Chapter 3 Digital Transmission Fundamentals

Digital Representation of Information
Why Digital Communications?
Digital Representation of Analog Signals Characterization of Communication Channels Fundamental Limits in Digital Transmission Line Coding
Modems and Digital Modulation
Error Detection and Correction

Digital Networks

- Digital transmission enables networks to support many services

Questions of Interest

- How long will it take to transmit a message?
- How many bits are in the message (text, image)?
- How fast does the network/system transfer information?
- Can a network/system handle a voice (video) call?
- How many bits/second does voice/video require? At what quality?
- How long will it take to transmit a message without errors?
- How are errors introduced?
- How are errors detected and corrected?
- What transmission speed is possible over radio, copper cables, fiber, infrared, ...?

Chapter 3
 Digital Transmission Fundamentals

Digital Representation of Information
:\% :

Bits, numbers, information

- Bit: number with value 0 or 1
- n bits: digital representation for $0,1, \ldots, 2^{n}$
- Byte or Octet, $n=8$
- Computer word, $n=16,32$, or 64
- n bits allows enumeration of 2^{n} possibilities
- n-bit field in a header
- n-bit representation of a voice sample
- Message consisting of n bits
- The number of bits required to represent a message is a measure of its information content
- More bits \rightarrow More content

Block vs. Stream Information

Block

- Information that occurs in a single block
- Text message
- Data file
- JPEG image
- MPEG file
- Size = Bits $/$ block or bytes/block
- 1 kbyte $=2^{10}$ bytes
- 1 Mbyte $=2^{20}$ bytes
- 1 Gbyte $=2^{30}$ bytes

Stream

- Information that is produced \& transmitted continuously
- Real-time voice
- Streaming video
- Bit rate $=$ bits $/$ second
- $1 \mathrm{kbps}=10^{3} \mathrm{bps}$
- $1 \mathrm{Mbps}=10^{6} \mathrm{bps}$
- $1 \mathrm{Gbps}=10^{9} \mathrm{bps}$

Transmission Delay

- L
- $R \mathrm{bps}$
- L / R
- $t_{\text {prop }}$
- d
- c
number of bits in message
speed of digital transmission system
time to transmit the information
time for signal to propagate across medium distance in meters
speed of light ($3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in vacuum)

Use data compression to reduce L Use higher speed modem to increase R Place server closer to reduce d

Compression

- Information usually not represented efficiently
- Data compression algorithms
- Represent the information using fewer bits
- Noiseless: original information recovered exactly
- E.g. zip, compress, GIF, fax
- Noisy: recover information approximately
- JPEG
- Tradeoff: \# bits vs. quality
- Compression Ratio
\#bits (original file) / \#bits (compressed file)

Color Image

Total bits $=3 \times \mathrm{H} \times \mathrm{W}$ pixels $\times \mathrm{B}$ bits $/$ pixel $=3 \mathrm{HWB}$ bits
Example: 8×10 inch picture at 400×400 pixels per inch ${ }^{2}$ $400 \times 400 \times 8 \times 10=12.8$ million pixels
8 bits $/$ pixel/color
12.8 megapixels $\times 3$ bytes/pixel $=38.4$ megabytes

Examples of Block Information

Type	Method	Format	Original	Compressed (Ratio)
Text	Zip, compress	ASCII	Kbytes- Mbytes	$(2-6)$
Fax	CCITT Group 3	A4 page 200×100 pixels/in	256 kbytes	$5-54$ kbytes $(5-50)$
Color Image	JPEG	8×10 in 2 photo 400^{2} pixels/in	38.4 Mbytes	$1-8$ Mbytes $(5-30)$

Stream Information

- A real-time voice signal must be digitized \& transmitted as it is produced
- Analog signal level varies continuously in time

Digitization of Analog Signal

- Sample analog signal in time and amplitude
- Find closest approximation

$$
R_{s}=\text { Bit rate }=\text { \# bits/sample } \times \text { \# samples/second }
$$

Bit Rate of Digitized Signal

- Bandwidth W_{s} Hertz: how fast the signal changes
- Higher bandwidth \rightarrow more frequent samples
- Minimum sampling rate $=2 \times W_{s}$
- Representation accuracy: range of approximation error
- Higher accuracy
\rightarrow smaller spacing between approximation values
\rightarrow more bits per sample

Example: Voice \& Audio

Telephone voice

- $W_{s}=4 \mathrm{kHz} \rightarrow 8000$ samples/sec
- 8 bits/sample
- $R_{s}=8 \times 8000=64 \mathrm{kbps}$
- Cellular phones use more powerful compression algorithms: $8-12 \mathrm{kbps}$

CD Audio

- $W_{s}=22 \mathrm{kHertz} \rightarrow 44000$ samples/sec
- 16 bits/sample
- $R_{s}=16 \times 44000=704 \mathrm{kbps}$ per audio channel
- MP3 uses more powerful compression algorithms: 50 kbps per audio channel

Video Signal

- Sequence of picture frames
- Each picture digitized \& compressed
- Frame repetition rate
- 10-30-60 frames/second depending on quality
- Frame resolution
- Small frames for videoconferencing

- Standard frames for conventional broadcast TV
- HDTV frames

Rate $=\mathrm{M}$ bits/pixel $\mathbf{x}(\mathrm{WxH})$ pixels/frame $\mathbf{x} \mathrm{F}$ frames/second

Video Frames

Digital Video Signals

Type	Method	Format	Original	Compressed
Video Confer- ence	H.261	176×144 or 352×288 pix $@ 10-30$ fr/sec	$2-36$ Mbps	$64-1544$ kbps
Full Motion	MPEG 2	720×480 pix $@ 30 \mathrm{fr} / \mathrm{sec}$	249 Mbps	$2-6 \mathrm{Mbps}$
HDTV	MPEG 2	1920×1080 $@ 30 \mathrm{fr} / \mathrm{sec}$	1.6 Gbps	$19-38 \mathrm{Mbps}$

Transmission of Stream Information

- Constant bit-rate
- Signals such as digitized telephone voice produce a steady stream: e.g. 64 kbps
- Network must support steady transfer of signal, e.g. 64 kbps circuit
- Variable bit-rate
- Signals such as digitized video produce a stream that varies in bit rate, e.g. according to motion and detail in a scene
- Network must support variable transfer rate of signal, e.g. packet switching or rate-smoothing with constant bit-rate circuit

Stream Service Quality Issues

Network Transmission Impairments

- Delay: Is information delivered in timely fashion?
- Jitter: Is information delivered in sufficiently smooth fashion?
- Loss: Is information delivered without loss? If loss occurs, is delivered signal quality acceptable?
- Applications \& application layer protocols developed to deal with these impairments

Chapter 3 Communication Networks and Services

Why Digital Communications?

A Transmission System

Transmitter

Transmitter

- Converts information into signal suitable for transmission
- Injects energy into communications medium or channel
- Telephone converts voice into electric current
- Modem converts bits into tones

Receiver

- Receives energy from medium
- Converts received signal into form suitable for delivery to user
- Telephone converts current into voice
- Modem converts tones into bits

Transmission Impairments

Communication channel

Communication Channel

- Pair of copper wires
- Coaxial cable
- Radio
- Light in optical fiber
- Light in air
- Infrared

Transmission Impairments

- Signal attenuation
- Signal distortion
- Spurious noise
- Interference from other signals

Analog Long-Distance Communications

Transmission segment

- Each repeater attempts to restore analog signal to its original form
- Restoration is imperfect
- Distortion is not completely eliminated
- Noise \& interference is only partially removed
- Signal quality decreases with \# of repeaters
- Communications is distance-limited
- Still used in analog cable TV systems
- Analogy: Copy a song using a cassette recorder

Analog vs. Digital Transmission

Analog transmission: all details must be reproduced accurately

Digital transmission: only discrete levels need to be reproduced

Distortion Attenuation

Digital Long-Distance Communications

Transmission segment

- Regenerator recovers original data sequence and retransmits on next segment
- Can design so error probability is very small
- Then each regeneration is like the first time!
- Analogy: copy an MP3 file
- Communications is possible over very long distances
- Digital systems vs. analog systems
- Less power, longer distances, lower system cost
- Monitoring, multiplexing, coding, encryption, protocols...

Digital Binary Signal

Bit rate $=1$ bit $/ T$ seconds
For a given communications medium:

- How do we increase transmission speed?
- How do we achieve reliable communications?
- Are there limits to speed and reliability?

Pulse Transmission Rate

- Objective: Maximize pulse rate through a channel, that is, make T as small as possible

- If input is a narrow pulse, then typical output is a spread-out pulse with ringing
- Question: How frequently can these pulses be transmitted without interfering with each other?
- Answer: $2 \times W_{c}$ pulses/second
where W_{c} is the bandwidth of the channel

Bandwidth of a Channel

$X(t)=a \cos (2 \pi f t) \longrightarrow$ Channel $\rightarrow Y(t)=A(f) a \cos (2 \pi f t)$

- If input is sinusoid of frequency f, then
- output is a sinusoid of same frequency f
- Output is attenuated by an amount $A(\mathrm{f})$ that depends on f
- $A(f) \approx 1$, then input signal passes readily
- $A(\mathrm{f}) \approx 0$, then input signal is blocked

Ideal low-pass channel

- Bandwidth W_{c} is range of frequencies passed by channel

Multilevel Pulse Transmission

- Assume channel of bandwidth W_{c}, and transmit $2 W_{c}$ pulses/sec (without interference)
- If pulses amplitudes are either $-A$ or $+A$, then each pulse conveys 1 bit, so Bit Rate $=1$ bit/pulse $\times 2 W_{c}$ pulses/sec $=\mathbf{2} W_{c}$ bps
- If amplitudes are from $\{-A,-A / 3,+A / 3,+A\}$, then bit rate is $2 \times 2 W_{c}$ bps
- By going to $M=2^{m}$ amplitude levels, we achieve Bit Rate $=\boldsymbol{m}$ bits/pulse $\times 2 W_{c}$ pulses/sec $=2 m W_{c}$ bps

In the absence of noise, the bit rate can be increased without limit by increasing m

Noise \& Reliable Communications

- All physical systems have noise
- Electrons always vibrate at non-zero temperature
- Motion of electrons induces noise
- Presence of noise limits accuracy of measurement of received signal amplitude
- Errors occur if signal separation is comparable to noise level
- Bit Error Rate (BER) increases with decreasing signal-to-noise ratio
- Noise places a limit on how many amplitude levels can be used in pulse transmission

Signal-to-Noise Ratio

Shannon Channel Capacity

$$
C=W_{c} \log _{2}(1+S N R) \mathrm{bps}
$$

- Arbitrarily reliable communications is possible if the transmission rate $R<C$.
- If $R>C$, then arbitrarily reliable communications is not possible.
- "Arbitrarily reliable" means the BER can be made arbitrarily small through sufficiently complex coding.
- C can be used as a measure of how close a system design is to the best achievable performance.
- Bandwidth W_{c} \& SNR determine C

Example

- Find the Shannon channel capacity for a telephone channel with $W_{c}=3400 \mathrm{~Hz}$ and $S N R=10000$

$$
\begin{aligned}
C & =3400 \log _{2}(1+10000) \\
& =3400 \log _{10}(10001) / \log _{10} 2=45200 \mathrm{bps}
\end{aligned}
$$

Note that $S N R=10000$ corresponds to $S N R(\mathrm{~dB})=10 \log _{10}(10001)=40 \mathrm{~dB}$

Bit Rates of Digital Transmission Systems

System	Bit Rate	Observations
Telephone twisted pair	$33.6-56 \mathrm{kbps}$	4 kHz telephone channel
Ethernet twisted pair	$10 \mathrm{Mbps}, 100 \mathrm{Mbps}$	100 meters of unshielded twisted copper wire pair
Cable modem	$500 \mathrm{kbps}-4 \mathrm{Mbps}$	Shared CATV return channel
ADSL twisted pair	$64-640 \mathrm{kbps}$ in, $1.536-$ 6.144 Mbps out	Coexists with analog telephone signal
2.4 GHz radio	$2-11 \mathrm{Mbps}$	IEEE 802.11 wireless LAN
28 GHz radio	$1.5-45 \mathrm{Mbps}$	5 km multipoint radio
Optical fiber	$2.5-10 \mathrm{Gbps}$	1 wavelength
Optical fiber	$>1600 \mathrm{Gbps}$	Many wavelengths

Examples of Channels

Channel	Bandwidth	Bit Rates
Telephone voice channel	3 kHz	33 kbps
Copper pair	1 MHz	$1-6 \mathrm{Mbps}$
Coaxial cable	500 MHz $(6 \mathrm{MHz}$ channels $)$	$30 \mathrm{Mbps} /$ channel
5 GHz radio (IEEE 802.11)	300 MHz (11 channels)	$54 \mathrm{Mbps} /$ channel
Optical fiber	Many TeraHertz	40 Gbps / wavelength

Chapter 3 Digital Transmission Fundamentals

Digital Representation of Analog Signals

Digitization of Analog Signals

1. Sampling: obtain samples of $x(t)$ at uniformly spaced time intervals
2. Quantization: map each sample into an approximation value of finite precision

- Pulse Code Modulation: telephone speech
- CD audio

3. Compression: to lower bit rate further, apply additional compression method

- Differential coding: cellular telephone speech
- Subband coding: MP3 audio
- Compression discussed in Chapter 12

Sampling Rate and Bandwidth

- A signal that varies faster needs to be sampled more frequently
- Bandwidth measures how fast a signal varies

- What is the bandwidth of a signal?
- How is bandwidth related to sampling rate?

Periodic Signals

- A periodic signal with period T can be represented as sum of sinusoids using Fourier Series:

$$
x(t)=a_{0}+a_{1} \cos \left(2 \pi f_{0} t+\phi_{1}\right)+a_{2} \cos \left(2 \pi 2 f_{0} t+\phi_{2}\right)+\ldots
$$

$$
+a_{k} \cos \left(2 \pi k f_{0} t+\phi_{k}\right)+\ldots
$$

"DC" fundamental long-term frequency $f_{0}=1 / T$ average first harmonic

k th harmonic

- $\left|a_{k}\right|$ determines amount of power in k th harmonic
-Amplitude specturm $\left|a_{0}\right|,\left|a_{1}\right|,\left|a_{2}\right|, \ldots$

Example Fourier Series

10101010

$$
x_{1}(t)=0+\frac{4}{\pi} \cos (2 \pi 4000 t)
$$

$$
+\frac{4}{3 \pi} \cos (2 \pi 3(4000) t)
$$

$$
+\frac{4}{5 \pi} \cos (2 \pi 5(4000) t)+\ldots
$$

$$
\begin{aligned}
x_{2}(t)=0 & +\frac{4}{\pi} \cos (2 \pi 1000 t) \\
& +\frac{4}{3 \pi} \cos (2 \pi 3(1000) t) \\
& +\frac{4}{5 \pi} \cos (2 \pi 5(1000) t)+\ldots
\end{aligned}
$$

Only odd harmonics have power

Spectra \& Bandwidth

- Spectrum of a signal: magnitude of amplitudes as a function of frequency
- $x_{1}(t)$ varies faster in time \& has more high frequency content than $x_{2}(t)$
- Bandwidth W_{s} is defined as range of frequencies where a signal has non-negligible power, e.g. range of band that contains 99% of total signal power

Bandwidth of General Signals

- Not all signals are periodic
- E.g. voice signals varies according to sound
- Vowels are periodic, "s" is noiselike
- Spectrum of long-term signal
- Averages over many sounds, many speakers

- Involves Fourier transform
$0 \quad W_{s}$
- Telephone speech: 4 kHz
- CD Audio: 22 kHz

Sampling Theorem

Nyquist: Perfect reconstruction if sampling rate $1 / T>2 W_{s}$
(a)

(b)

Digital Transmission of Analog Information

$2 W$ samples / sec m bits / sample

Quantization of Analog Samples

Quantizer maps input into closest of 2^{m} representation values

Quantization error:
"noise" $=x(n T)-y(n T)$

Quantizer Performance

$M=2^{m}$ levels, Dynamic range $(-V, V) \Delta=2 V / M$

If the number of levels M is large, then the error is approximately uniformly distributed between $(-\Delta / 2, \Delta 2)$

Average Noise Power = Mean Square Error:

$$
\sigma_{e}^{2}=\int_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}} x^{2} \frac{1}{\Delta} d x=\frac{\Delta^{2}}{12}
$$

Quantizer Performance

Figure of Merit:
Signal-to-Noise Ratio = Avg signal power / Avg noise power
Let $\sigma_{x}{ }^{2}$ be the signal power, then
$S N R=\frac{\sigma_{x}^{2}}{\Delta^{2} / 12}=\frac{12 \sigma_{x}^{2}}{4 V^{2} / M^{2}}=3\left(\frac{\sigma_{x}}{V}\right)^{2} M^{2}=3\left(\frac{\sigma_{x}}{V}\right)^{2} 2^{2 m}$
The ratio $\mathrm{V} / \sigma_{\mathrm{x}} \approx 4$
The SNR is usually stated in decibels:
SNR db = $10 \log _{10} \sigma_{x}^{2} / \sigma_{e}^{2}=6+10 \log _{10}$
$3 \sigma_{x}^{2} / V^{2}$
SNR db = 6m-7.27 dB for $V / \sigma_{x}=4$.

Example: Telephone Speech

$W=4 \mathrm{KHz}$, so Nyquist sampling theorem
$\Rightarrow 2 \mathrm{~W}=8000$ samples/second
Suppose error requirement $=1 \%$ error SNR $=10 \log (1 / .01)^{2}=40 \mathrm{~dB}$
Assume $V / \sigma_{x}=4$, then
$40 \mathrm{~dB}=6 m-7$
$\Rightarrow \quad m=8 \mathrm{bits} /$ sample
PCM ("Pulse Code Modulation") Telephone Speech:
Bit rate $=8000 \times 8$ bits/sec= 64 kbps

Chapter 3 Digital Transmission Fundamentals

Characterization of Communication Channels

? :. ํํำ

Communications Channels

- A physical medium is an inherent part of a communications system
- Copper wires, radio medium, or optical fiber
- Communications system includes electronic or optical devices that are part of the path followed by a signal
- Equalizers, amplifiers, signal conditioners
- By communication channel we refer to the combined end-to-end physical medium and attached devices
- Sometimes we use the term filter to refer to a channel especially in the context of a specific mathematical model for the channel

How good is a channel?

- Performance: What is the maximum reliable transmission speed?
- Speed: Bit rate, R bps
- Reliability: Bit error rate, $\mathrm{BER}=10^{-k}$
- Focus of this section
- Cost: What is the cost of alternatives at a given level of performance?
- Wired vs. wireless?
- Electronic vs. optical?
- Standard A vs. standard B?

Communications Channel

Signal Bandwidth

- In order to transfer data faster, a signal has to vary more quickly.
Channel Bandwidth
- A channel or medium has an inherent limit on how fast the signals it passes can vary
- Limits how tightly input pulses can be packed

Transmission Impairments

- Signal attenuation
- Signal distortion
- Spurious noise
- Interference from other signals
- Limits accuracy of measurements on received signal

Frequency Domain Channel Characterization

$$
\begin{aligned}
& x(t)=A_{i n} \cos 2 \pi f t \\
& \xrightarrow{\overbrace{t}} \\
& y(t)=A_{\text {out }} \cos (2 \pi f t+\varphi(f)) \\
& A(f)=\frac{A_{\text {out }}}{A_{\text {in }}}
\end{aligned}
$$

- Apply sinusoidal input at frequency f
- Output is sinusoid at same frequency, but attenuated \& phase-shifted
- Measure amplitude of output sinusoid (of same frequency f)
- Calculate amplitude response
- $A(f)=$ ratio of output amplitude to input amplitude
- If $A(f) \approx 1$, then input signal passes readily
- If $A(f) \approx 0$, then input signal is blocked
- Bandwidth W_{c} is range of frequencies passed by channel

Ideal Low-Pass Filter

- Ideal filter: all sinusoids with frequency $f<W_{c}$ are passed without attenuation and delayed by τ seconds; sinusoids at other frequencies are blocked

$$
y(t)=A_{i n} \cos (2 \pi f t-2 \pi f \tau)=A_{i n} \cos (2 \pi f(t-\tau))=x(t-\tau)
$$

Amplitude Response

Phase Response

Example: Low-Pass Filter

- Simplest non-ideal circuit that provides low-pass filtering
- Inputs at different frequencies are attenuated by different amounts - Inputs at different frequencies are delayed by different amounts

Example: Bandpass Channel

Amplitude Response

- Some channels pass signals within a band that excludes low frequencies
- Telephone modems, radio systems, ...
- Channel bandwidth is the width of the frequency band that passes non-negligible signal power

Channel Distortion

$$
x(t)=\sum a_{k} \cos \left(2 \pi f_{k} t+\theta_{k}\right) \longrightarrow \text { Channel } \rightarrow y(t)
$$

- Let $x(t)$ corresponds to a digital signal bearing data information
- How well does $y(t)$ follow $x(t)$?

$$
y(t)=\sum A\left(f_{k}\right) a_{k} \cos \left(2 \pi f_{k} t+\theta_{k}+\Phi\left(f_{k}\right)\right)
$$

- Channel has two effects:
- If amplitude response is not flat, then different frequency components of $x(t)$ will be transferred by different amounts
- If phase response is not flat, then different frequency components of $x(t)$ will be delayed by different amounts
- In either case, the shape of $x(t)$ is altered

Example: Amplitude Distortion

- Let $x(t)$ input to ideal lowpass filter that has zero delay and $W_{c}=1.5 \mathrm{kHz}, 2.5 \mathrm{kHz}$, or 4.5 kHz

$$
\begin{aligned}
x(t)=-0.5 & +\frac{4}{\pi} \sin \left(\frac{\pi}{4}\right) \cos (2 \pi 1000 t) \\
& +\frac{4}{\pi} \sin \left(\frac{2 \pi}{4}\right) \cos (2 \pi 2000 t)+\frac{4}{\pi} \sin \left(\frac{3 \pi}{4}\right) \cos (2 \pi 3000 t)+\ldots
\end{aligned}
$$

- $W_{c}=1.5 \mathrm{kHz}$ passes only the first two terms
- $W_{c}=2.5 \mathrm{kHz}$ passes the first three terms
- $W_{c}=4.5 \mathrm{kHz}$ passes the first five terms

Amplitude Distortion

- As the channel bandwidth increases, the output of the channel
resembles the input more closely
(c) 4 Harmonics

Time-domain Characterization

- Time-domain characterization of a channel requires finding the impulse response $h(t)$
- Apply a very narrow pulse to a channel and observe the channel output
- $h(t)$ typically a delayed pulse with ringing
- Interested in system designs with $h(t)$ that can be packed closely without interfering with each other

Nyquist Pulse with Zero Intersymbol Interference

- For channel with ideal lowpass amplitude response of bandwidth W_{c}, the impulse response is a Nyquist pulse $h(t)=s(t-\tau)$, where $T=1 / 2 W_{c}$, and

$$
s(t)=\sin \left(2 \pi W_{c} t\right) / 2 \pi W_{c} t
$$

- $s(t)$ has zero crossings at $t=k T, k= \pm 1, \pm 2, \ldots$
- Pulses can be packed every T seconds with zero interference

Example of composite waveform

Three Nyquist pulses shown separately

- $+s(t)$
- $+s(t-T)$
- $-s(t-2 T)$

Composite waveform $r(t)=s(t)+s(t-T)-s(t-2 T)$

Samples at $k T$
$r(0)=s(0)+s(-T)-s(-2 T)=+1$ $r(T)=s(T)+s(0)-s(-T)=+1$ $r(2 T)=s(2 T)+s(T)-s(0)=-1$
Zero ISI at sampling times $k T$

Nyquist pulse shapes

- If channel is ideal low pass with W_{c}, then pulses maximum rate pulses can be transmitted without $I S I$ is $T=1 / 2 \mathrm{~W}_{\mathrm{c}}$ sec.
- $s(t)$ is one example of class of Nyquist pulses with zero ISI
- Problem: sidelobes in $s(t)$ decay as $1 / t$ which add up quickly when there are slight errors in timing
- Raised cosine pulse below has zero ISI
- Requires slightly more bandwidth than W_{c}
- Sidelobes decay as $1 / t^{3}$, so more robust to timing errors

Chapter 3 Digital Transmission Fundamentals

Fundamental Limits in Digital Transmission

Signaling with Nyquist Pulses

- $p(t)$ pulse at receiver in response to a single input pulse (takes into account pulse shape at input, transmitter \& receiver filters, and communications medium)
- $r(t)$ waveform that appears in response to sequence of pulses
- If $s(t)$ is a Nyquist pulse, then $r(t)$ has zero intersymbol interference (ISI) when sampled at multiples of T

Multilevel Signaling

- Nyquist pulses achieve the maximum signalling rate with zero ISI,
$2 W_{c}$ pulses per second or
$2 W_{c}$ pulses $/ W_{c} \mathrm{~Hz}=2$ pulses $/ \mathrm{Hz}$
- With two signal levels, each pulse carries one bit of information

Bit rate $=2 W_{c}$ bits/second

- With $M=2^{m}$ signal levels, each pulse carries m bits

Bit rate $=2 W_{c}$ pulses/sec. * m bits/pulse $=2 W_{c} m$ bps

- Bit rate can be increased by increasing number of levels
- $r(t)$ includes additive noise, that limits number of levels that can be used reliably.

Example of Multilevel Signaling

- Four levels $\{-1,-1 / 3,1 / 3,+1\}$ for $\{00,01,10,11\}$
- Waveform for $11,10,01$ sends $+1,+1 / 3,-1 / 3$
- Zero ISI at sampling instants

Noise Limits Accuracy

- Receiver makes decision based on transmitted pulse level + noise
- Error rate depends on relative value of noise amplitude and spacing between signal levels
- Large (positive or negative) noise values can cause wrong decision
- Noise level below impacts 8-level signaling more than 4-level signaling

Four signal levels

Eight signal levels

Noise distribution

- Noise is characterized by probability density of amplitude samples
- Likelihood that certain amplitude occurs
- Thermal electronic noise is inevitable (due to vibrations of electrons)
- Noise distribution is Gaussian (bell-shaped) as below

Probability of Error

- Error occurs if noise value exceeds certain magnitude
- Prob. of large values drops quickly with Gaussian noise
- Target probability of error achieved by designing system so separation between signal levels is appropriate relative to average noise power

Channel Noise affects Reliability

High SNR

$$
\text { SNR }=\frac{\text { Average Signal Power }}{\text { Average Noise Power }}
$$

$\operatorname{SNR}(\mathrm{dB})=10 \log _{10} \mathrm{SNR}$

Shannon Channel Capacity

- If transmitted power is limited, then as M increases spacing between levels decreases
- Presence of noise at receiver causes more frequent errors to occur as M is increased

Shannon Channel Capacity:

The maximum reliable transmission rate over an ideal channel with bandwidth $W \mathrm{~Hz}$, with Gaussian distributed noise, and with $\operatorname{SNR} S / N$ is

$$
C=W \log _{2}(1+S / N) \text { bits per second }
$$

- Reliable means error rate can be made arbitrarily small by proper coding

Example

- Consider a 3 kHz channel with 8-level signaling. Compare bit rate to channel capacity at 20 dB SNR
- 3 KHz telephone channel with 8 level signaling Bit rate $=2 * 3000$ pulses $/ \mathrm{sec} * 3$ bits $/$ pulse $=18 \mathrm{kbps}$
- 20 dB SNR means $10 \log _{10} S / N=20$ Implies $S / N=100$
- Shannon Channel Capacity is then $C=3000 \log (1+100)=19,963$ bits/second

Chapter 3 Digital Transmission Fundamentals

Line Coding

What is Line Coding?

- Mapping of binary information sequence into the digital signal that enters the channel
- Ex. "1" maps to +A square pulse; "0" to -A pulse
- Line code selected to meet system requirements:
- Transmitted power. Power consumption =\$
- Bit timing: Transitions in signal help timing recovery
- Bandwidth efficiency: Excessive transitions wastes bw
- Low frequency content: Some channels block low frequencies
- long periods of +A or of -A causes signal to "droop"
- Waveform should not have low-frequency content
- Error detection: Ability to detect errors helps
- Complexity/cost: Is code implementable in chip at high speed?

Line coding examples

Spectrum of Line codes

- Assume 1s \& 0s independent \& equiprobable

- NRZ has high content at low frequencies
- Bipolar tightly packed around $T / 2$
- Manchester wasteful of bandwidth
fT

Unipolar \& Polar Non-Return-to-Zero (NRZ)

Unipolar NRZ

- "1" maps to +A pulse
- "0" maps to no pulse
- High Average Power $0.5^{*} \mathrm{~A}^{2}+0.5^{*} 0^{2}=\mathrm{A}^{2} / 2$
- Long strings of A or 0
- Poor timing
- Low-frequency content
- Simple

Polar NRZ

- "1" maps to +A/2 pulse
- "0" maps to -A/2 pulse
- Better Average Power $0.5^{*}(\mathrm{~A} / 2)^{2}+0.5^{*}(-\mathrm{A} / 2)^{2}=\mathrm{A}^{2} / 4$
- Long strings of $+\mathrm{A} / 2$ or $-\mathrm{A} / 2$
- Poor timing
- Low-frequency content
- Simple

Bipolar Code

- Three signal levels: $\{-\mathrm{A}, 0,+\mathrm{A}\}$
- "1" maps to +A or -A in alternation
- "0" maps to no pulse
- Every +pulse matched by -pulse so little content at low frequencies
- String of 1s produces a square wave
- Spectrum centered at $T / 2$
- Long string of Os causes receiver to lose synch
- Zero-substitution codes

Manchester code \& mBnB codes

- "1" maps into $\mathrm{A} / 2$ first $T / 2,-\mathrm{A} / 2$ last T/2
- "0" maps into -A/2 first T/2, A/2 last $T / 2$
- Every interval has transition in middle
- Timing recovery easy
- Uses double the minimum bandwidth
- Simple to implement
- Used in 10-Mbps Ethernet \& other LAN standards
- $m B n B$ line code
- Maps block of m bits into n bits
- Manchester code is 1 B 2 B code
- 4B5B code used in FDDI LAN
- 8B10b code used in Gigabit Ethernet
- 64B66B code used in 10G Ethernet

Differential Coding

- Errors in some systems cause transposition in polarity, +A become -A and vice versa
- All subsequent bits in Polar NRZ coding would be in error
- Differential line coding provides robustness to this type of error
- "1" mapped into transition in signal level
- "0" mapped into no transition in signal level
- Same spectrum as NRZ
- Errors occur in pairs
- Also used with Manchester coding

Chapter 3
 Digital Transmission Fundamentals

Modems and Digital Modulation
:: : id

Bandpass Channels

- Bandpass channels pass a range of frequencies around some center frequency f_{c}
- Radio channels, telephone \& DSL modems
- Digital modulators embed information into waveform with frequencies passed by bandpass channel
- Sinusoid of frequency f_{c} is centered in middle of bandpass channel
- Modulators embed information into a sinusoid

Amplitude Modulation and Frequency Modulation

Information
10
$0 \quad 1$
1 -

1
$+1$
Amplitude
Shift
Keying

Map bits into amplitude of sinusoid: "1" send sinusoid; "0" no sinusoid Demodulator looks for signal vs. no signal
+1
Frequency
Shift
Keying

$$
-1
$$

Map bits into frequency: " 1 " send frequency $f_{c}+\delta$; " 0 " send frequency $f_{c}-\delta$ Demodulator looks for power around $f_{c}+\delta$ or $f_{c}-\delta$

Phase Modulation

Information
10
$0 \quad 1$
1
0
1

Phase Shift
Keying

- Map bits into phase of sinusoid:
- " 1 " send $A \cos (2 \pi f t)$
, i.e. phase is 0
- " 0 " send $A \cos (2 \pi f t+\pi)$
, i.e. phase is π
- Equivalent to multiplying $\cos (2 \pi f t)$ by +A or -A
- " 1 " send $A \cos (2 \pi f t) \quad$, i.e. multiply by 1
- " 0 " send $A \cos (2 \pi f t+\pi)=-A \cos (2 \pi f t) \quad$, i.e. multiply by -1
- We will focus on phase modulation

Modulator \& Demodulator

Modulate $\cos \left(2 \pi f_{c} t\right)$ by multiplying by A_{k} for T seconds:

Demodulate (recover A_{k}) by multiplying by $2 \cos \left(2 \pi f_{c} t\right)$ for T seconds and lowpass filtering (smoothing):

Example of Modulation

Information

Example of Demodulation

Recovered Information

1
01
1
$0 \quad 1$

Signaling rate and Transmission Bandwidth

- Fact from modulation theory:

If
Baseband signal $x(t)$ with bandwidth BHz then

Modulated signal $x(t) \cos \left(2 \pi f_{c} t\right)$ has bandwidth $2 B \mathrm{~Hz}$

- If bandpass channel has bandwidth $W_{c} \mathrm{~Hz}$,
- Then baseband channel has $W_{c} / 2 \mathrm{~Hz}$ available, so
- modulation system supports $W_{c} / 2 \times 2=W_{c}$ pulses/second
- That is, W_{c} pulses/second per $W_{c} \mathrm{~Hz}=1$ pulse/Hz
- Recall baseband transmission system supports 2 pulses/Hz

Quadrature Amplitude Modulation
 (QAM)

- QAM uses two-dimensional signaling
- A_{k} modulates in-phase $\cos \left(2 \pi f_{c} t\right)$
- B_{k} modulates quadrature phase $\cos \left(2 \pi f_{c} t+\pi / 4\right)=\sin \left(2 \pi f_{c} t\right)$
- Transmit sum of inphase \& quadrature phase components

- $\quad Y_{i}(t)$ and $Y_{q}(t)$ both occupy the bandpass channel
- QAM sends 2 pulses/Hz

QAM Demodulation

Signal Constellations

- Each pair $\left(A_{k}, B_{k}\right)$ defines a point in the plane
- Signal constellation set of signaling points

4 possible points per T sec.
2 bits / pulse
16 possible points per T sec.
4 bits / pulse

Other Signal Constellations

- Point selected by amplitude \& phase

$$
A_{k} \cos \left(2 \pi f_{c} t\right)+B_{k} \sin \left(2 \pi f_{c} t\right)=\sqrt{A_{k}^{2}+B_{k}^{2}} \cos \left(2 \pi f_{c} t+\tan ^{-1}\left(B_{k} / A_{k}\right)\right)
$$

4 possible points per T sec.

16 possible points per T sec.

Telephone Modem Standards

Telephone Channel for modulation purposes has $W_{c}=2400 \mathrm{~Hz} \rightarrow 2400$ pulses per second

Modem Standard V.32bis

- Trellis modulation maps m bits into one of 2^{m+1} constellation points
- 14,400 bps
- 9600 bps
- 4800 bps

Trellis 128 2400x6
Trellis $32 \quad 2400 \times 4$
QAM 4 2400x2

Modem Standard V. 34 adjusts pulse rate to channel

- 2400-33600 bps Trellis 960 2400-3429 pulses/sec

Chapter 3

Digital Transmission

 FundamentalsProperties of Media and Digital Transmission Systems

Fundamental Issues in Transmission Media

- Information bearing capacity
- Amplitude response \& bandwidth
- dependence on distance
- Susceptibility to noise \& interference
- Error rates \& SNRs
- Propagation speed of signal
- $c=3 \times 10^{8}$ meters/second in vacuum
- $v=c / \sqrt{ } \varepsilon$ speed of light in medium where $\varepsilon>1$ is the dielectric constant of the medium
- $v=2.3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$ in copper wire; $v=2.0 \times 10^{8} \mathrm{~m} / \mathrm{sec}$ in odtical fiber

Communications systems \& Electromagnetic Spectrum

- Frequency of communications signals

Wireless \& Wired Media

Wireless Media

- Signal energy propagates in space, limited directionality
- Interference possible, so spectrum regulated
- Limited bandwidth
- Simple infrastructure: antennas \& transmitters
- No physical connection between network \& user
- Users can move

Wired Media

- Signal energy contained \& guided within medium
- Spectrum can be re-used in separate media (wires or cables), more scalable
- Extremely high bandwidth
- Complex infrastructure: ducts, conduits, poles, right-of-way

Attenuation

- Attenuation varies with media
- Dependence on distance of central importance
- Wired media has exponential dependence
- Received power at d meters proportional to $10^{-k d}$
- Attenuation in $\mathrm{dB}=k d$, where k is $\mathrm{dB} /$ meter
- Wireless media has logarithmic dependence
- Received power at d meters proportional to d^{-n}
- Attenuation in $\mathrm{dB}=n \log d$, where n is path loss exponent; $n=2$ in free space
- Signal level maintained for much longer distances
- Space communications possible

Twisted Pair

Twisted pair

- Two insulated copper wires arranged in a regular spiral pattern to minimize interference
- Various thicknesses, e.g. 0.016 inch (24 gauge)
- Low cost
- Telephone subscriber loop from customer to CO
- Old trunk plant connecting telephone COs
- Intra-building telephone from wiring closet to desktop
- In old installations, loading coils added to improve quality in 3 kHz band, but more attenuation at higher frequencies

Twisted Pair Bit Rates

Table 3.5 Data rates of 24-gauge twisted pair

Standard	Data Rate	Distance
T-1	1.544 Mbps	18,000 feet, 5.5 km
DS2	6.312 Mbps	12,000 feet, 3.7 km
$1 / 4$ STS-1	12.960 Mbps	4500 feet, 1.4 km
$1 / 2$ STS-1	25.920 Mbps	3000 feet, 0.9 km
STS-1	51.840 Mbps	1000 feet, 300 m

- Twisted pairs can provide high bit rates at short distances
- Asymmetric Digital Subscriber Loop (ADSL)
- High-speed Internet Access
- Lower 3 kHz for voice
- Upper band for data
- 64 kbps inbound
- 640 kbps outbound
- Much higher rates possible at shorter distances
- Strategy for telephone companies is to bring fiber close to home \& then twisted pair
- Higher-speed access + video

Ethernet LANs

- Category 3 unshielded twisted pair (UTP): ordinary telephone wires

- Category 5 UTP: tighter twisting to improve signal quality
- Shielded twisted pair (STP): to minimize interference; costly
- 10BASE-T Ethernet
- 10 Mbps, Baseband, Twisted pair
- Two Cat3 pairs
- Manchester coding, 100 meters
- 100BASE-T4 Fast Ethernet
- 100 Mbps , Baseband, Twisted pair
- Four Cat3 pairs
- Three pairs for one direction at-a-time
- 100/3 Mbps per pair;
- 3B6T line code, 100 meters
- Cat5 \& STP provide other options

Coaxial Cable

Twisted pair

- Cylindrical braided outer conductor surrounds insulated inner wire conductor
- High interference immunity
- Higher bandwidth than twisted pair
- Hundreds of MHz
- Cable TV distribution
- Long distance telephone transmission
- Original Ethernet LAN medium

Cable Modem \& TV Spectrum

Downstream Downstream

- Cable TV network originally unidirectional
- Cable plant needs upgrade to bidirectional
- 1 analog TV channel is 6 MHz , can support very high data rates
- Cable Modem: shared upstream \& downstream
- 5-42 MHz upstream into network; 2 MHz channels; 500 kbps to 4 Mbps
- >550 MHz downstream from network; 6 MHz channels; 36 Mbps

Cable Network Topology

Optical Fiber

- Light sources (lasers, LEDs) generate pulses of light that are transmitted on optical fiber
- Very long distances (>1000 km)
- Very high speeds (>40 Gbps/wavelength)
- Nearly error-free (BER of 10^{-15})
- Profound influence on network architecture
- Dominates long distance transmission
- Distance less of a cost factor in communications
- Plentiful bandwidth for new services

Transmission in Optical Fiber

Geometry of optical fiber

Total Internal Reflection in optical fiber

- Very fine glass cylindrical core surrounded by concentric layer of glass (cladding)
- Core has higher index of refraction than cladding
- Light rays incident at less than critical angle θ_{c} is completely reflected back into the core

Multimode \& Single-mode Fiber

Multimode fiber: multiple rays follow different paths

Single-mode fiber: only direct path propagates in fiber

- Multimode: Thicker core, shorter reach
- Rays on different paths interfere causing dispersion \& limiting bit rate
- Single mode: Very thin core supports only one mode (path)
- More expensive lasers, but achieves very high speeds

Optical Fiber Properties

Advantages

- Very low attenuation
- Noise immunity
- Extremely high bandwidth
- Security: Very difficult to tap without breaking
- No corrosion
- More compact \& lighter than copper wire

Disadvantages

- New types of optical signal impairments \& dispersion
- Polarization dependence
- Wavelength dependence
- Limited bend radius
- If physical arc of cable too high, light lost or won't reflect
- Will break
- Difficult to splice
- Mechanical vibration becomes signal noise

Very Low Attenuation

Huge Available Bandwidth

- Optical range from λ_{1} to $\lambda_{1}+\Delta \lambda$ contains bandwidth

$$
\begin{aligned}
B & =f_{1}-f_{2}=\frac{v}{\lambda_{1}}-\frac{v}{\lambda_{1}+\Delta \lambda} \\
& =\frac{v}{\lambda_{1}}\left\{\frac{\Delta \lambda / \lambda_{1}}{1+\Delta \lambda / \lambda 1}\right\} \approx \frac{v \Delta \lambda}{\lambda_{1}{ }^{2}}
\end{aligned}
$$

- Example: $\lambda_{1}=1450 \mathrm{~nm}$ $\lambda_{1}+\Delta \lambda=1650 \mathrm{~nm}:$
$B=\frac{2\left(10^{8}\right) \mathrm{m} / \mathrm{s} 200 \mathrm{~nm}}{(1450 \mathrm{~nm})^{2}} \approx 19 \mathrm{THz}$

Wavelength-Division Multiplexing

- Different wavelengths carry separate signals
- Multiplex into shared optical fiber
- Each wavelength like a separate circuit
- A single fiber can carry 160 wavelengths, 10 Gbps per wavelength: 1.6 Tbps!

Coarse \& Dense WDM

Coarse WDM

- Few wavelengths 4-8 with very wide spacing
- Low-cost, simple Dense WDM
- Many tightly-packed wavelengths
- ITU Grid: 0.8 nm separation for 10Gbps signals
- 0.4 nm for 2.5 Gbps

Regenerators \& Optical Amplifiers

- The maximum span of an optical signal is determined by the available power \& the attenuation:
- Ex. If 30 dB power available,
- then at 1550 nm , optical signal attenuates at $0.25 \mathrm{~dB} / \mathrm{km}$,
- so max span $=30 \mathrm{~dB} / 0.25 \mathrm{~km} / \mathrm{dB}=120 \mathrm{~km}$
- Optical amplifiers amplify optical signal (no equalization, no regeneration)
- Impairments in optical amplification limit maximum number of optical amplifiers in a path
- Optical signal must be regenerated when this limit is reached
- Requires optical-to-electrical (O-to-E) signal conversion, equalization, detection and retransmission (E-to-O)
- Expensive
- Severe problem with WDM systems

DWDM \& Regeneration

- Single signal per fiber requires 1 regenerator per span

Regenerator

- DWDM system carries many signals in one fiber
- At each span, a separate regenerator required per signal
- Very expensive

Optical Amplifiers

- Optical amplifiers can amplify the composite DWDM signal without demuxing or O-to-E conversion
- Erbium Doped Fiber Amplifiers (EDFAs) boost DWDM signals within 1530 to 1620 range
- Spans between regeneration points >1000 km
- Number of regenerators can be reduced dramatically
- Dramatic reduction in cost of long-distance communications

Radio Transmission

- Radio signals: antenna transmits sinusoidal signal ("carrier") that radiates in air/space
- Information embedded in carrier signal using modulation, e.g. QAM
- Communications without tethering
- Cellular phones, satellite transmissions, Wireless LANs
- Multipath propagation causes fading
- Interference from other users
- Spectrum regulated by national \& international regulatory organizations

Radio Spectrum

Frequency (Hz)

Omni-directional applications
Point-to-Point applications

Examples

Cellular Phone

- Allocated spectrum
- First generation:
- $800,900 \mathrm{MHz}$
- Initially analog voice
- Second generation:
- 1800-1900 MHz
- Digital voice, messaging

Wireless LAN

- Unlicenced ISM spectrum
- Industrial, Scientific, Medical
- 902-928 MHz, 2.400-2.4835 GHz, 5.725-5.850 GHz
- IEEE 802.11 LAN standard
- 11-54 Mbps

Point-to-Multipoint Systems

- Directional antennas at microwave frequencies
- High-speed digital communications between sites
- High-speed Internet Access Radio backbone links for rural areas
Satellite Communications
- Geostationary satellite @ 36000 km above equator
- Relays microwave signals from uplink frequency to downlink frequency
- Long distance telephone
- Satellite TV broadcast

Chapter 3

Digital Transmission

 Fundamentals
Error Detection and Correction

Error Control

- Digital transmission systems introduce errors
- Applications require certain reliability level
- Data applications require error-free transfer
- Voice \& video applications tolerate some errors
- Error control used when transmission system does not meet application requirement
- Error control ensures a data stream is transmitted to a certain level of accuracy despite errors
- Two basic approaches:
- Error detection \& retransmission (ARQ)
- Forward error correction (FEC)

Key Idea

- All transmitted data blocks ("codewords") satisfy a pattern
- If received block doesn't satisfy pattern, it is in error
- Redundancy: Only a subset of all possible blocks can be codewords
- Blindspot: when channel transforms a codeword into another codeword

Single Parity Check

- Append an overall parity check to k information bits Info Bits: $\quad b_{1}, b_{2}, b_{3}, \ldots, b_{k}$

Check Bit: $\quad b_{k+1}=b_{1}+b_{2}+b_{3}+\ldots+b_{k}$ modulo 2
Codeword: $\quad\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \ldots, \mathrm{~b}_{k}, \mathrm{~b}_{k+!}\right)$

- All codewords have even \# of 1s
- Receiver checks to see if \# of 1 s is even
- All error patterns that change an odd \# of bits are detectable
- All even-numbered patterns are undetectable
- Parity bit used in ASCII code

Example of Single Parity Code

- Information (7 bits): ($0,1,0,1,1,0,0$)
- Parity Bit: $\mathrm{b}_{8}=0+1+0+1+1+0=1$
- Codeword (8 bits): ($0,1,0,1,1,0,0,1$)
- If single error in bit $3:(0,1,1,1,1,0,0,1)$
- \# of 1's =5, odd
- Error detected
- If errors in bits 3 and $5:(0,1,1,1,0,0,0,1)$
- \# of 1's =4, even
- Error not detected

Checkbits \& Error Detection

How good is the single parity check code?

- Redundancy: Single parity check code adds 1 redundant bit per k information bits: overhead = 1/(k+1)
- Coverage: all error patterns with odd \# of errors can be detected
- An error patten is a binary $(k+1)$-tuple with 1 s where errors occur and 0's elsewhere
- Of 2^{k+1} binary $(k+1)$-tuples, $1 / 2$ are odd, so 50% of error patterns can be detected
- Is it possible to detect more errors if we add more check bits?
- Yes, with the right codes

What if bit errors are random?

- Many transmission channels introduce bit errors at random, independently of each other, and with probability p
- Some error patterns are more probable than others:

$$
\begin{array}{r}
P[10000000]=p(1-p)^{7}=(1-p)^{8}\binom{p}{1-p} \text { and } \\
P[11000000]=p^{2}(1-p)^{6}=(1-p)^{8}\binom{p}{1-p}^{2}
\end{array}
$$

- In any worthwhile channel $p<0.5$, and so $(p /(1-p)<1$
- It follows that patterns with 1 error are more likely than patterns with 2 errors and so forth
- What is the probability that an undetectable error pattern occurs?

Single parity check code with random bit errors

- Undetectable error pattern if even \# of bit errors:
P [error detection failure] $=P$ [undetectable error pattern]
$=P$ [error patterns with even number of 1 s]

$$
=\binom{n}{2} p^{2}(1-p)^{n-2}+\binom{n}{4} p^{4}(1-p)^{n-4}+\ldots
$$

- Example: Evaluate above for $n=32, p=10^{-3}$

$$
\begin{aligned}
P[\text { undetectable error }] & =\binom{32}{2}\left(10^{-3}\right)^{2}\left(1-10^{-3}\right)^{30}+\binom{32}{4}\left(10^{-3}\right)^{4}\left(1-10^{-3}\right)^{28} \\
& \approx 496\left(10^{-6}\right)+35960\left(10^{-12}\right) \approx 4.96\left(10^{-4}\right)
\end{aligned}
$$

- For this example, roughly 1 in 2000 error patterns is undetectable

What is a good code?

- Many channels have preference for error patterns that have fewer \# of errors
- These error patterns map transmitted codeword to nearby n-tuple
- If codewords close to each other then detection failures

Poor
distance properties will occur

- Good codes should maximize separation between codewords

Two-Dimensional Parity Check

- More parity bits to improve coverage
- Arrange information as columns
- Add single parity bit to each column
- Add a final "parity" column
- Used in early error control systems

Bottom row consists of check bit for each column

Error-detecting capability

1, 2, or 3 errors can always be detected; Not all patterns >4 errors can be detected

| 1 | 0 | 0 | 1 | 0 | 0 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 0 | 1 | | |
| 1 | 0 | 0 | 1 | 0 | 0 | | |
| 1 | 0 | 0 | 0 | 1 | 0 | Four errors | |
| 1 | 0 | 0 | 1 | 1 | 1 | | |

Arrows indicate failed check bits

Other Error Detection Codes

- Many applications require very low error rate
- Need codes that detect the vast majority of errors
- Single parity check codes do not detect enough errors
- Two-dimensional codes require too many check bits
- The following error detecting codes used in practice:
- Internet Check Sums
- CRC Polynomial Codes

Internet Checksum

- Several Internet protocols (e.g. IP, TCP, UDP) use check bits to detect errors in the IP header (or in the header and data for TCP/UDP)
- A checksum is calculated for header contents and included in a special field.
- Checksum recalculated at every router, so algorithm selected for ease of implementation in software
- Let header consist of $L, 16$-bit words,
$\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{L-1}$
- The algorithm appends a 16-bit checksum \mathbf{b}_{L}

Checksum Calculation

The checksum \mathbf{b}_{L} is calculated as follows:

- Treating each 16-bit word as an integer, find

$$
\mathbf{x}=\mathbf{b}_{0}+\mathbf{b}_{1}+\mathbf{b}_{2}+\ldots+\mathbf{b}_{L-1} \text { modulo } 2^{16}-1
$$

- The checksum is then given by:

$$
\mathbf{b}_{\mathrm{L}}=-\mathbf{x} \text { modulo } 2^{16}-1
$$

Thus, the headers must satisfy the following pattern:

$$
\mathbf{0}=\mathbf{b}_{0}+\mathbf{b}_{1}+\mathbf{b}_{2}+\ldots+\mathbf{b}_{L-1}+\mathbf{b}_{\llcorner } \text {modulo } 2^{16}-1
$$

- The checksum calculation is carried out in software using one's complement arithmetic

Internet Checksum Example

Use Modulo Arithmetic

- Assume 4-bit words
- Use mod $2^{4}-1$ arithmetic
- $\underline{b}_{0}=1100=12$
- $\underline{b}_{1}=1010=10$
- $\underline{\mathrm{b}}_{0}+\underline{\mathrm{b}}_{1}=12+10=7 \mathrm{mod} 15$
- $\underline{\mathrm{b}}_{2}=-7=8 \bmod 15$
- Therefore
- $\underline{b}_{2}=1000$

Use Binary Arithmetic

- Note $16=1 \bmod 15$
- So: $10000=0001 \bmod 15$
- leading bit wraps around

$$
\begin{aligned}
\mathrm{b}_{0}+\mathrm{b}_{1} & =1100+1010 \\
& =10110 \\
& =10000+0110 \\
& =0001+0110 \\
& =0111 \\
& =7
\end{aligned}
$$

Take 1s complement $b_{2}=-0111=1000$

Polynomial Codes

- Polynomials instead of vectors for codewords
- Polynomial arithmetic instead of check sums
- Implemented using shift-register circuits
- Also called cyclic redundancy check (CRC) codes
- Most data communications standards use polynomial codes for error detection
- Polynomial codes also basis for powerful error-correction methods

Binary Polynomial Arithmetic

- Binary vectors map to polynomials

$$
\left(i_{k-1}, i_{k-2}, \ldots, i_{2}, i_{1}, i_{0}\right) \rightarrow i_{k-1} x^{k-1}+i_{k-2} x^{k-2}+\ldots+i_{2} x^{2}+i_{1} x+i_{0}
$$

Addition:

$$
\begin{aligned}
\left(x^{7}+x^{6}+1\right)+\left(x^{6}+x^{5}\right) & =x^{7}+x^{6}+x^{6}+x^{5}+1 \\
& =x^{7}+(1+1) x^{6}+x^{5}+1 \\
& =x^{7}+x^{5}+1 \text { since } 1+1=0 \bmod 2
\end{aligned}
$$

Multiplication:

$$
\begin{aligned}
(x+1)\left(x^{2}+x+1\right) & =x\left(x^{2}+x+1\right)+1\left(x^{2}+x+1\right) \\
& \left.=x^{3}+x^{2}+x\right)+\left(x^{2}+x+1\right) \\
& =x^{3}+1
\end{aligned}
$$

Binary Polynomial Division

- Division with Decimal Numbers

- Polynomial Division

$$
x^{3}+x^{2}+x \quad=q(x) \text { quotient }
$$

divisor

$$
\begin{gathered}
x^{3}+x+1 x^{6+x^{5}} \\
\frac{x^{6}+x^{4}+x^{3}}{} \text { dividend }
\end{gathered}
$$

Note: Degree of $r(x)$ is less than

$$
x^{5}+x^{4}+x^{3}
$$

$$
x^{5}+\quad x^{3}+x^{2}
$$ degree of divisor

$$
\begin{array}{lll}
\begin{array}{l}
x^{4}+ \\
x^{4}+
\end{array} & \begin{array}{l}
x^{2} \\
x^{2}+x
\end{array} \\
\hline & x & =r(x) \text { remainder }
\end{array}
$$

Polynomial Coding

- Code has binary generating polynomial of degree $n-k$

$$
g(x)=x^{n-k}+g_{n-k-1} x^{n-k-1}+\ldots+g_{2} x^{2}+g_{1} x+1
$$

- k information bits define polynomial of degree $k-1$

$$
i(x)=i_{k-1} x^{k-1}+i_{k-2} x^{k-2}+\ldots+i_{2} x^{2}+i_{1} x+i_{0}
$$

- Find remainder polynomial of at most degree $n-k-1$

$$
\frac{q(x)}{} \underset{r(x)}{x^{n-k}(x)} \quad \quad x^{n-k i(x)}=q(x) g(x)+r(x)
$$

- Define the codeword polynomial of degree $n-1$

$$
\underbrace{b(x)}_{n \text { bits }}=\underbrace{x^{n-k i}(x)}_{k \text { bits }}+\underbrace{r(x)}_{n-k \text { bits }}
$$

Polynomial example: $\boldsymbol{k}=\mathbf{4}, \boldsymbol{n}-\boldsymbol{k}=3$

Generator polynomial: $g(x)=x^{3}+x+1$ Information: $(1,1,0,0) \quad i(x)=x^{3}+x^{2}$
Encoding: $\quad x^{3} i(x)=x^{6}+x^{5}$

$$
\begin{array}{rc}
\left.x^{3}+x+1\right) & \begin{array}{c}
x^{3}+x^{2}+x \\
\frac{x^{6}+x^{5}}{x^{6}+x^{4}+x^{3}} \\
\frac{x^{5}+x^{4}+x^{3}}{1100000} \\
\frac{x^{5}+x^{3}+x^{2}}{x^{4}+x^{2}} \\
\frac{x^{4}+x^{2}+x}{x}
\end{array} \\
\frac{1011}{1110} \\
\frac{1011}{1010} \\
0
\end{array}
$$

Transmitted codeword:

$$
\begin{aligned}
& b(x)=x^{6}+x^{5}+x \\
& \underline{b}=(1,1,0,0,0,1,0)
\end{aligned}
$$

The Pattern in Polynomial Coding

- All codewords satisfy the following pattern:
$b(x)=x^{n-k i}(x)+r(x)=q(x) g(x)+r(x)+r(x)=q(x) g(x)$
- All codewords are a multiple of $g(x)$!
- Receiver should divide received n -tuple by $\mathrm{g}(\mathrm{x})$ and check if remainder is zero
- If remainder is nonzero, then received n-tuple is not a codeword

Shift-Register Implementation

1. Accept information bits $i_{k-1}, i_{k-2}, \ldots, i_{2}, i_{1}, i_{0}$
2. Append $n-k$ zeros to information bits
3. Feed sequence to shift-register circuit that performs polynomial division
4. After n shifts, the shift register contains the remainder

Division Circuit

Clock	Input	Reg 0	Reg 1	Reg 2
0	-	0	0	0
1	$1=i_{3}$	1	0	0
2	$1=i_{2}$	1	1	0
3	$0=i_{1}$	0	1	1
4	$0=i_{0}$	1	1	1
5	0	1	0	1
6	0	1	0	0
7	0	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
	Check bits:	$\boldsymbol{r}_{\mathbf{0}}=\mathbf{0}$	$\boldsymbol{r}_{\mathbf{1}}=\mathbf{1}$	$\boldsymbol{r}_{\mathbf{2}}=\mathbf{0}$
		$\boldsymbol{r}(\mathbf{x})=\boldsymbol{x}$		

Undetectable error patterns

(Transmitter) (Receiver)

- $e(x)$ has 1 s in error locations \& 0s elsewhere
- Receiver divides the received polynomial $R(x)$ by $g(x)$
- Blindspot: If $e(x)$ is a multiple of $g(x)$, that is, $e(x)$ is a nonzero codeword, then

$$
R(x)=b(x)+e(x)=q(x) g(x)+q^{\prime}(x) g(x)
$$

- The set of undetectable error polynomials is the set of nonzero code polynomials
- Choose the generator polynomial so that selected error patterns can be detected.

Designing good polynomial codes

- Select generator polynomial so that likely error patterns are not multiples of $g(x)$
- Detecting Single Errors
- $e(x)=x^{i}$ for error in location $i+1$
- If $g(x)$ has more than 1 term, it cannot divide x^{i}
- Detecting Double Errors
- $e(x)=x^{i}+x^{j}=x^{i}\left(x^{j-i}+1\right)$ where $j>i$
- If $g(x)$ has more than 1 term, it cannot divide x^{i}
- If $\mathrm{g}(\mathrm{x})$ is a primitive polynomial, it cannot divide x^{m+1} for all $m<2^{n-k}-1$ (Need to keep codeword length less than $2^{n-k}-1$)
- Primitive polynomials can be found by consulting coding theory books

Designing good polynomial codes

- Detecting Odd Numbers of Errors
- Suppose all codeword polynomials have an even \# of 1s, then all odd numbers of errors can be detected
- As well, $b(x)$ evaluated at $x=1$ is zero because $b(x)$ has an even number of 1 s
- This implies $x+1$ must be a factor of all $b(x)$
- Pick $g(x)=(x+1) p(x)$ where $p(x)$ is primitive

Standard Generator Polynomials

CRC = cyclic redundancy check

- CRC-8:

$$
\begin{equation*}
=x^{8}+x^{2}+x+1 \tag{ATM}
\end{equation*}
$$

- CRC-16:

$$
\begin{array}{ll}
=x^{16}+x^{15}+x^{2}+1 & \text { Bisync } \\
=(x+1)\left(x^{15}+x+1\right)
\end{array}
$$

- CCITT-16:

$$
=x^{16}+x^{12}+x^{5}+1
$$

HDLC, XMODEM, V. 41

- CCITT-32:

IEEE 802, DoD, V. 42

$$
=x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1
$$

Hamming Codes

- Class of error-correcting codes
- Capable of correcting all single-error patterns
- For each $m \geq 2$, there is a Hamming code of length $n=2^{m}-1$ with $n-k=m$ parity check bits

Redundancy

m	$n=2^{m}-1$	$k=n-m$	m / n^{\prime}
3	7	4	$3 / 7$
4	15	11	$4 / 15$
5	31	26	$5 / 31$
6	63	57	$6 / 63$

m = 3 Hamming Code

- Information bits are $b_{1}, b_{2}, b_{3}, b_{4}$
- Equations for parity checks b_{5}, b_{6}, b_{7}

$$
\begin{aligned}
& b_{5}=b_{1}+b_{3}+b_{4} \\
& b_{6}=b_{1}+b_{2}+b_{4} \\
& b_{7}=+b_{2}+b_{3}+b_{4}
\end{aligned}
$$

- There are $2^{4}=16$ codewords
- ($0,0,0,0,0,0,0$) is a codeword

Hamming (7,4) code

Information				Codeword							Weight
b_{1}	b_{2}	b_{3}	b_{4}	b_{1}		b_{3}	b_{4}	b_{5}	b_{6}	b_{7}	$w(\underline{b})$
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	1	1	1	4
0	0	1	0	0	0	1	0	1	0	1	3
0	0	1	1	0	0	1	1	0	1	0	3
0	1	0	0	0	1	0	0	0	1	1	3
0	1	0	1	0	1	0	1	1	0	0	3
0	1	1	0	0	1	1	0	1	1	0	4
0	1	1	1	0	1	1	1	0	0	1	4
1	0	0	0	1	0	0	0	1	1	0	3
1	0	0	1	1	0	0	1	0	0	1	3
1	0	1	0	1	0	1	0	0	1		4
1	0	1	1	1	0	1	1	1	0		4
1	1	0	0	1	1	0	0	1	0		4
1	1	0	1	1	1	0	1	0	1		4
1	1	1	0	1	1	1	0	0	0		3
1	1	1	1	1	1	1	1	1	1	1	7

Parity Check Equations

- Rearrange parity check equations:

$$
\begin{aligned}
& 0=b_{5}+b_{5}=b_{1}+b_{3}+b_{4}+b_{5} \\
& 0=b_{6}+b_{6}=b_{1}+b_{2}+b_{4}+b_{6} \\
& 0=b_{7}+b_{7}=+b_{2}+b_{3}+b_{4}+b_{7}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { - In matrix form: }\left[\begin{array}{l}
b_{1} \\
b_{2} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{lllllll}
0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 1
\end{array}\right. \\
0
\end{array} 1 \begin{array}{llllll}
1 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
b_{3} \\
b_{4} \\
b_{5} \\
b_{6} \\
b_{7}
\end{array}\right]=\mathbf{H} \underline{b}^{t}=\underline{0}
$$

- All codewords must satisfy these equations
- Note: each nonzero 3-tuple appears once as a column in check matrix H

Error Detection with Hamming

 Code

Minimum distance of Hamming Code

- Previous slide shows that undetectable error pattern must have 3 or more bits
- At least 3 bits must be changed to convert one codeword into another codeword

- Spheres of distance 1 around each codeword do not overlap
- If a single error occurs, the resulting n-tuple will be in a unique sphere around the original codeword

General Hamming Codes

- For $m \geq 2$, the Hamming code is obtained through the check matrix H :
- Each nonzero m-tuple appears once as a column of H
- The resulting code corrects all single errors
- For each value of m, there is a polynomial code with $g(x)$ of degree m that is equivalent to a Hamming code and corrects all single errors
- For $m=3, g(x)=x^{3}+x+1$

Error-correction using Hamming Codes

- The receiver first calculates the syndrome:

$$
\underline{s}=H \underline{R}=H(\underline{b}+\underline{e})=H \underline{b}+H \underline{e}=H \underline{e}
$$

- If $\underline{s}=\underline{0}$, then the receiver accepts \underline{R} as the transmitted codeword
- If $\underline{\mathrm{s}}$ is nonzero, then an error is detected
- Hamming decoder assumes a single error has occurred
- Each single-bit error pattern has a unique syndrome
- The receiver matches the syndrome to a single-bit error pattern and corrects the appropriate bit

Performance of Hamming ErrorCorrecting Code

- Assume bit errors occur independent of each other and with probability p

Chapter 3

Digital Transmission

 FundamentalsRS-232 Asynchronous Data Transmission

Recommended Standard (RS) 232

- Serial line interface between computer and modem or similar device
- Data Terminal Equipment (DTE): computer
- Data Communications Equipment (DCE): modem
- Mechanical and Electrical specification

Pins in RS-232 connector

(a)

(b)

Synchronization

- Synchronization of clocks in transmitters and receivers.
- clock drift causes a loss of synchronization
- Example: assume ' 1 ' and ' 0 ' are represented
 by V volts and 0 volts respectively
- Correct reception
- Incorrect reception due to incorrect clock (slower clock)

Synchronization (cont'd)

- Incorrect reception (faster clock)
- How to avoid a loss of synchronization?
- Asynchronous transmission
- Synchronous transmission

Asynchronous Transmission

- Avoids synchronization loss by specifying a short maximum length for the bit sequences and resetting the clock in the beginning of each bit sequence.
- Accuracy of the clock?

Data bits

Synchronous Transmission

- Sequence contains data + clock information (line coding)
- i.e. Manchester encoding, self-synchronizing codes, is used.
- R transition for R bits per second transmission
- R transition contains a sine wave with RHz .
- $R \mathrm{~Hz}$ sine wave is used to synch receiver clock to the transmitter's clock using PLL (phase-lock loop)

