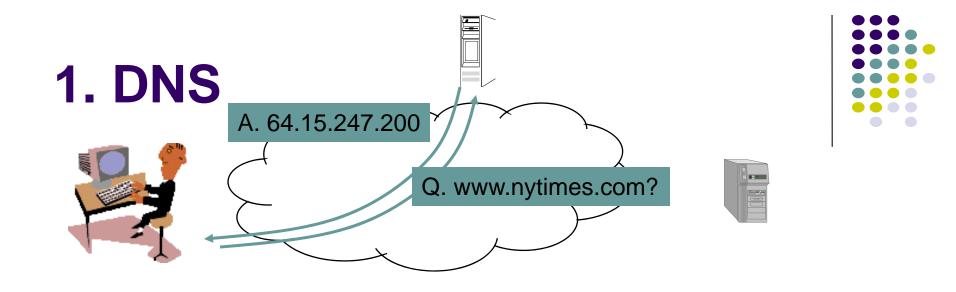

Chapter 2 Applications and Layered Architectures

Protocols, Services & Layering
OSI Reference Model
TCP/IP Architecture
How the Layers Work Together
Berkeley Sockets
Application Layer Protocols & Utilities

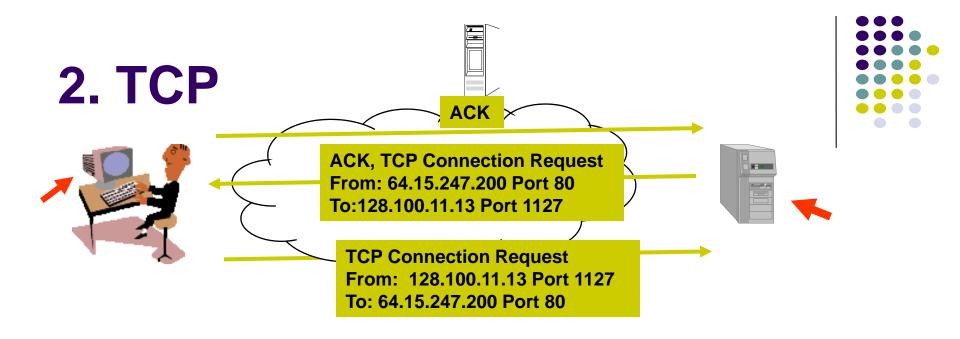
Chapter 2 Applications and Layered Architectures

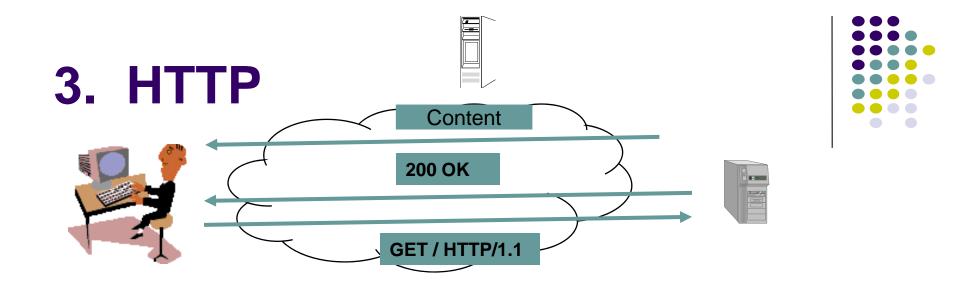
Protocols, Services & Layering

Layers, Services & Protocols



- The overall communications process between two or more machines connected across one or more networks is very complex
- Layering partitions related communications functions into groups that are manageable
- Each layer provides a service to the layer above
- Each layer operates according to a protocol
- Let's use examples to show what we mean


Web Browsing Application


- World Wide Web allows users to access resources (i.e. documents) located in computers connected to the Internet
- Documents are prepared using HyperText Markup Language (HTML)
- A browser application program is used to access the web
- The browser displays HTML documents that include links to other documents
- Each link references a Uniform Resource Locator (URL) that gives the name of the machine and the location of the given document
- Let's see what happens when a user clicks on a link

- User clicks on http://www.nytimes.com/
- URL contains Internet name of machine (<u>www.nytimes.com</u>), but not Internet address
- Internet needs Internet address to send information to a machine
- Browser software uses Domain Name System (DNS) protocol to send query for Internet address
- DNS system responds with Internet address

- Browser software uses HyperText Transfer Protocol (HTTP) to send request for document
- HTTP server waits for requests by listening to a well-known port number (80 for HTTP)
- HTTP client sends request messages through an "ephemeral port number," e.g. 1127
- HTTP needs a Transmission Control Protocol (TCP) connection between the HTTP client and the HTTP server to transfer messages reliably

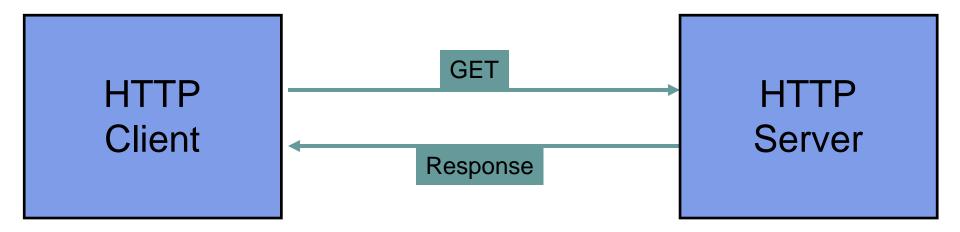
- HTTP client sends its request message: "GET ..."
- HTTP server sends a status response: "200 OK"
- HTTP server sends requested file
- Browser displays document
- Clicking a link sets off a chain of events across the Internet!
- Let's see how protocols & layers come into play...

Protocols

- A protocol is a set of rules that governs how two or more communicating entities in a layer are to interact
- Messages that can be sent and received
- Actions that are to be taken when a certain event occurs, e.g. sending or receiving messages, expiry of timers
- The purpose of a protocol is to provide a service to the layer above

Layers

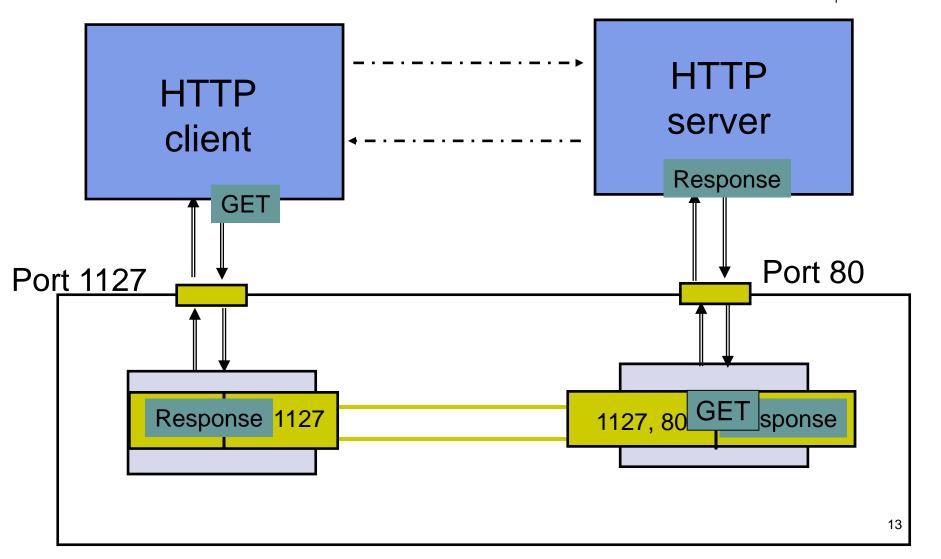
- A set of related communication functions that can be managed and grouped together
- Application Layer: communications functions that are used by application programs
 - HTTP, DNS, SMTP (email)
- Transport Layer: end-to-end communications between two processes in two machines
 - TCP, User Datagram Protocol (UDP)
- Network Layer: node-to-node communications between two machines
 - Internet Protocol (IP)


Example: HTTP

- HTTP is an application layer protocol
- Retrieves documents on behalf of a browser application program
- HTTP specifies fields in request messages and response messages
 - Request types; Response codes
 - Content type, options, cookies, ...
- HTTP specifies actions to be taken upon receipt of certain messages

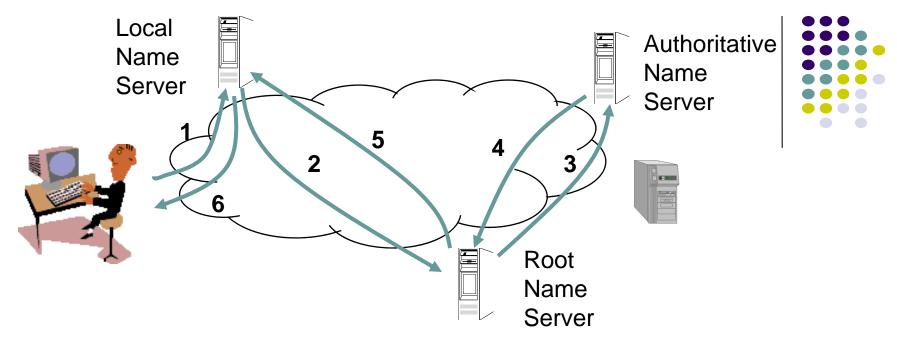
HTTP Protocol

- HTTP assumes messages can be exchanged directly between HTTP client and HTTP server
- In fact, HTTP client and server are processes running in two different machines across the Internet
- HTTP uses the reliable stream transfer service provided by TCP


Example: TCP

- TCP is a transport layer protocol
- Provides reliable byte stream service between two processes in two computers across the Internet
- Sequence numbers keep track of the bytes that have been transmitted and received
- Error detection and retransmission used to recover from transmission errors and losses
- TCP is connection-oriented: the sender and receiver must first establish an association and set initial sequence numbers before data is transferred
- Connection ID is specified uniquely by (send port #, send IP address, receive port #, receiver IP address)

HTTP uses service of TCP

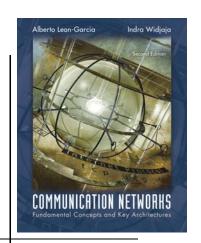


Example: DNS Protocol

- DNS protocol is an application layer protocol
- DNS is a distributed database that resides in multiple machines in the Internet
- DNS protocol allows queries of different types
 - Name-to-address or Address-to-name
 - Mail exchange
- DNS usually involves short messages and so uses service provided by UDP
- Well-known port 53

- Local Name Server: resolve frequently-used names
 - University department, ISP
 - Contacts Root Name server if it cannot resolve query
- Root Name Servers: 13 globally
 - Resolves query or refers query to Authoritative Name Server
- Authoritative Name Server: last resort
 - Every machine must register its address with at least two authoritative name servers

Example: UDP



- UDP is a transport layer protocol
- Provides best-effort datagram service between two processes in two computers across the Internet
- Port numbers distinguish various processes in the same machine
- UDP is connectionless
- Datagram is sent immediately
- Quick, simple, but not reliable

Summary

- Layers: related communications functions
 - Application Layer: HTTP, DNS
 - Transport Layer: TCP, UDP
 - Network Layer: IP
- Services: a protocol provides a communications service to the layer above
 - TCP provides connection-oriented reliable byte transfer service
 - UDP provides best-effort datagram service
- Each layer builds on services of lower layers
 - HTTP builds on top of TCP
 - DNS builds on top of UDP
 - TCP and UDP build on top of IP

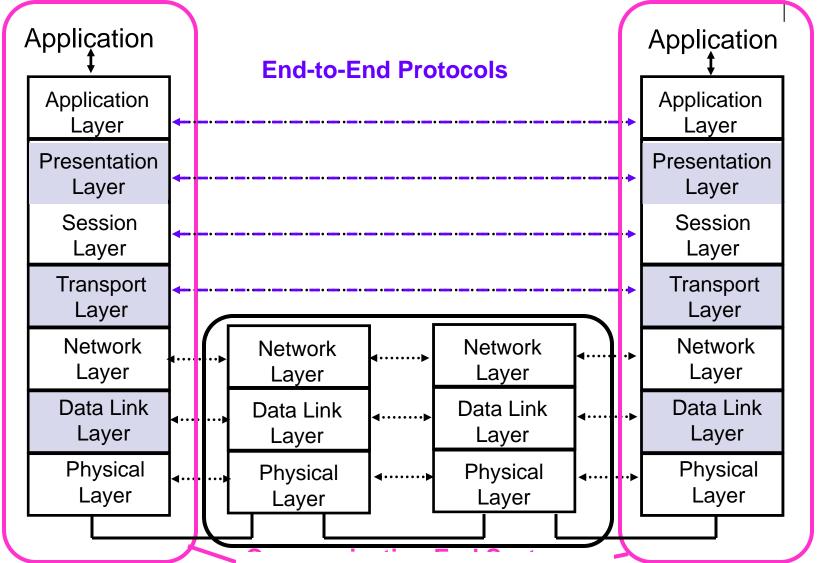
Chapter 2 Applications and Layered Architectures

OSI Reference Model

Why Layering?

- Layering simplifies design, implementation, and testing by partitioning overall communications process into parts
- Protocol in each layer can be designed separately from those in other layers
- Protocol makes "calls" for services from layer below
- Layering provides flexibility for modifying and evolving protocols and services without having to change layers below
- Monolithic non-layered architectures are costly, inflexible, and soon obsolete

Open Systems Interconnection

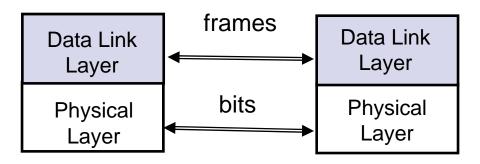

- Network architecture:
 - Definition of all the layers
 - Design of protocols for every layer
- By the 1970s every computer vendor had developed its own proprietary layered network architecture
- Problem: computers from different vendors could not be networked together
- Open Systems Interconnection (OSI) was an international effort by the International Organization for Standardization (ISO) to enable multivendor computer interconnection

OSI Reference Model

- Describes a seven-layer abstract reference model for a network architecture
- Purpose of the reference model was to provide a framework for the development of protocols
- OSI also provided a unified view of layers, protocols, and services which is still in use in the development of new protocols
- Detailed standards were developed for each layer, but most of these are not in use
- TCP/IP protocols preempted deployment of OSI protocols

7-Layer OSI Reference Model

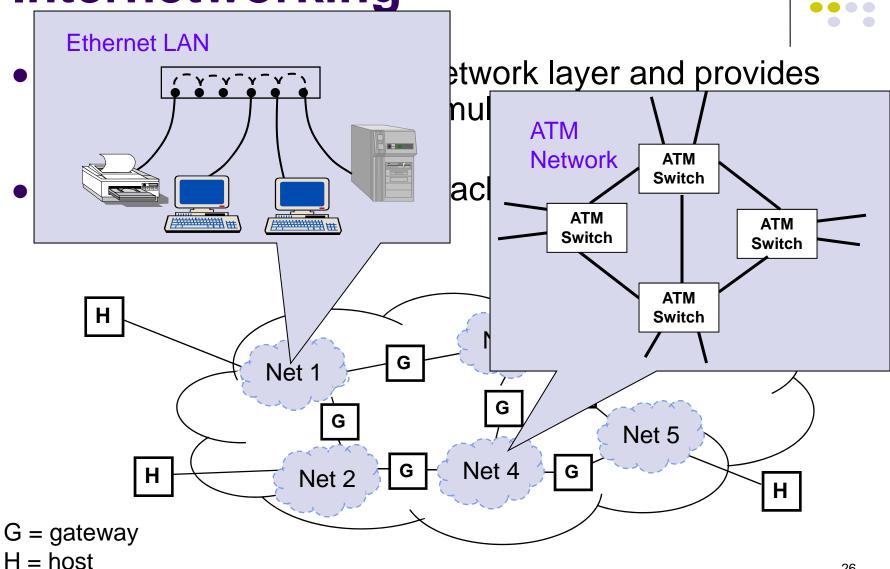
Physical Layer



- Transfers bits across link
- Definition & specification of the physical aspects of a communications link
 - Mechanical: cable, plugs, pins...
 - Electrical/optical: modulation, signal strength, voltage levels, bit times, ...
 - functional/procedural: how to activate, maintain, and deactivate physical links...
- Ethernet, DSL, cable modem, telephone modems...
- Twisted-pair cable, coaxial cable optical fiber, radio, infrared, ...

Data Link Layer

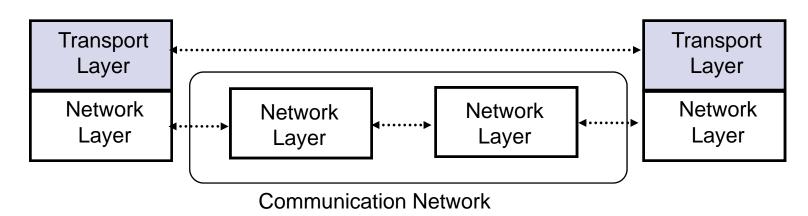
- Transfers frames across direct connections
- Groups bits into frames
- Detection of bit errors; Retransmission of frames
- Activation, maintenance, & deactivation of data link connections
- Medium access control for local area networks
- Flow control



Network Layer

- Transfers packets across multiple links and/or multiple networks
- Addressing must scale to large networks
- Nodes jointly execute routing algorithm to determine paths across the network
- Forwarding transfers packet across a node
- Congestion control to deal with traffic surges
- Connection setup, maintenance, and teardown when connection-based

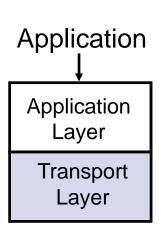
Internetworking



Transport Layer

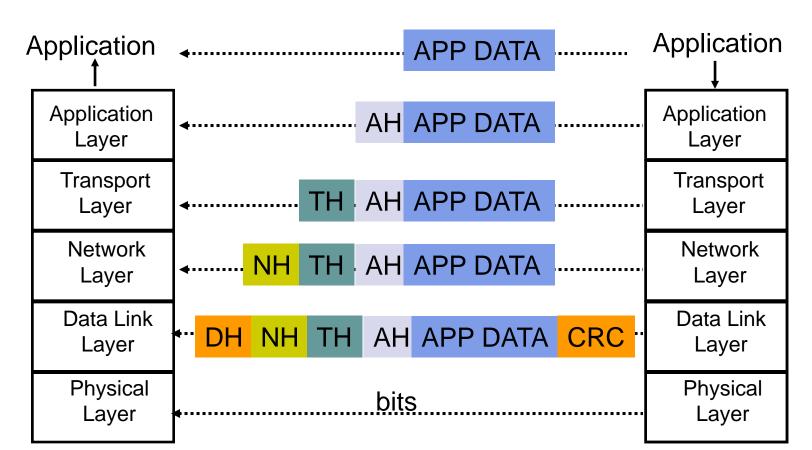
27

- Transfers data end-to-end from process in a machine to process in another machine
- Reliable stream transfer or quick-and-simple singleblock transfer
- Port numbers enable multiplexing
- Message segmentation and reassembly
- Connection setup, maintenance, and release

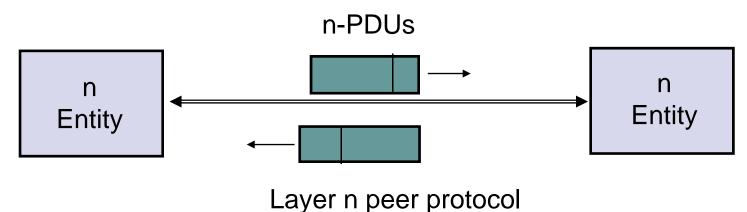


Application & Upper Layers

- Application Layer: Provides services that are frequently required by applications: DNS, web acess, file transfer, email...
- Presentation Layer: machineindependent representation of data...
- Session Layer: dialog management, recovery from errors, ...

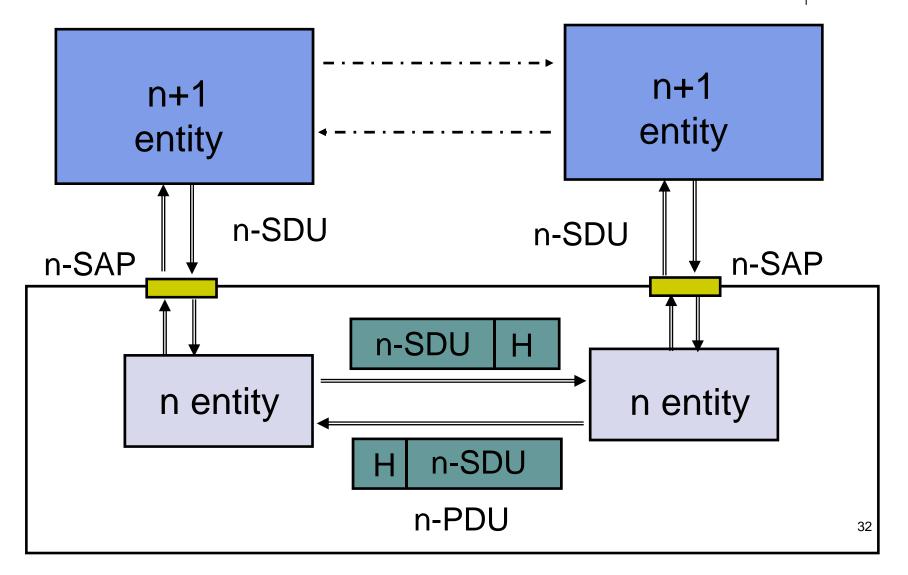

Incorporated into Application Layer

Headers & Trailers

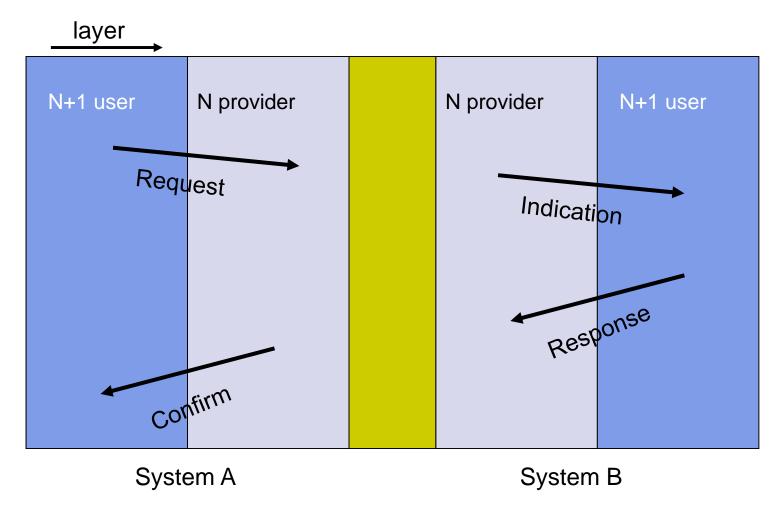

- Each protocol uses a header that carries addresses, sequence numbers, flag bits, length indicators, etc...
- CRC check bits may be appended for error detection

OSI Unified View: Protocols

- Layer n in one machine interacts with layer n in another machine to provide a service to layer n +1
- The entities comprising the corresponding layers on different machines are called peer processes.
- The machines use a set of rules and conventions called the *layer-n protocol*.
- Layer-n peer processes communicate by exchanging Protocol Data Units (PDUs)

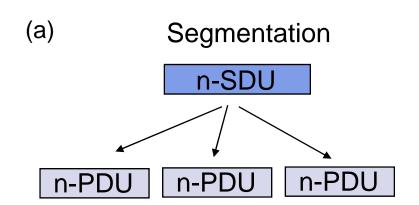

OSI Unified View: Services

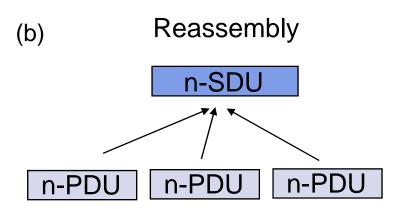
- Communication between peer processes is virtual and actually indirect
- Layer n+1 transfers information by invoking the services provided by layer n
- Services are available at Service Access Points (SAP's)
- Each layer passes data & control information to the layer below it until the physical layer is reached and transfer occurs
- The data passed to the layer below is called a Service Data Unit (SDU)
- SDU's are encapsulated in PDU's


Layers, Services & Protocols

Interlayer Interaction

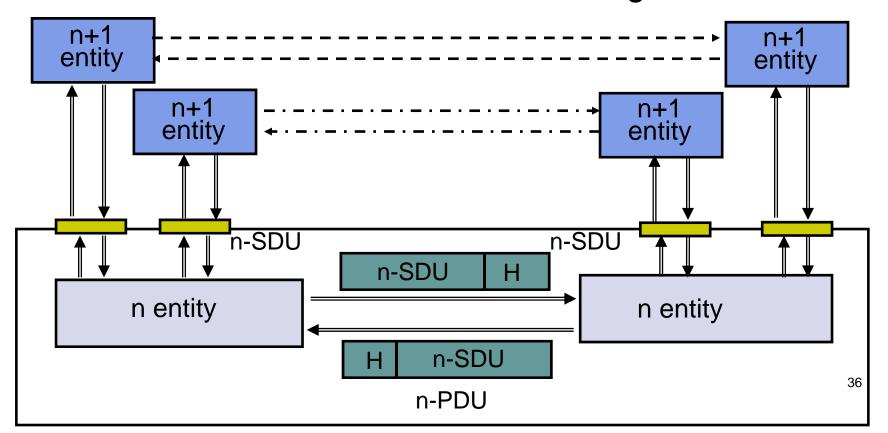
Connectionless & Connection-Oriented Services


- Connection-Oriented
 - Three-phases:
 - Connection setup between two SAPs to initialize state information
 - 2. SDU transfer
 - Connection release
 - E.g. TCP, ATM


- Connectionless
 - Immediate SDU transfer
 - No connection setup
 - E.g. UDP, IP
- Layered services need not be of same type
 - TCP operates over IP
 - IP operates over ATM

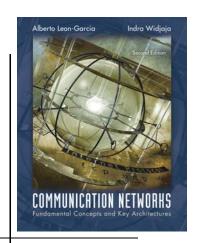
Segmentation & Reassembly

- A layer may impose a limit on the size of a data block that it can transfer for implementation or other reasons
- Thus a layer-n SDU may be too large to be handled as a single unit by layer-(n-1)
- Sender side: SDU is segmented into multiple PDUs
- Receiver side: SDU is reassembled from sequence of PDUs



Multiplexing

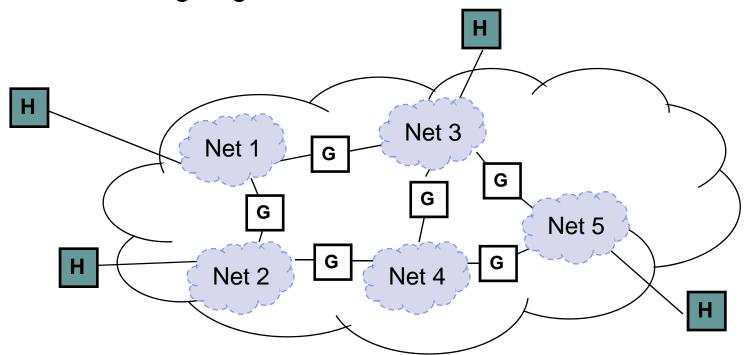
- Sharing of layer n service by multiple layer n+1 users
- Multiplexing tag or ID required in each PDU to determine which users an SDU belongs to



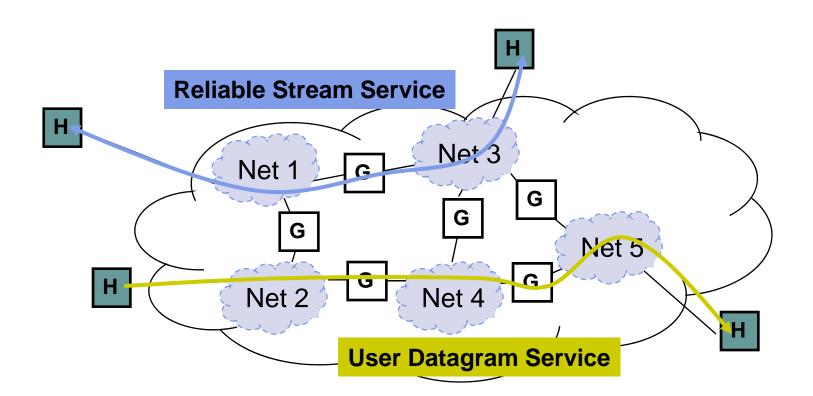
Summary

- Layers: related communications functions
 - Application Layer: HTTP, DNS
 - Transport Layer: TCP, UDP
 - Network Layer: IP
- Services: a protocol provides a communications service to the layer above
 - TCP provides connection-oriented reliable byte transfer service
 - UDP provides best-effort datagram service
- Each layer builds on services of lower layers
 - HTTP builds on top of TCP
 - DNS builds on top of UDP
 - TCP and UDP build on top of IP

Chapter 2 Applications and Layered Architectures

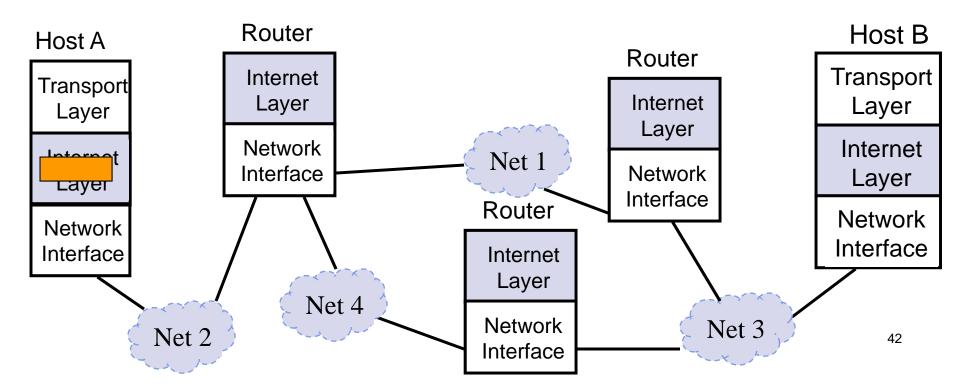

TCP/IP Architecture
How the Layers Work Together

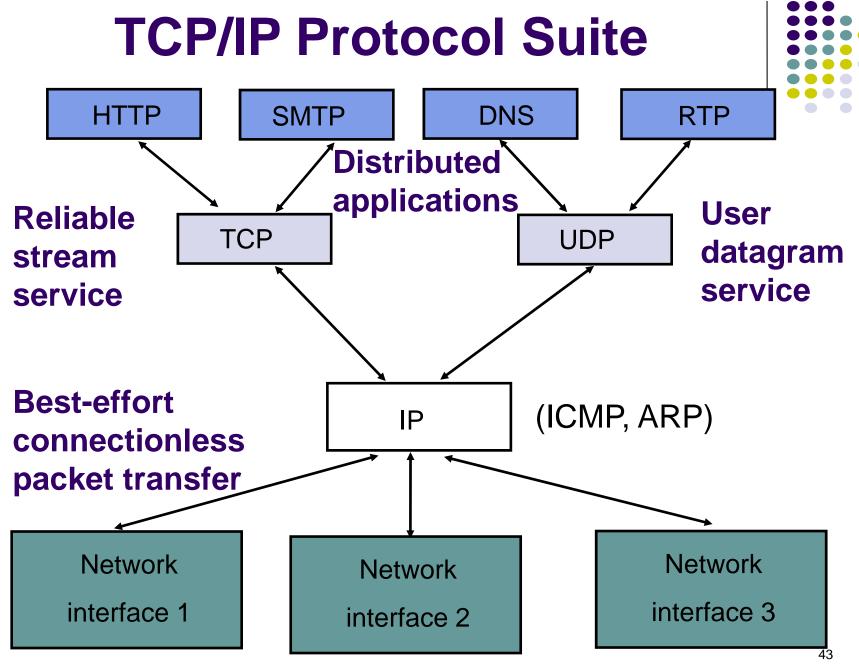
Why Internetworking?


- To build a "network of networks" or internet
 - operating over multiple, coexisting, different network technologies
 - providing ubiquitous connectivity through IP packet transfer
 - achieving huge economies of scale

Why Internetworking?

- To provide universal communication services
 - independent of underlying network technologies
 - providing common interface to user applications


Why Internetworking?



- To provide distributed applications
 - Any application designed to operate based on Internet communication services immediately operates across the entire Internet
 - Rapid deployment of new applications
 - Email, WWW, Peer-to-peer
 - Applications independent of network technology
 - New networks can be introduced below
 - Old network technologies can be retired

Internet Protocol Approach

- IP packets transfer information across Internet
 Host A IP → router→ router → router → Host B IP
- IP layer in each router determines next hop (router)
- Network interfaces transfer IP packets across networks

Diverse network technologies

Internet Names & Addresses

Internet Names

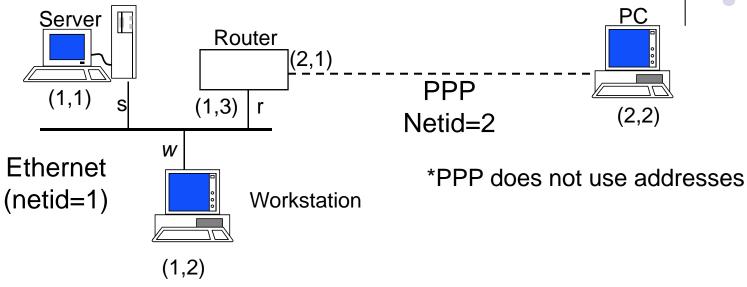
- Each host a a unique name
 - Independent of physical location
 - Facilitate memorization by humans
 - Domain Name
 - Organization under single administrative unit
- Host Name
 - Name given to host computer
- User Name
 - Name assigned to user

leongarcia@comm.utoronto.ca

Internet Addresses

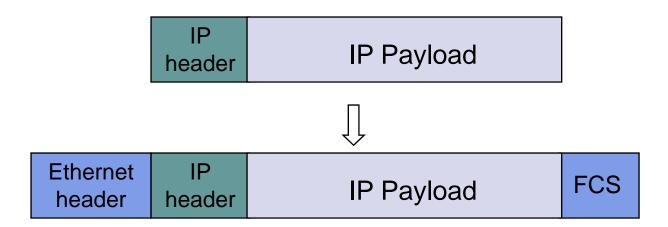
- Each host has globally unique logical 32 bit IP address
- Separate address for each physical connection to a network
- Routing decision is done based on destination IP address
- IP address has two parts:
 - netid and hostid
 - netid unique
 - netid facilitates routing
- Dotted Decimal Notation:

```
int1.int2.int3.int4
(intj = jth octet)
128.100.10.13
```


Physical Addresses

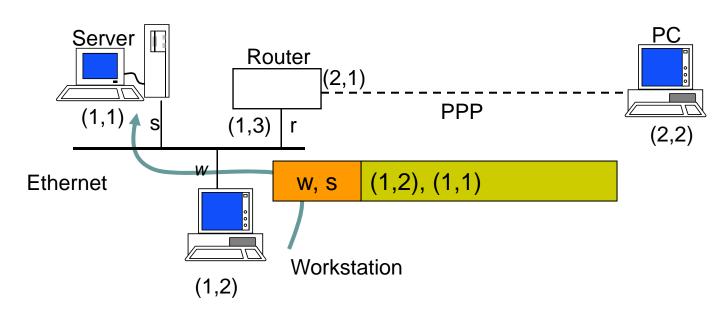
- LANs (and other networks) assign physical addresses to the physical attachment to the network
- The network uses its own address to transfer packets or frames to the appropriate destination
- IP address needs to be resolved to physical address at each IP network interface
- Example: Ethernet uses 48-bit addresses
 - Each Ethernet network interface card (NIC) has globally unique Medium Access Control (MAC) or physical address
 - First 24 bits identify NIC manufacturer; second 24 bits are serial number
 - 00:90:27:96:68:07 12 hex numbers

Example internet

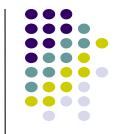


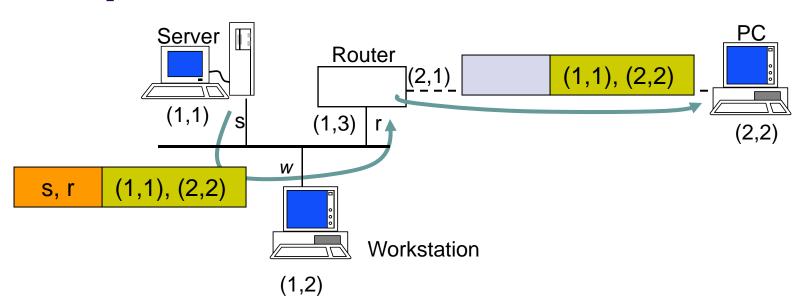
	netid	hostid	Physical address
server	1	1	S
workstation	1	2	W
router	1	3	r
router	2	1	-
PC	2	2	-

Encapsulation



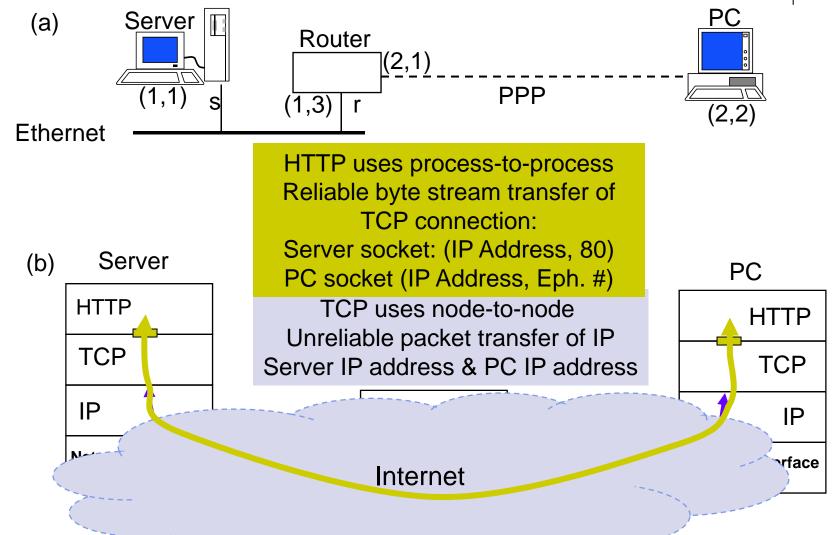
- Ethernet header contains:
 - source and destination physical addresses
 - network protocol type (e.g. IP)


IP packet from workstation to server



- 1. IP packet has (1,2) IP address for source and (1,1) IP address for destination
- 2. IP table at workstation indicates (1,1) connected to same network, so IP packet is encapsulated in Ethernet frame with addresses w and s
- 3. Ethernet frame is broadcast by workstation NIC and captured by server NIC
- 4. NIC examines protocol type field and then delivers packet to its IP layer

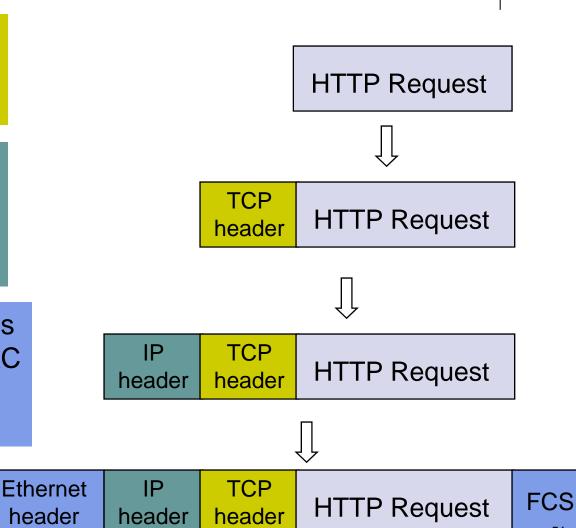
IP packet from server to PC


- 1. IP packet has (1,1) and (2,2) as IP source and destination addresses
- 2. IP table at server indicates packet should be sent to router, so IP packet is encapsulated in Ethernet frame with addresses s and r
- 3. Ethernet frame is broadcast by server NIC and captured by router NIC
- 4. NIC examines protocol type field and then delivers packet to its IP layer
- 5. IP layer examines IP packet destination address and determines IP packet should be routed to (2,2)
- 6. Router's table indicates (2,2) is directly connected via PPP link
- 7. IP packet is encapsulated in PPP frame and delivered to PC

49

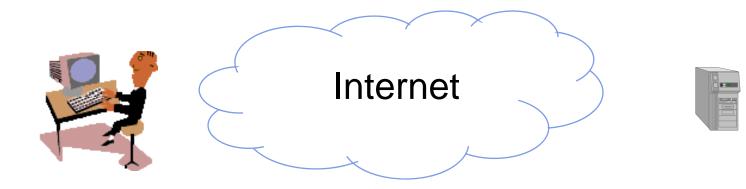
8. PPP at PC examines protocol type field and delivers packet to PC IP layer

How the layers work together



Encapsulation

TCP Header contains source & destination port numbers


IP Header contains source and destination IP addresses; transport protocol type

Ethernet Header contains source & destination MAC addresses; network protocol type

How the layers work together: Network Analyzer Example

- User clicks on http://www.nytimes.com/
- Ethereal network analyzer captures all frames observed by its Ethernet NIC
- Sequence of frames and contents of frame can be examined in detail down to individual bytes

frame/packet sequence

Middle Pane shows encapsulation for a given frame

nytimespa File Edit Capture

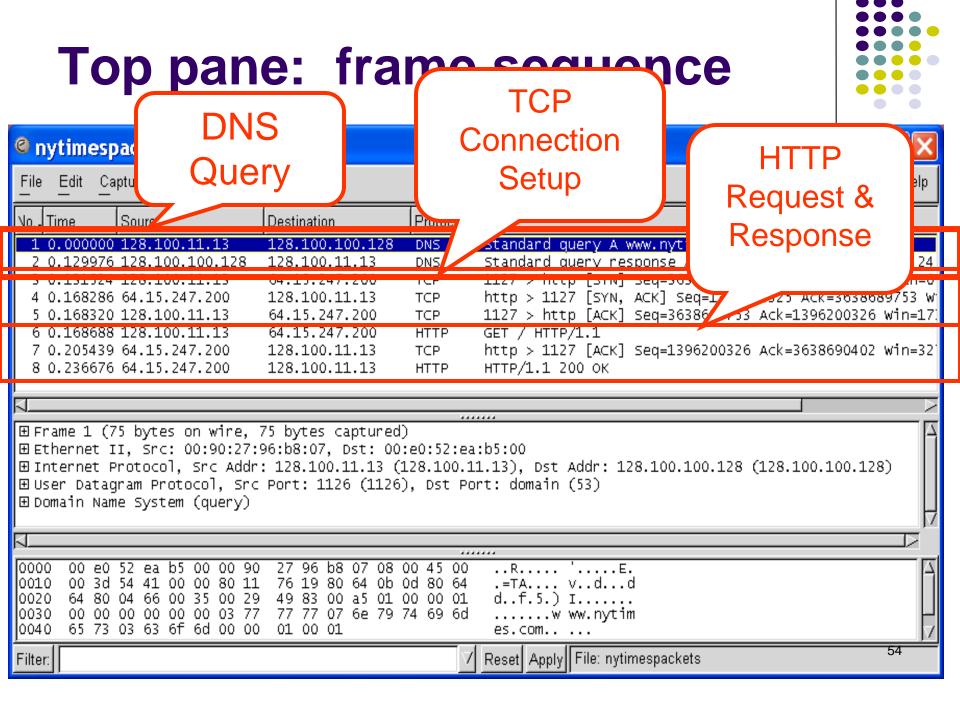
Vo.	Time	Source	Destination	Protocol	Info
1	0.000000	128.100.11.13	128.100.100.128	DNS	Standard query A
2	0.129976	128.100.100.128	128.100.11.13	DNS	Standard query re
3	0.131524	128.100.11.13	64.15.247.200	TCP	1127 > http [SYN]
4	0.168286	64.15.247.200	128.100.11.13	TCP	http > 1127 [SYN
5	0.168320	128.100.11.13	64.15.247.200	TCP	1127 > http [AC
6	0.168688	128.100.11.13	64.15.247.200	HTTP	GET / HTTP/1.1
- 7	0.205439	64.15.247.200	128.100.11.13	TCP	http > 1127 [
8	0.236676	64.15.247.200	128.100.11.13	HTTP	HTTP/1.1 200

les.com A 64.15.247.200 A 64.15.247.24 638689752 Ack=0 Win=16384 Len=0 Seg=1396200325 Ack=3638689753 W

Seq=1396200326 Ack=3638690402 win=321

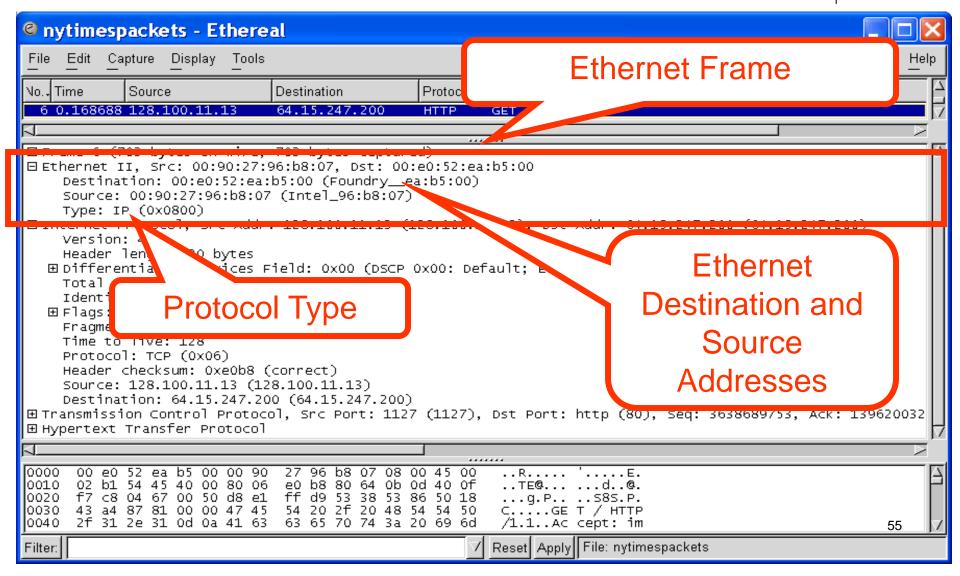
```
⊞ Frame 1 (75 bytes on wire, 75 bytes captured)
```

⊞ Ethernet II, Src: 00:90:27:96:b8:07, Dst: 00:e0:52:ea:b5:00

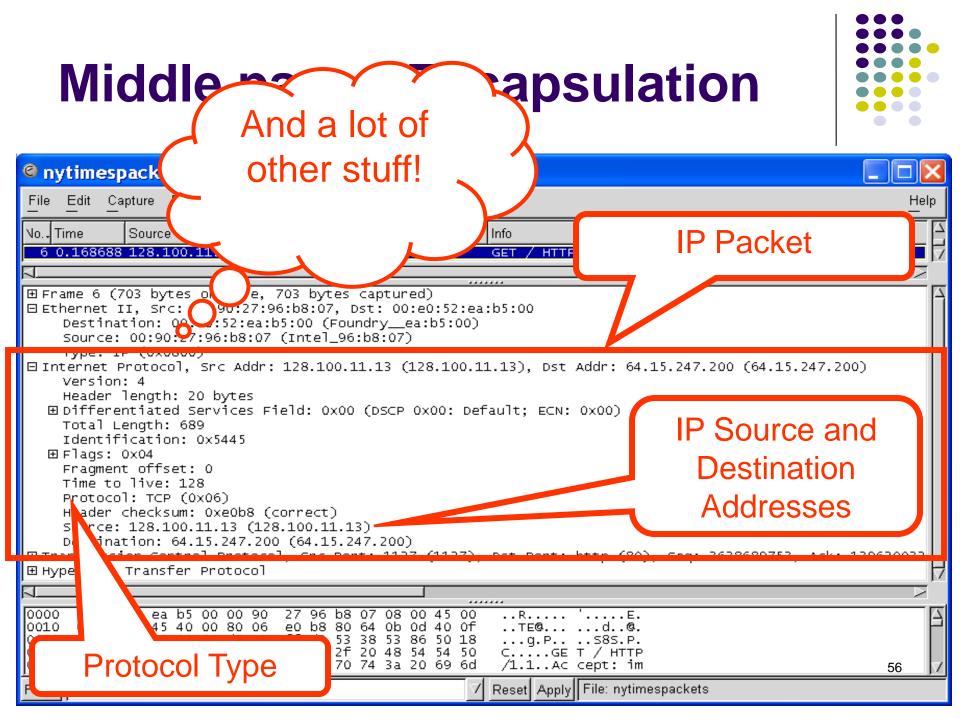

⊞ Internet Protocol, Src Addr: 128.100.11.13 (128.100.11.13), Dst Addr: 128.100.100.128 (128.100.100.128)

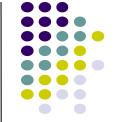
lows

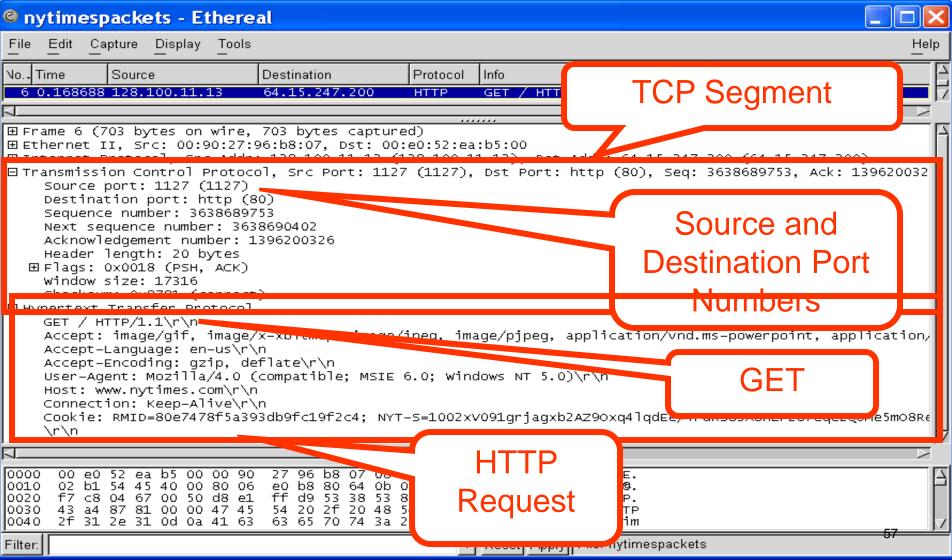
- ⊞ User Datagram Protocol, Src Port: 1126 (1126), Dst Port: domain (53)
- ⊕ Domain Name System (query)



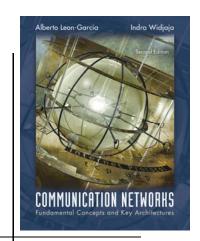
																R 'E.
0010																.=TA vdd
0020																df.5.) I
0030												79	74	69	6d	w ww.nytim
0040	65	73	03	63	6f	6d	00	00	01	00	01					es.com


Filter:


Middle pane: Encapsulation



Middle pane: Encapsulation



Summary

- Encapsulation is key to layering
- IP provides for transfer of packets across diverse networks
- TCP and UDP provide universal communications services across the Internet
- Distributed applications that use TCP and UDP can operate over the entire Internet
- Internet names, IP addresses, port numbers, sockets, connections, physical addresses

Chapter 2 Applications and Layered Architectures

Application Layer Protocols & IP Utilities

Telnet (RFC 854)

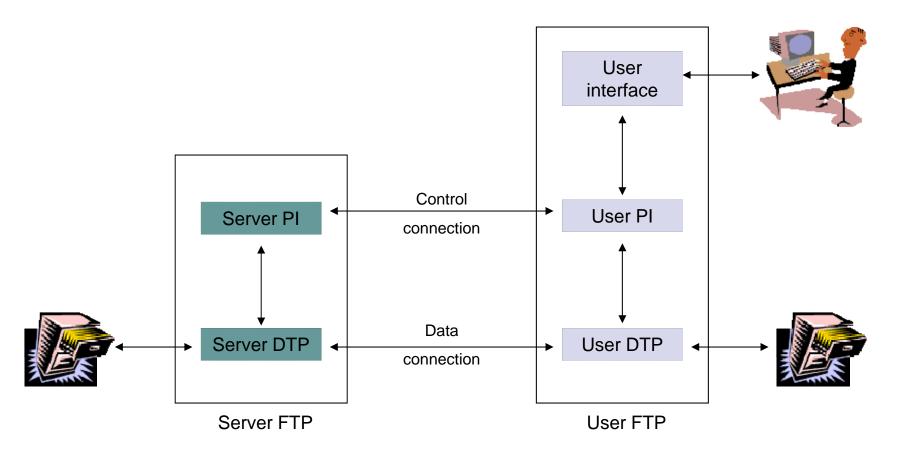
- Provides general bi-directional byte-oriented TCPbased communications facility (Network Virtual Terminal)
- Initiating machine treated as local to the remote host
- Used to connect to port # of other servers and to interact with them using command line

Network Virtual Terminal

- Network Virtual Terminal
- Lowest common denominator terminal
- Each machine maps characteristics to NVT
- Negotiate options for changes to the NVT
- Data input sent to server & echoed back
- Server control functions: interrupt, abort output, are-you-there, erase character, erase line
- Default requires login & password

telnet

- A program that uses the Telnet protocol
- Establishes TCP socket
- Sends typed characters to server
- Prints whatever characters arrive
- Try it to retrieve a web page (HTTP) or to send an email (SMTP)


File Transfer Protocol (RFC 959)

- Provides for transfer of file from one machine to another machine
- Designed to hide variations in file storage
- FTP parameter commands specify file info
 - File Type: ASCII, EBCDIC, image, local.
 - Data Structure: file, record, or page
 - Transmission Mode: stream, block, compressed
- Other FTP commands
 - Access Control: USER, PASS, CWD, QUIT, ...
 - Service: RETR, STOR, PWD, LIST, ...

FTP File Transfer

PI = Protocol interface

DTP = Data transfer process

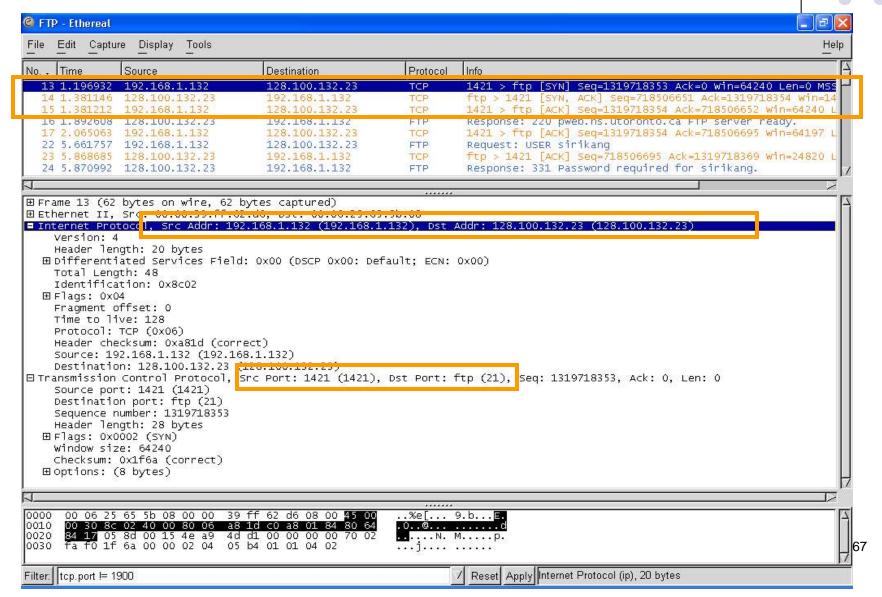
Two TCP Connections

Control connection

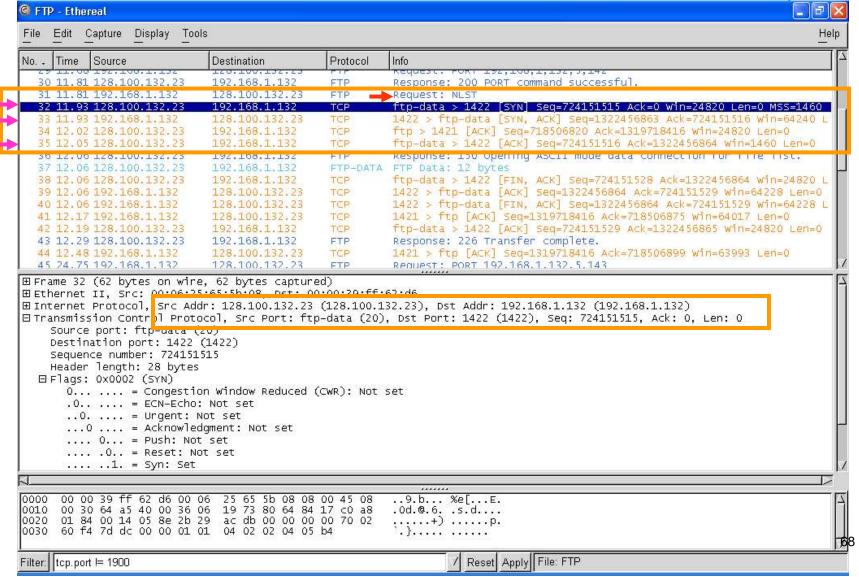
- Set up using Telnet protocol on well-known port 21
- FTP commands & replies between protocol interpreters
- Pls control the data transfer process
- User requests close of control connection; server performs the close

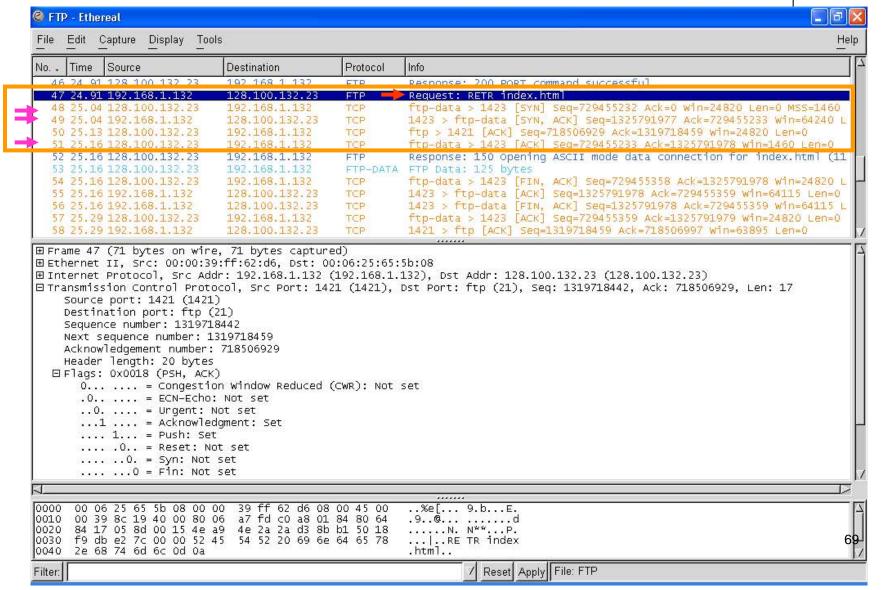
Data connection

- To perform file transfer, obtain lists of files, directories
- Each transfer requires new data connection
- Passive open by user PI with ephemeral port #
- Port # sent over control connection
- Active open by server using port 20


FTP Replies

Reply	Meaning							
1yz	Positive preliminary reply (action has begun, but wait for another reply before sending a new command).							
2yz	Positive completion reply (action completed successfully; new command may be sent).							
3yz	Positive intermediary reply (command accepted, but action cannot be performed without additional information; user should send a command with the necessary information).							
4yz	Transient negative completion reply (action currently cannot be performed; resend command later).							
5zy	Permanent negative completion reply (action cannot be performed; do not resend it).							
x0z	Syntax errors.							
x1z	Information (replies to requests for status or help).							
x2z	Connections (replies referring to the control and data connections).							
x3z	Authentication and accounting (replies for the login process and accounting procedures).							
x4z	Unspecified.							
x5z	File system status.							

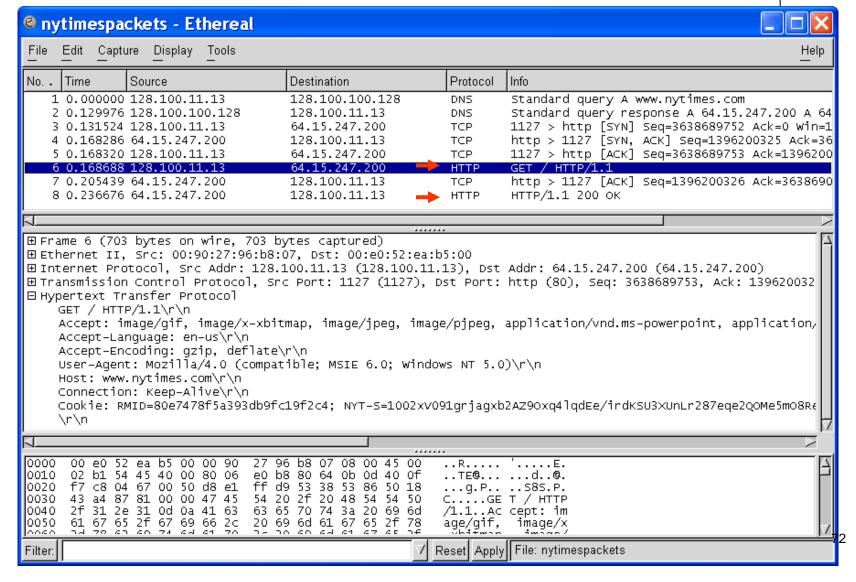

FTP Client (192.168.1.132: 1421) establishes Control Connection to FTP Server (128.100.132.23: 21)


User types *Is* to list files in directory (frame 31 on control) FTP Server (128.100.132.23: 20) establishes Data Connection to FTP Client (192.168.1.132: 1422)

User types *get index.html* to request file transfer in control connection (frame 47 request); File transfer on new data connection (port 1423, fr. 48, 49, 51)

Hypertext Transfer Protocol

- RFC 1945 (HTTP 1.0), RFC 2616 (HTTP 1.1)
- HTTP provides communications between web browsers & web servers
- Web: framework for accessing documents & resources through the Internet
- Hypertext documents: text, graphics, images, hyperlinks
- Documents prepared using Hypertext Markup Language (HTML)


HTTP Protocol

- HTTP servers use well-known port 80
- Client request / Server reply
- Stateless: server does not keep any information about client
- HTTP 1.0 new TCP connection per request/reply (non-persistent)
- HTTP 1.1 persistent operation is default

HTTP Typical Exchange

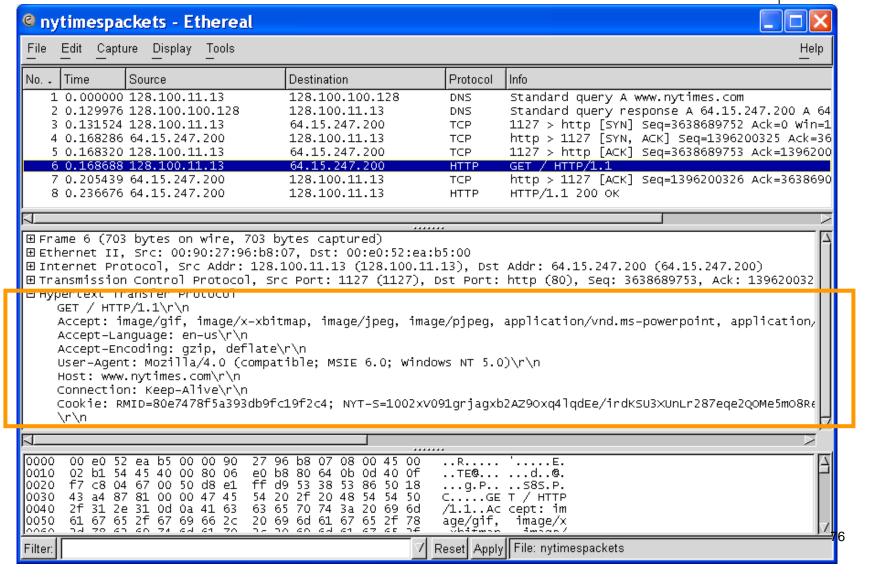
HTTP Message Formats

- HTTP messages written in ASCII text
- Request Message Format
 - Request Line (Each line ends with carriage return)
 - Method URL HTTP-Version \r\n
 - Method specifies action to apply to object
 - URL specifies object
 - Header Lines (Ea. line ends with carriage return)
 - Attribute Name: Attribute Value
 - E.g. type of client, content, identity of requester, ...
 - Last header line has extra carriage return)
 - Entity Body (Content)
 - Additional information to server

HTTP Request Methods

Request method	Meaning
GET	Retrieve information (object) identified by the URL.
HEAD	Retrieve meta-information about the object, but do not transfer the object; Can be used to find out if a document has changed.
POST	Send information to a URL (using the entity body) and retrieve result; used when a user fills out a form in a browser.
PUT	Store information in location named by URL
DELETE	Remove object identified by URL
TRACE	Trace HTTP forwarding through proxies, tunnels, etc.
OPTIONS	Used to determine the capabilities of the server, or characteristics of a named resource.

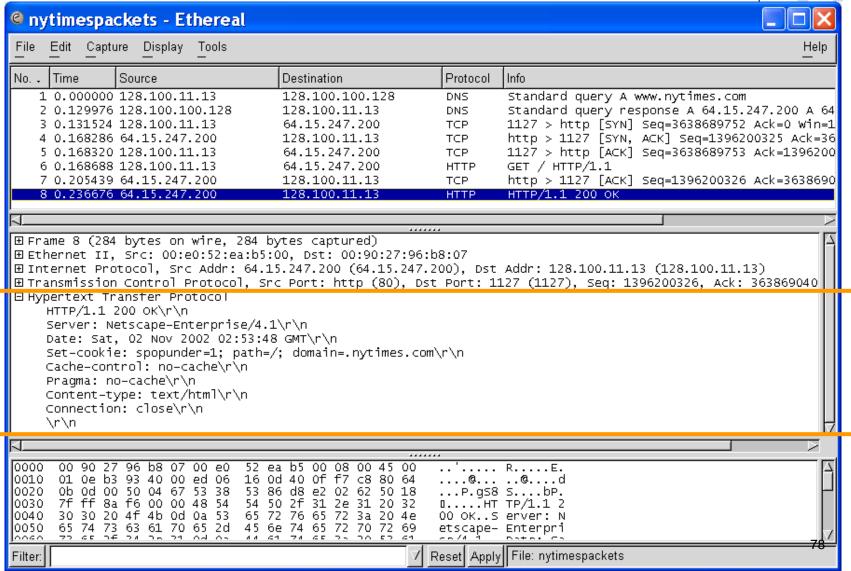
Universal Resource Locator



- Absolute URL
 - scheme://hostname[:port]/path
 - http://www.nytimes.com/

- Relative URL
 - /path
 - /

HTTP Request Message

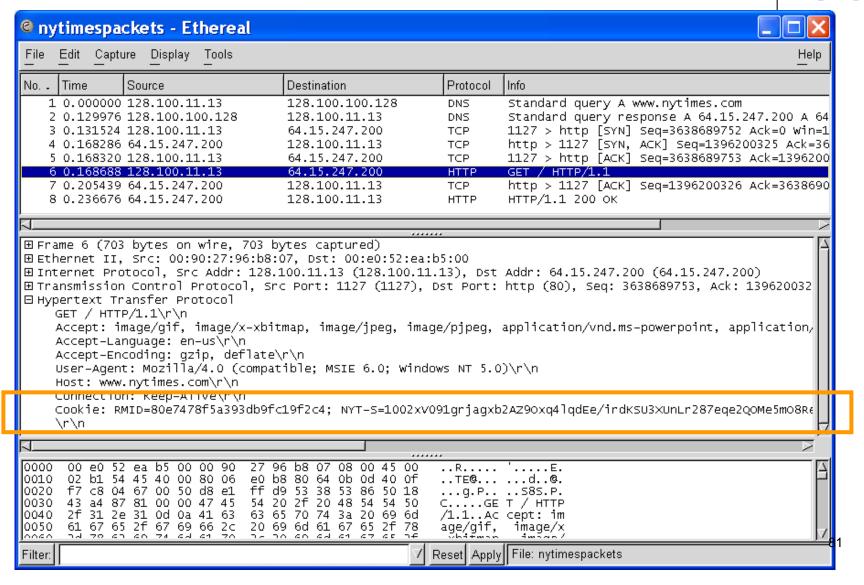

HTTP Response Message

- Response Message Format
 - Status Line
 - HTTP-Version Status-Code Message
 - Status Code: 3-digit code indicating result
 - E.g. HTTP/1.0 200 OK
 - Headers Section
 - Information about object transferred to client
 - E.g. server type, content length, content type, ...
 - Content
 - Object (document)

HTTP Response Message

HTTP Proxy Server & Caching

- Web users generate large traffic volumes
- Traffic causes congestion & delay
- Can improve delay performance and reduce traffic in Internet by moving content to servers closer to the user
- Web proxy servers cache web information
 - Deployed by ISPs
 - Customer browsers configured to first access ISPs proxy servers
 - Proxy replies immediately when it has requested object or retrieves the object if it does not


Cookies and Web Sessions

- Cookies are data exchanged by clients & servers as header lines
- Since HTTP stateless, cookies can provide context for HTTP interaction
- Set cookie header line in reply message from server + unique ID number for client
- If client accepts cookie, cookie added to client's cookie file (must include expiration date)
- Henceforth client requests include ID
- Server site can track client interactions, store these in a separate database, and access database to prepare appropriate responses

Cookie Header Line; ID is 24 hexadecimal numeral

PING

- Application to determine if host is reachable
- Based on Internet Control Message Protocol
 - ICMP informs source host about errors encountered in IP packet processing by routers or by destination host
 - ICMP Echo message requests reply from destination host
- PING sends echo message & sequence #
- Determines reachability & round-trip delay
- Sometimes disabled for security reasons

PING from NAL host


```
Microsoft(R) Windows DOS
(c)Copyright Microsoft Corp 1990-2001.
C:\DOCUME~1\1>ping nal.toronto.edu
Pinging nal.toronto.edu [128.100.244.3] with 32 bytes of data:
Reply from 128.100.244.3: bytes=32 time=84ms TTL=240
Reply from 128.100.244.3: bytes=32 time=110ms TTL=240
Reply from 128.100.244.3: bytes=32 time=81ms TTL=240
Reply from 128.100.244.3: bytes=32 time=79ms TTL=240
Ping statistics for 128.100.244.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 79ms, Maximum = 110ms, Average = 88ms
C:\DOCUME~1\1>
```

Traceroute

- Find route from local host to a remote host
- Time-to-Live (TTL)
 - IP packets have TTL field that specifies maximum # hops traversed before packet discarded
 - Each router decrements TTL by 1
 - When TTL reaches 0 packet is discarded
- Traceroute
 - Send UDP to remote host with TTL=1
 - First router will reply ICMP Time Exceeded Msg
 - Send UDP to remote host with TTL=2, ...
 - Each step reveals next router in path to remote host

Traceroute from home PC to university host

Tracing route to www.comm.utoronto.ca [128.100.11.60] over a maximum of 30 hops:

1	1 ms	<10 ms	<10 ms	192.168.2.1	Home Network
2	3 ms	3 ms	3 ms	10.202.128.1	
3	4 ms	3 ms	3 ms	gw04.ym.phub.net.cable.rogers.com [66.185.83.142]	
4	*	*	*	Request timed out.	
5	47 ms	59 ms	66 ms	gw01.bloor.phub.net.cable.rogers.com [66.185.80.230]	
6	3 ms	3 ms	38 ms	gw02.bloor.phub.net.cable.rogers.com [66.185.80.242]	
7	8 ms	3 ms	5 ms	gw01.wlfdle.phub.net.cable.rogers.com [66.185.80.2]	Rogers Cable
8	8 ms	7 ms	7 ms	gw02.wlfdle.phub.net.cable.rogers.com [66.185.80.142]	ISP
9	4 ms	10 ms	4 ms	gw01.front.phub.net.cable.rogers.com [66.185.81.18]	
10	6 ms	4 ms	5 ms	ralsh-ge3-4.mt.bigpipeinc.com [66.244.223.237]	Shaw Net
11	16 ms	17 ms	13 ms	rxOsh-hydro-one-telecom.mt.bigpipeinc.com [66.244.223.246	Hydro One
12	7 ms	$14~\mathrm{ms}$	8 ms	142.46.4.2	
13	10 ms	7 ms	6 ms	utorgw.onet.on.ca [206.248.221.6]	Ontario Net
14	7 ms	6 ms	$11~\mathrm{ms}$	mcl-gateway.gw.utoronto.ca [128.100.96.101]	11.
15	7 ms	5 ms	8 ms	sf-gpb.gw.utoronto.ca [128.100.96.17]	University of
16	7 ms	7 ms	10 ms	bi15000.ece.utoronto.ca [128.100.96.236]	Toronto
17	7 ms	9 ms	9 ms	www.comm.utoronto.ca [128.100.11.60]	

Trace complete.

ipconfig

- Utility in Microsoft® Windows to display TCP/IP information about a host
- Many options
 - Simplest: IP address, subnet mask, default gateway for the host
 - Information about each IP interface of a host
 - DNS hostname, IP addresses of DNS servers, physical address of network card, IP address, ...
 - Renew IP address from DHCP server

netstat

- Queries a host about TCP/IP network status
- Status of network drivers & their interface cards
 - #packets in, #packets out, errored packets, ...
- State of routing table in host
- TCP/IP active server processes
- TCP active connections

netstat protocol statistics

IPv4 Statistics

Packets Received = 71271 Received Header Errors Received Address Errors Datagrams Forwarded = 0 Unknown Protocols Received = 0Received Packets Discarded = 0 Received Packets Delivered = 71271Output Requests = 70138Routing Discards = 0Discarded Output Packets = 0Output Packet No Route = 0 Reassembly Required = 0Reassembly Successful = 0Reassembly Failures = 0Datagrams Successfully Fragmented = 0Datagrams Failing Fragmentation = 0Fragments Created = 0

UDP Statistics for IPv4

Datagrams Received	=	6810
No Ports	=	15
Receive Errors	=	0
Datagrams Sent	=	6309

ICMPv4 Statistics

	Received	Sent
Messages	10	6
Errors	0	0
Destination Unreachable	8	1
Time Exceeded	0	0
Parameter Problems	0	0
Source Quenches	0	0
Redirects	0	0
Echos	0	2
Echo Replies	2	0
Timestamps	0	0
Timestamp Replies	0	0
Address Masks	0	0
Address Mask Replies	0	0

TCP Statistics for IPv4

Active Opens	= 798
Passive Opens	= 17
Failed Connection Attempts	= 13
Reset Connections	= 467
Current Connections	= 0
Segments Received	= 64443
Segments Sent	= 63724
Segments Retransmitted	= 80

tcpdump and Network Protocol Analyzers

- tcpdump program captures IP packets on a network interface (usually Ethernet NIC)
- Filtering used to select packets of interest
- Packets & higher-layer messages can be displayed and analyzed
- tcpdump basis for many network protocol analyzers for troubleshooting networks
- We use the open source Ethereal analyzer to generate examples
 - www.ethereal.com