

write()

read()

Connection Termination
Client or server call close when socket is no longer
needed
close specifies the socket descriptor
close call returns: 0 (success); or -1 (failure)

Note: close initiates
TCP graceful close
sequence

close()

Example: TCP Echo Server
/* A simple echo server using TCP */
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define SERVER_TCP_PORT 3000
#define BUFLEN 256

int main(int argc, char **argv)
{

int n, bytes_to_read;
int sd, new_sd, client_len, port;
struct sockaddr_in server, client;
char *bp, buf[BUFLEN];

switch(argc) {
case 1:

port = SERVER_TCP_PORT;
break;

case 2:
port = atoi(argv[1]);
break;

default:
fprintf(stderr, "Usage: %s [port]\n", argv[0]);
exit(1);

}

/* Create a stream socket */
if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

fprintf(stderr, "Can't create a socket\n");
exit(1);

}

/* Bind an address to the socket */
bzero((char *)&server, sizeof(struct sockaddr_in));
server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = htonl(INADDR_ANY);
if (bind(sd, (struct sockaddr *)&server,
sizeof(server)) == -1) {

fprintf(stderr, "Can't bind name to socket\n");
exit(1);

}

/* queue up to 5 connect requests */
listen(sd, 5);

while (1) {
client_len = sizeof(client);
if ((new_sd = accept(sd, (struct sockaddr *)&client,
&client_len)) == -1) {

fprintf(stderr, "Can't accept client\n");
exit(1);

}

bp = buf;
bytes_to_read = BUFLEN;
while ((n = read(new_sd, bp, bytes_to_read)) > 0) {

bp += n;
bytes_to_read -= n;

}
printf("Rec'd: %s\n", buf);

write(new_sd, buf, BUFLEN);
printf("Sent: %s\n", buf);
close(new_sd);

}
close(sd);
return(0);

}

Example: TCP Echo Client
/* A simple TCP client */
#include <stdio.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define SERVER_TCP_PORT 3000
#define BUFLEN 256

int main(int argc, char **argv)
{

int n, bytes_to_read;
int sd, port;
struct hostent *hp;
struct sockaddr_in server;
char *host, *bp, rbuf[BUFLEN], sbuf[BUFLEN];

switch(argc) {
case 2:

host = argv[1];
port = SERVER_TCP_PORT;
break;

case 3:
host = argv[1];
port = atoi(argv[2]);
break;

default:
fprintf(stderr, "Usage: %s host [port]\n", argv[0]);
exit(1);

}

/* Create a stream socket */
if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

fprintf(stderr, "Can't create a socket\n");
exit(1);

}

bzero((char *)&server, sizeof(struct sockaddr_in));
server.sin_family = AF_INET;
server.sin_port = htons(port);
if ((hp = gethostbyname(host)) == NULL) {

fprintf(stderr, "Can't get server's address\n");
exit(1);

}
bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length);

/* Connecting to the server */
if (connect(sd, (struct sockaddr *)&server,
sizeof(server)) == -1) {

fprintf(stderr, "Can't connect\n");
exit(1);

}
printf("Connected: server's address is %s\n", hp->h_name);

printf("Transmit:\n");
gets(sbuf);

write(sd, sbuf, BUFLEN);

printf("Receive:\n");
bp = rbuf;
bytes_to_read = BUFLEN;
while ((n = read(sd, bp, bytes_to_read)) > 0) {

bp += n;
bytes_to_read -= n;

}
printf("%s\n", rbuf);

close(sd);
return(0);

}

socket()

Socket Calls for Connection-Less
Mode

sendto()

socket()

recvfrom()
Data

Server

Client
bind()

Blocks until server
receives data from
client

recvfrom()

close()
close()

Data
sendto()

Server started
socket creates socket of type UDP (datagram)
socket call returns: descriptor; or -1 if unsuccessful
bind assigns local address & port # to socket with
specified descriptor; Can wildcard IP address

socket()

Socket Calls for Connection-Less
Mode

sendto()

socket()

recvfrom()
Data

Server

Client
bind()

Blocks until server
receives data from
client

recvfrom()

close()
close()

Data
sendto()

recvfrom copies bytes received in specified socket
into a specified location
recvfrom blocks until data arrives

sendto()

socket()

Socket Calls for Connection-Less
Mode

sendto()

socket()

recvfrom()
Data

Server

Client
bind()

Blocks until server
receives data from
client

recvfrom()

close()
close()

Data

Client started
socket creates socket of type UDP (datagram)
socket call returns: descriptor; or -1 if unsuccessful

sendto()

socket()

Socket Calls for Connection-Less
Mode

sendto()

socket()

recvfrom()
Data

Server

Client
bind()

Blocks until server
receives data from
client

recvfrom()

close()
close()

Data

Client started
sendto transfer bytes in buffer to specified socket
sendto specifies: socket descriptor; pointer to a
buffer; amount of data; flags to control transmission
behavior; destination address & port #; length of
destination address structure
sendto returns: # bytes sent; or -1 if unsuccessful

socket()

Socket Calls for Connection-Less
Mode

sendto()

socket()

recvfrom()
Data

Server

Client
bind()

Blocks until server
receives data from
client

recvfrom()

close()
close()

Data
sendto()

recvfrom wakes when data arrives
recvfrom specifies: socket descriptor; pointer to a
buffer to put data; max # bytes to put in buffer; control
flags; copies: sender address & port #; length of
sender address structure
recvfrom returns # bytes received or -1 (failure)

Note: receivefrom
returns data from at
most one send, i.e.
from one datagram

socket()

Socket Calls for Connection-Less
Mode

sendto()

socket()

recvfrom()
Data

Server

Client
bind()

Blocks until server
receives data from
client

recvfrom()

close()
close()

Data
sendto()

Socket Close
Client or server call close when socket is no longer
needed
close specifies the socket descriptor
close call returns: 0 (success); or -1 (failure)

Example: UDP Echo Server
/* Echo server using UDP */
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define SERVER_UDP_PORT 5000
#define MAXLEN 4096

int main(int argc, char **argv)
{

int sd, client_len, port, n;
char buf[MAXLEN];
struct sockaddr_in server, client;

switch(argc) {
case 1:

port = SERVER_UDP_PORT;
break;

case 2:
port = atoi(argv[1]);
break;

default:
fprintf(stderr, "Usage: %s [port]\n", argv[0]);
exit(1);

}

/* Create a datagram socket */
if ((sd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {

fprintf(stderr, "Can't create a socket\n");
exit(1);

}

/* Bind an address to the socket */
bzero((char *)&server, sizeof(server));
server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = htonl(INADDR_ANY);
if (bind(sd, (struct sockaddr *)&server,
sizeof(server)) == -1) {

fprintf(stderr, "Can't bind name to socket\n");
exit(1);

}

while (1) {
client_len = sizeof(client);
if ((n = recvfrom(sd, buf, MAXLEN, 0,
(struct sockaddr *)&client, &client_len)) < 0) {

fprintf(stderr, "Can't receive datagram\n");
exit(1);

}

if (sendto(sd, buf, n, 0,
(struct sockaddr *)&client, client_len) != n) {

fprintf(stderr, "Can't send datagram\n");
exit(1);

}
}
close(sd);
return(0);

}

Example: UDP Echo Client
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#define SERVER_UDP_PORT 5000
#define MAXLEN 4096
#define DEFLEN 64

long delay(struct timeval t1, struct timeval t2)
{

long d;
d = (t2.tv_sec - t1.tv_sec) * 1000;
d += ((t2.tv_usec - t1.tv_usec + 500) / 1000);
return(d);

}
int main(int argc, char **argv)
{

int data_size = DEFLEN, port = SERVER_UDP_PORT;
int i, j, sd, server_len;
char *pname, *host, rbuf[MAXLEN], sbuf[MAXLEN];
struct hostent *hp;
struct sockaddr_in server;
struct timeval start, end;
unsigned long address;

pname = argv[0];
argc--;
argv++;
if (argc > 0 && (strcmp(*argv, "-s") == 0)) {

if (--argc > 0 && (data_size = atoi(*++argv))) {
argc--;
argv++;

}
else {

fprintf(stderr,
"Usage: %s [-s data_size] host [port]\n", pname);
exit(1);

}
}
if (argc > 0) {

host = *argv;
if (--argc > 0)

port = atoi(*++argv);
}

else {
fprintf(stderr,
"Usage: %s [-s data_size] host [port]\n", pname);
exit(1);

}

if ((sd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
fprintf(stderr, "Can't create a socket\n");
exit(1);

}
bzero((char *)&server, sizeof(server));
server.sin_family = AF_INET;
server.sin_port = htons(port);
if ((hp = gethostbyname(host)) == NULL) {

fprintf(stderr, "Can't get server's IP address\n");
exit(1);

}
bcopy(hp->h_addr, (char *) &server.sin_addr, hp->h_length);

if (data_size > MAXLEN) {
fprintf(stderr, "Data is too big\n");
exit(1);

}
for (i = 0; i < data_size; i++) {

j = (i < 26) ? i : i % 26;
sbuf[i] = 'a' + j;

}
gettimeofday(&start, NULL); /* start delay measurement */
server_len = sizeof(server);
if (sendto(sd, sbuf, data_size, 0, (struct sockaddr *)

&server, server_len) == -1) {
fprintf(stderr, "sendto error\n");
exit(1);

}
if (recvfrom(sd, rbuf, MAXLEN, 0, (struct sockaddr *)

&server, &server_len) < 0) {
fprintf(stderr, "recvfrom error\n");
exit(1);

}
gettimeofday(&end, NULL); /* end delay measurement */
if (strncmp(sbuf, rbuf, data_size) != 0)

printf("Data is corrupted\n");
close(sd);
return(0);

}

Chapter 2
Applications and

Layered Architectures

Application Layer Protocols &
IP Utilities

Telnet (RFC 854)
Provides general bi-directional byte-oriented TCP-
based communications facility (Network Virtual
Terminal)
Initiating machine treated as local to the remote host
Used to connect to port # of other servers and to
interact with them using command line

NVTNVT

Server
process

Network Virtual Terminal
Network Virtual Terminal
Lowest common denominator terminal
Each machine maps characteristics to NVT
Negotiate options for changes to the NVT
Data input sent to server & echoed back
Server control functions : interrupt, abort
output, are-you-there, erase character, erase
line
Default requires login & password

telnet

A program that uses the Telnet protocol
Establishes TCP socket
Sends typed characters to server
Prints whatever characters arrive
Try it to retrieve a web page (HTTP) or to
send an email (SMTP)

File Transfer Protocol (RFC 959)

Provides for transfer of file from one machine
to another machine
Designed to hide variations in file storage
FTP parameter commands specify file info

File Type: ASCII, EBCDIC, image, local.
Data Structure: file, record, or page
Transmission Mode: stream, block, compressed

Other FTP commands
Access Control: USER, PASS, CWD, QUIT, …
Service: RETR, STOR, PWD, LIST, …

User
interface

User PI

User DTP

PI = Protocol interface
DTP = Data transfer process

User FTP

Server PI

Server DTP

Server FTP

Control

connection

Data

connection

FTP File Transfer

Two TCP Connections
Control connection

Set up using Telnet
protocol on well-known
port 21
FTP commands & replies
between protocol
interpreters
PIs control the data
transfer process
User requests close of
control connection;
server performs the close

Data connection
To perform file transfer,
obtain lists of files,
directories
Each transfer requires new
data connection
Passive open by user PI
with ephemeral port #
Port # sent over control
connection
Active open by server
using port 20

FTP Replies

File system status.x5z

Unspecified.x4z

Authentication and accounting (replies for the login process and accounting
procedures).

x3z

Connections (replies referring to the control and data connections).x2z

Information (replies to requests for status or help).x1z

Syntax errors.x0z

Permanent negative completion reply (action cannot be performed; do not resend it).5zy

Transient negative completion reply (action currently cannot be performed; resend
command later).

4yz

Positive intermediary reply (command accepted, but action cannot be performed
without additional information; user should send a command with the necessary
information).

3yz

Positive completion reply (action completed successfully; new command may be
sent).

2yz

Positive preliminary reply (action has begun, but wait for another reply before sending
a new command).

1yz

MeaningReply

FTP Client (192.168.1.132: 1421) establishes Control
Connection to FTP Server (128.100.132.23: 21)

User types ls to list files in directory (frame 31 on control)
FTP Server (128.100.132.23: 20) establishes Data
Connection to FTP Client (192.168.1.132: 1422)

User types get index.html to request file transfer in
control connection (frame 47 request); File transfer on
new data connection (port 1423, fr. 48, 49, 51)

Hypertext Transfer Protocol

RFC 1945 (HTTP 1.0), RFC 2616 (HTTP 1.1)
HTTP provides communications between
web browsers & web servers
Web: framework for accessing documents &
resources through the Internet
Hypertext documents: text, graphics,
images, hyperlinks
Documents prepared using Hypertext Markup
Language (HTML)

HTTP Protocol

HTTP servers use well-known port 80
Client request / Server reply
Stateless: server does not keep any
information about client
HTTP 1.0 new TCP connection per
request/reply (non-persistent)
HTTP 1.1 persistent operation is default

HTTP Typical Exchange

HTTP Message Formats
HTTP messages written in ASCII text
Request Message Format

Request Line (Each line ends with carriage return)
Method URL HTTP-Version \r\n
Method specifies action to apply to object
URL specifies object

Header Lines (Ea. line ends with carriage return)
Attribute Name: Attribute Value
E.g. type of client, content, identity of requester, …
Last header line has extra carriage return)

Entity Body (Content)
Additional information to server

HTTP Request Methods

Used to determine the capabilities of the server, or
characteristics of a named resource.

OPTIONS

Trace HTTP forwarding through proxies, tunnels, etc.TRACE

Remove object identified by URLDELETE

Store information in location named by URLPUT

Send information to a URL (using the entity body) and retrieve
result; used when a user fills out a form in a browser.

POST

Retrieve meta-information about the object, but do not
transfer the object; Can be used to find out if a document
has changed.

HEAD

Retrieve information (object) identified by the URL.GET

MeaningRequest
method

Universal Resource Locator

Absolute URL
scheme://hostname[:port]/path
http://www.nytimes.com/

Relative URL
/path
/

HTTP Request Message

HTTP Response Message

Response Message Format
Status Line

HTTP-Version Status-Code Message
Status Code: 3-digit code indicating result
E.g. HTTP/1.0 200 OK

Headers Section
Information about object transferred to client
E.g. server type, content length, content type, …

Content
Object (document)

HTTP Response Message

HTTP Proxy Server & Caching
Web users generate large traffic volumes
Traffic causes congestion & delay
Can improve delay performance and reduce
traffic in Internet by moving content to servers
closer to the user
Web proxy servers cache web information

Deployed by ISPs
Customer browsers configured to first access
ISPs proxy servers
Proxy replies immediately when it has requested
object or retrieves the object if it does not

Cookies and Web Sessions
Cookies are data exchanged by clients & servers as
header lines
Since HTTP stateless, cookies can provide context
for HTTP interaction
Set cookie header line in reply message from server
+ unique ID number for client
If client accepts cookie, cookie added to client’s
cookie file (must include expiration date)
Henceforth client requests include ID
Server site can track client interactions, store these
in a separate database, and access database to
prepare appropriate responses

Cookie Header Line;
ID is 24 hexadecimal numeral

PING
Application to determine if host is reachable
Based on Internet Control Message Protocol

ICMP informs source host about errors
encountered in IP packet processing by routers or
by destination host
ICMP Echo message requests reply from
destination host

PING sends echo message & sequence #
Determines reachability & round-trip delay
Sometimes disabled for security reasons

PING from NAL host

Microsoft(R) Windows DOS
(c)Copyright Microsoft Corp 1990-2001.

C:\DOCUME~1\1>ping nal.toronto.edu

Pinging nal.toronto.edu [128.100.244.3] with 32 bytes of data:

Reply from 128.100.244.3: bytes=32 time=84ms TTL=240
Reply from 128.100.244.3: bytes=32 time=110ms TTL=240
Reply from 128.100.244.3: bytes=32 time=81ms TTL=240
Reply from 128.100.244.3: bytes=32 time=79ms TTL=240

Ping statistics for 128.100.244.3:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
Minimum = 79ms, Maximum = 110ms, Average = 88ms

C:\DOCUME~1\1>

Traceroute
Find route from local host to a remote host
Time-to-Live (TTL)

IP packets have TTL field that specifies maximum # hops
traversed before packet discarded
Each router decrements TTL by 1
When TTL reaches 0 packet is discarded

Traceroute
Send UDP to remote host with TTL=1
First router will reply ICMP Time Exceeded Msg
Send UDP to remote host with TTL=2, …
Each step reveals next router in path to remote host

Traceroute from home PC to
university host
Tracing route to www.comm.utoronto.ca [128.100.11.60]
over a maximum of 30 hops:

1 1 ms <10 ms <10 ms 192.168.2.1
2 3 ms 3 ms 3 ms 10.202.128.1
3 4 ms 3 ms 3 ms gw04.ym.phub.net.cable.rogers.com [66.185.83.142]
4 * * * Request timed out.
5 47 ms 59 ms 66 ms gw01.bloor.phub.net.cable.rogers.com [66.185.80.230]
6 3 ms 3 ms 38 ms gw02.bloor.phub.net.cable.rogers.com [66.185.80.242]
7 8 ms 3 ms 5 ms gw01.wlfdle.phub.net.cable.rogers.com [66.185.80.2]
8 8 ms 7 ms 7 ms gw02.wlfdle.phub.net.cable.rogers.com [66.185.80.142]
9 4 ms 10 ms 4 ms gw01.front.phub.net.cable.rogers.com [66.185.81.18]

10 6 ms 4 ms 5 ms ra1sh-ge3-4.mt.bigpipeinc.com [66.244.223.237]
11 16 ms 17 ms 13 ms rx0sh-hydro-one-telecom.mt.bigpipeinc.com [66.244.223.246]
12 7 ms 14 ms 8 ms 142.46.4.2
13 10 ms 7 ms 6 ms utorgw.onet.on.ca [206.248.221.6]
14 7 ms 6 ms 11 ms mcl-gateway.gw.utoronto.ca [128.100.96.101]
15 7 ms 5 ms 8 ms sf-gpb.gw.utoronto.ca [128.100.96.17]
16 7 ms 7 ms 10 ms bi15000.ece.utoronto.ca [128.100.96.236]
17 7 ms 9 ms 9 ms www.comm.utoronto.ca [128.100.11.60]

Trace complete.

Home Network

Rogers Cable
ISP

Ontario Net

University of
Toronto

Hydro One
Shaw Net

ipconfig

Utility in Microsoft® Windows to display
TCP/IP information about a host
Many options

Simplest: IP address, subnet mask, default
gateway for the host
Information about each IP interface of a host

DNS hostname, IP addresses of DNS servers,
physical address of network card, IP address, …

Renew IP address from DHCP server

netstat

Queries a host about TCP/IP network status
Status of network drivers & their interface
cards

#packets in, #packets out, errored packets, …
State of routing table in host
TCP/IP active server processes
TCP active connections

IPv4 Statistics

Packets Received = 71271
Received Header Errors = 0
Received Address Errors = 9
Datagrams Forwarded = 0
Unknown Protocols Received = 0
Received Packets Discarded = 0
Received Packets Delivered = 71271
Output Requests = 70138
Routing Discards = 0
Discarded Output Packets = 0
Output Packet No Route = 0
Reassembly Required = 0
Reassembly Successful = 0
Reassembly Failures = 0
Datagrams Successfully Fragmented = 0
Datagrams Failing Fragmentation = 0
Fragments Created = 0

UDP Statistics for IPv4

Datagrams Received = 6810
No Ports = 15
Receive Errors = 0
Datagrams Sent = 6309

ICMPv4 Statistics

Received Sent
Messages 10 6
Errors 0 0
Destination Unreachable 8 1
Time Exceeded 0 0
Parameter Problems 0 0
Source Quenches 0 0
Redirects 0 0
Echos 0 2
Echo Replies 2 0
Timestamps 0 0
Timestamp Replies 0 0
Address Masks 0 0
Address Mask Replies 0 0

TCP Statistics for IPv4

Active Opens = 798
Passive Opens = 17
Failed Connection Attempts = 13
Reset Connections = 467
Current Connections = 0
Segments Received = 64443
Segments Sent = 63724
Segments Retransmitted = 80

netstat protocol statistics

tcpdump and Network Protocol
Analyzers

tcpdump program captures IP packets on a
network interface (usually Ethernet NIC)
Filtering used to select packets of interest
Packets & higher-layer messages can be
displayed and analyzed
tcpdump basis for many network protocol
analyzers for troubleshooting networks
We use the open source Ethereal analyzer to
generate examples

www.ethereal.com

