
Chapter 5
Peer-to-Peer Protocols

and Data Link Layer
PART I: Peer-to-Peer Protocols

Peer-to-Peer Protocols and Service Models
ARQ Protocols and Reliable Data Transfer

Flow Control
Timing Recovery

TCP Reliable Stream Service & Flow Control

1

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

PART II: Data Link Controls
Framing

Point-to-Point Protocol
High-Level Data Link Control

Link Sharing Using Statistical Multiplexing

2

Chapter Overview
Peer-to-Peer protocols: many protocols involve the
interaction between two peers

Service Models are discussed & examples given
Detailed discussion of ARQ provides example of
development of peer-to-peer protocols
Flow control, TCP reliable stream, and timing recovery

Data Link Layer
Framing
PPP & HDLC protocols
Statistical multiplexing for link sharing

3

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

Peer-to-Peer Protocols and
Service Models

4

n – 1 peer process n – 1 peer process

n peer process n peer process

n + 1 peer process n + 1 peer process

Peer-to-Peer Protocols
Peer-to-Peer processes
execute layer-n protocol
to provide service to
layer-(n+1)

Layer-(n+1) peer calls
layer-n and passes
Service Data Units
(SDUs) for transfer

Layer-n peers exchange
Protocol Data Units
(PDUs) to effect transfer

Layer-n delivers SDUs to
destination layer-(n+1)
peer

SDU SDU

PDU

5

Service Models
The service model specifies the information transfer
service layer-n provides to layer-(n+1)
The most important distinction is whether the service
is:

Connection-oriented
Connectionless

Service model possible features:
Arbitrary message size or structure
Sequencing and Reliability
Timing, Pacing, and Flow control
Multiplexing
Privacy, integrity, and authentication

6

Connection Establishment
Connection must be established between layer-(n+1) peers
Layer-n protocol must: Set initial parameters, e.g. sequence
numbers; and Allocate resources, e.g. buffers

Message transfer phase
Exchange of SDUs

Disconnect phase
Example: TCP, PPP

Connection-Oriented Transfer
Service

n + 1 peer process
send

n + 1 peer process
receive

Layer n connection-oriented serviceSDU SDU

7

No Connection setup, simply send SDU
Each message send independently
Must provide all address information per message
Simple & quick
Example: UDP, IP

Connectionless Transfer Service

n + 1 peer process
send

n + 1 peer process
receive

SDU Layer n connectionless service

8

Message Size and Structure

What message size and structure will a
service model accept?

Different services impose restrictions on size &
structure of data it will transfer
Single bit? Block of bytes? Byte stream?
Ex: Transfer of voice mail = 1 long message
Ex: Transfer of voice call = byte stream

1 voice mail= 1 message = entire sequence of speech samples
(a)

1 call = sequence of 1-byte messages
(b)

9

1 long message

2 or more blocks

2 or more short messages

1 block

Segmentation & Blocking
To accommodate arbitrary message size, a layer may
have to deal with messages that are too long or too
short for its protocol
Segmentation & Reassembly: a layer breaks long
messages into smaller blocks and reassembles these
at the destination
Blocking & Unblocking: a layer combines small
messages into bigger blocks prior to transfer

10

Reliability & Sequencing

Reliability: Are messages or information
stream delivered error-free and without loss
or duplication?
Sequencing: Are messages or information
stream delivered in order?
ARQ protocols combine error detection,
retransmission, and sequence numbering to
provide reliability & sequencing
Examples: TCP and HDLC

11

Pacing and Flow Control
Messages can be lost if receiving system
does not have sufficient buffering to store
arriving messages
If destination layer-(n+1) does not retrieve its
information fast enough, destination layer-n
buffers may overflow
Pacing & Flow Control provide backpressure
mechanisms that control transfer according to
availability of buffers at the destination
Examples: TCP and HDLC

12

Timing
Applications involving voice and video generate
units of information that are related temporally
Destination application must reconstruct temporal
relation in voice/video units
Network transfer introduces delay & jitter
Timing Recovery protocols use timestamps &
sequence numbering to control the delay & jitter in
delivered information
Examples: RTP & associated protocols in Voice
over IP

13

Multiplexing

Multiplexing enables multiple layer-(n+1)
users to share a layer-n service
A multiplexing tag is required to identify
specific users at the destination
Examples: UDP, IP

14

Privacy, Integrity, &
Authentication

Privacy: ensuring that information transferred
cannot be read by others
Integrity: ensuring that information is not
altered during transfer
Authentication: verifying that sender and/or
receiver are who they claim to be
Security protocols provide these services and
are discussed in Chapter 11
Examples: IPSec, SSL

15

End-to-End vs. Hop-by-Hop
A service feature can be provided by implementing a
protocol

end-to-end across the network
across every hop in the network

Example:
Perform error control at every hop in the network or only
between the source and destination?
Perform flow control between every hop in the network or
only between source & destination?

We next consider the tradeoffs between the two
approaches

16

1

2

Physical layer entity

Data link layer entity

3 Network layer entity

(a)
Data link

layer

Physical
layer

Physical
layer

Data link
layer

A B

Packets Packets

Frames

3 2 11 2 3 2 11 2

2
1

Medium

A B

(b)

Error control in Data Link Layer
Data Link operates
over wire-like,
directly-connected
systems
Frames can be
corrupted or lost, but
arrive in order
Data link performs
error-checking &
retransmission
Ensures error-free
packet transfer
between two systems

17

Physical
layer

Data link
layer

Physical
layer

Data link
layerEnd system

A

Network
layer

Network
layer

Physical
layer

Data link
layer

Network
layer

Physical
layer

Data link
layer

Network
layer

Transport
layer

Transport
layer

Messages Messages

Segments

End system
B

Network

Error Control in Transport Layer
Transport layer protocol (e.g. TCP) sends segments across
network and performs end-to-end error checking &
retransmission
Underlying network is assumed to be unreliable

18

13 3 21 2 3 2 11 2

2
1

Medium

A B

3 2 11 2C

2 14 1 2 3 4

End System
α End System

β

Network

3 Network layer entity

Transport layer entity4

Segments can experience long delays, can be lost, or
arrive out-of-order because packets can follow different
paths across network
End-to-end error control protocol more difficult

19

End-to-End Approach Preferred

1 2 5

Data

ACK/NAK
End-to-end

More scalable
if complexity at

the edge

Simple
inside the
network

Hop-by-hop
cannot ensure

E2E correctness

1 2 5
Data

ACK/
NAK

Hop-by-hop

3
Data

ACK/
NAK

4
Data

ACK/
NAK

Data

ACK/
NAK

3

Data

4

Data Data

Faster recovery

20

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

ARQ Protocols and Reliable
Data Transfer

21

Purpose: to ensure a sequence of information
packets is delivered in order and without errors or
duplications despite transmission errors & losses
We will look at:

Stop-and-Wait ARQ
Go-Back N ARQ
Selective Repeat ARQ

Basic elements of ARQ:
Error-detecting code with high error coverage
ACKs (positive acknowledgments
NAKs (negative acknowlegments)
Timeout mechanism

Automatic Repeat Request (ARQ)

22

CRC
Information

packet

Header

Information frame Control frame: ACKs

CRC
Header

Packet Error-free
packet

Information frame

Control frame

Transmitter
(Process A)

Receiver
(Process B)

Stop-and-Wait ARQ

Timer set after
each frame

transmission

Transmit a frame, wait for ACK

23

In cases (a) & (b) the transmitting station A acts the same way
But in case (b) the receiving station B accepts frame 1 twice
Question: How is the receiver to know the second frame is also frame 1?
Answer: Add frame sequence number in header
Slast is sequence number of most recent transmitted frame

Need for Sequence Numbers
(a) Frame 1 lost

A

B

Frame
0

Frame
1

ACK

Frame
1

ACK

Time
Time-out

Frame
2

(b) ACK lost

A

B

Frame
0

Frame
1

ACK

Frame
1

ACK

Time
Time-out

Frame
2

ACK

24

Sequence Numbers

The transmitting station A misinterprets duplicate ACKs
Incorrectly assumes second ACK acknowledges Frame 1
Question: How is the receiver to know second ACK is for frame 0?
Answer: Add frame sequence number in ACK header
Rnext is sequence number of next frame expected by the receiver
Implicitly acknowledges receipt of all prior frames

(c) Premature Time-out

A

B

Frame
0 Frame

0ACK
Frame

1ACK

Time
Time-out

Frame
2

25

(0,0) (0,1)

(1,0) (1,1)

Global State:
(Slast, Rnext)

Error-free frame 0
arrives at receiver

ACK for
frame 0
arrives at
transmitter

ACK for
frame 1
arrives at
transmitter Error-free frame 1

arrives at receiver

Transmitter
A

Receiver
B

Slast
Rnext

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Timer

Rnext

Slast

1-Bit Sequence Numbering
Suffices

26

Stop-and-Wait ARQ
Transmitter
Ready state

Await request from higher layer for
packet transfer
When request arrives, transmit
frame with updated Slast and CRC
Go to Wait State

Wait state
Wait for ACK or timer to expire;
block requests from higher layer
If timeout expires

retransmit frame and reset timer
If ACK received:

If sequence number is incorrect or if
errors detected: ignore ACK
If sequence number is correct (Rnext
= Slast +1): accept frame, go to
Ready state

Receiver
Always in Ready State

Wait for arrival of new frame
When frame arrives, check for errors
If no errors detected and sequence
number is correct (Slast=Rnext), then

accept frame,
update Rnext,
send ACK frame with Rnext,
deliver packet to higher layer

If no errors detected and wrong
sequence number

discard frame
send ACK frame with Rnext

If errors detected
discard frame

27

Applications of Stop-and-Wait
ARQ

IBM Binary Synchronous Communications
protocol (Bisync): character-oriented data
link control
Xmodem: modem file transfer protocol
Trivial File Transfer Protocol (RFC 1350):
simple protocol for file transfer over UDP

28

Stop-and-Wait Efficiency

10000 bit frame @ 1 Mbps takes 10 ms to transmit
If wait for ACK = 1 ms, then efficiency = 10/11= 91%
If wait for ACK = 20 ms, then efficiency =10/30 = 33%

A

B

First frame bit
enters channel

Last frame bit
enters channel

Channel idle while transmitter
waits for ACK

Last frame bit
arrives at
receiver

Receiver
processes frame

and
prepares ACK

ACK
arrives

First frame bit
arrives at
receiver

t

t

29

frame
tf time

A

B

tprop tacktproc tprop

tproc

t0 = total time to transmit 1 frame

Stop-and-Wait Model

R
n

R
n

tt

ttttt

af
procprop

ackfprocprop

+++=

+++=

22

220 bits/info frame

channel transmission rate

bits/ACK frame

30

S&W Efficiency on Error-free
channel

.)(2
1

1
0

0

f

procprop

f

a

f

oof

eff

n
Rtt

n
n

n
n

R
t

nn

R
R

+
++

−
=

−

==η

bits for header & CRC

,
bitsn informatio edeliver th torequired timetotal

ndestinatio todelivered bitsn informatio ofnumber

0

0

t
nn

R of
eff

−
==

Effect of
frame overhead

Effect of
ACK frame

Effect of
Delay-Bandwidth Product

Effective transmission rate:

Transmission efficiency:

31

Example: Impact of Delay-
Bandwidth Product

nf=1250 bytes = 10000 bits, na=no=25 bytes = 200 bits

Delay × Bandwidth Product
Efficiency

Reaction time
Distance

1 ms
200 km

10 ms
2000 km

100 ms
20000 km

1 sec
200000 km

1 Mbps 103

88%
104

49%
105

9%
106

1%

1 Gbps 106

1%
107

0.1%
108

0.01%
109

0.001%

Stop-and-Wait does not work well for very high speeds
or long propagation delays

32

S&W Efficiency in Channel with
Errors

Let 1 – Pf = probability frame arrives w/o errors
Avg. # of transmissions to first correct arrival is then 1/ (1–Pf)
“If 1-in-10 get through without error, then avg. 10 tries to
success”
Avg. Total Time per frame is then t0/(1 – Pf)

)1()(2
1

1
1

0

f

f

procprop

f

a

f

o

f

of

eff
SW P

n
Rtt

n
n

n
n

R
P

t
nn

R
R

−
+

++

−
=

−

−

==η

Effect of
frame loss

33

Example: Impact of Bit Error Rate

nf=1250 bytes = 10000 bits, na=no=25 bytes = 200 bits
Find efficiency for random bit errors with p=0, 10-6, 10-5, 10-4

Delay × Bandwidth Product
Efficiency

Bit error
p

0 10-6 10-5 10-4

1 Mbps
at 1 ms

1
88%

0.99
86.6%

0.905
79.2%

0.368
32.2%

pnepP f
pnn

f
ff small and largefor)1(1 −≈−=−

Bit errors impact performance as nf x p approaches 1
34

Go-Back-N
Improve Stop-and-Wait by not waiting!
Keep channel busy by continuing to send frames
Allow a window of up to Ws outstanding frames
Use m-bit sequence numbering
If ACK for oldest frame arrives before window is
exhausted, we can continue transmitting
If window is exhausted, pull back and retransmit all
outstanding frames
Alternative: Use timeout

35

Frame transmission are pipelined to keep the channel busy
Frame with errors and subsequent out-of-sequence frames are ignored
Transmitter is forced to go back when window of 4 is exhausted

Go-Back-N ARQ

A

B

fr
0

Timefr
1

fr
2

fr
3

fr
4

fr
5

fr
6

fr
3

A
C
K
1

out of sequence
frames

Go-Back-4: 4 frames are outstanding; so go back 4

fr
5

fr
6

fr
4

fr
7

fr
8

fr
9

A
C
K
2

A
C
K
3

A
C
K
4

A
C
K
5

A
C
K
6

A
C
K
7

A
C
K
8

A
C
K
9

Rnext 0 1 2 3 3 4 5 6 7 8 9

36

A

B

fr
0 Timefr

1
fr
2

fr
3

fr
0

Receiver is
looking for

Rnext=0

Out-of-
sequence

frames

Four frames are outstanding; so go back 4

fr
2

fr
3

fr
1

fr
4

fr
5

fr
6

Go-Back-N ARQ

A
C
K
1

A
C
K
2

A
C
K
3

A
C
K
4

A
C
K
5

A
C
K
6

Window size long enough to cover round trip time

A

B

Timefr
0

fr
0

Time-out expires
fr
1

A
C
K
1

Stop-and-Wait ARQ

Receiver is
looking for

Rnext=0

37

Go-Back-N with Timeout

Problem with Go-Back-N as presented:
If frame is lost and source does not have frame to
send, then window will not be exhausted and
recovery will not commence

Use a timeout with each frame
When timeout expires, resend all outstanding
frames

38

Receiver

Receive Window

Rnext

Frames
received

Receiver will only accept
a frame that is error-free and
that has sequence number Rnext

When such frame arrives Rnext is
incremented by one, so the
receive window slides forward by
one

Timer Slast

Slast+1

Srecent

Slast+Ws-1

Timer

Timer

Transmitter

...

Buffers

Slast Slast+Ws-1

...
Send Window

Srecent

Frames
transmitted
and ACKed

...

most recent
transmission

oldest un-
ACKed frame

max Seq #
allowed

Go-Back-N Transmitter & Receiver

39

Sliding Window Operation

Transmitter waits for error-free
ACK frame with sequence
number Slast

When such ACK frame arrives,
Slast is incremented by one, and
the send window slides forward
by one

m-bit Sequence Numbering

0
1

2

i
i + Ws – 1

2m – 1

Slast

send
window

i + 1

Transmitter

Slast Slast+Ws-1

...

Srecent

Frames
transmitted
and ACKed

Send Window

40

A

B

fr
0

Timefr
1

fr
2

fr
3

fr
0

fr
1

fr
2

fr
3

A
C
K
1

M = 22 = 4, Go-Back - 4:

A
C
K
0

A
C
K
2

A
C
K
3

Transmitter goes back 4

Receiver has Rnext= 0, but it does not
know whether its ACK for frame 0 was
received, so it does not know whether
this is the old frame 0 or a new frame 0

Maximum Allowable Window Size is Ws = 2m-1

Rnext 0 1 2 3 0

A

B

fr
0

Timefr
1

fr
2

fr
0

fr
1

fr
2

A
C
K
1

M = 22 = 4, Go-Back-3:

A
C
K
2

A
C
K
3

Transmitter goes back 3

Receiver has Rnext= 3 , so it
rejects the old frame 0

Rnext 0 1 2 3
41

RA
next

“A” Receive Window

RB
next

“B” Receive Window

SA
last SA

last+WA
s-1

...
“A” Send Window

SB
last SB

last+WB
s-1

...
“B” Send Window

Transmitter Receiver

TransmitterReceiver

SA
recent RA

next

SB
recent RB

next

SA
last

SA
last+1

SA
recent

SA
last+WA

s-1Timer

...

Buffers

...

SB
last

SB
last+1

SB
recent

SB
last+WB

s-1

...

Buffers

...
Timer

Timer

Timer

Timer

Timer

Timer

Timer

ACK Piggybacking in Bidirectional GBN

Note: Out-of-
sequence error-free
frames discarded

after Rnext examined 42

Applications of Go-Back-N ARQ

HDLC (High-Level Data Link Control): bit-
oriented data link control
V.42 modem: error control over telephone
modem links

43

Tf Tf

Tproc

TpropTprop

Tout

Required Timeout & Window Size

Timeout value should allow for:
Two propagation times + 1 processing time: 2 Tprop + Tproc

A frame that begins transmission right before our frame arrives
Tf

Next frame carries the ACK, Tf

Ws should be large enough to keep channel busy for Tout 44

Frame = 1250 bytes =10,000 bits, R = 1 Mbps

2(tprop + tproc) 2 x Delay x BW Window

1 ms 1000 bits 1

10 ms 10,000 bits 2

100 ms 100,000 bits 11

1 second 1,000,000 bits 101

Required Window Size for
Delay-Bandwidth Product

45

Efficiency of Go-Back-N
GBN is completely efficient, if Ws large enough to keep
channel busy, and if channel is error-free
Assume Pf frame loss probability, then time to deliver a frame
is:

tf if first frame transmission succeeds (1 – Pf)
Tf + Wstf /(1-Pf) if the first transmission does not succeed Pf

)1(
)1(1

1

 and
1

 }
1

{)1(

f
fs

f

o

GBN

of

GBN

f

fs
ff

f

fs
ffffGBN

P
PW

n
n

R
t

nn

P
tW

Pt
P
tW

tPPtt

−
−+

−
=

−

=

−
+=

−
++−=

η

Delay-bandwidth product determines Ws
46

Example: Impact Bit Error Rate on
GBN

nf=1250 bytes = 10000 bits, na=no=25 bytes = 200 bits
Compare S&W with GBN efficiency for random bit errors with

p = 0, 10-6, 10-5, 10-4 and R = 1 Mbps & 100 ms
1 Mbps x 100 ms = 100000 bits = 10 frames → Use Ws = 11

Efficiency 0 10-6 10-5 10-4

S&W 8.9% 8.8% 8.0% 3.3%

GBN 98% 88.2% 45.4% 4.9%

Go-Back-N significant improvement over Stop-and-Wait for
large delay-bandwidth product
Go-Back-N becomes inefficient as error rate increases

47

Selective Repeat ARQ
Go-Back-N ARQ inefficient because multiple frames
are resent when errors or losses occur
Selective Repeat retransmits only an individual frame

Timeout causes individual corresponding frame to be resent
NAK causes retransmission of oldest un-acked frame

Receiver maintains a receive window of sequence
numbers that can be accepted

Error-free, but out-of-sequence frames with sequence
numbers within the receive window are buffered
Arrival of frame with Rnext causes window to slide forward by
1 or more

48

A

B

fr
0

Timefr
1

fr
2

fr
3

fr
4

fr
5

fr
6

fr
2

A
C
K
1

fr
8

fr
9

fr
7

fr
10

fr
11

fr
12

A
C
K
2

N
A
K
2

A
C
K
7

A
C
K
8

A
C
K
9

A
C
K
1
0

A
C
K
1
1

A
C
K
1
2

A
C
K
2

A
C
K
2

A
C
K
2

Selective Repeat ARQ

49

Transmitter

Buffers

Slast Slast+ Ws-1

...
Send Window

Srecent

Frames
transmitted
and ACKed

Timer Slast

Slast+ 1

Srecent

Slast+ Ws - 1

Timer

Timer

...

...

Selective Repeat ARQ

Frames
received

Receiver

Receive Window

Rnext Rnext + Wr-1

Rnext+ 1

Rnext+ 2

Rnext+ Wr- 1

...

Buffers

max Seq #
accepted

50

Send & Receive Windows
Transmitter Receiver

0
1

2

i
i + Ws – 1

2m-1

Slast

send
window

i + 1

Moves k forward when ACK
arrives with Rnext = Slast + k

k = 1, …, Ws-1

0
1

2

i

j + Wr – 1

2m-1

Rnext

receive
window

j

Moves forward by 1 or more
when frame arrives with

Seq. # = Rnext
51

What size Ws and Wr allowed?
Example: M=22=4, Ws=3, Wr=3

A

B

fr0
Time

fr1 fr2 fr0

ACK1 ACK2 ACK3

Frame 0 resent

{0,1,2} {1,2} {2} {.}
Send

Window

{0,1,2} {1,2,3}
Receive
Window {2,3,0} {3,0,1}

Old frame 0 accepted as a
new frame because it falls
in the receive window 52

Ws + Wr = 2m is maximum allowed

Example: M=22=4, Ws=2, Wr=2

A

B

fr0
Time

fr1 fr0

ACK1 ACK2

Frame 0 resent

{0,1} {1} {.}
Send

Window

{0,1} {1,2}
Receive
Window {2,3}

Old frame 0 rejected because it
falls outside the receive window

53

Why Ws + Wr = 2m works
Transmitter sends frames 0
to Ws-1; send window empty
All arrive at receiver
All ACKs lost

Window slides forward to
{Ws,…,Ws+Wr-1}

0
1

2

Ws-1

2m-1

Slast

send
window

0
1

2Ws +Wr-1

2m-1

Rnextreceive
window

Ws

Transmitter resends frame 0
Receiver rejects frame 0 because it
is outside receive window

Receiver window starts at {0, …, Wr}

54

Applications of Selective Repeat
ARQ

TCP (Transmission Control Protocol):
transport layer protocol uses variation of
selective repeat to provide reliable stream
service
Service Specific Connection Oriented
Protocol: error control for signaling
messages in ATM networks

55

Efficiency of Selective Repeat
Assume Pf frame loss probability, then number of
transmissions required to deliver a frame is:

tf / (1-Pf)

)1)(1(
)1/(

f
f

off

of

SR P
n
n

R
Pt
nn

−−=
−
−

=η

56

Example: Impact Bit Error Rate on
Selective Repeat

nf=1250 bytes = 10000 bits, na=no=25 bytes = 200 bits
Compare S&W, GBN & SR efficiency for random bit errors

with p=0, 10-6, 10-5, 10-4 and R= 1 Mbps & 100 ms

Efficiency 0 10-6 10-5 10-4

S&W 8.9% 8.8% 8.0% 3.3%

GBN 98% 88.2% 45.4% 4.9%

SR 98% 97% 89% 36%

Selective Repeat outperforms GBN and S&W, but
efficiency drops as error rate increases 57

Selective-Repeat:

Go-Back-N:

Stop-and-Wait:

L
P

n
Rtt

n
n

P f

f

procprop

f

a

f
SW +

−
≈

+
++

−
=

1
1

)(2
1

)1(
η

f

f

fS

f
GBN LP

P
PW

P
+

−
=

−+

−
=

1
1

)1(1
1

η

)1()1)(1(f
f

o
fSR P

n
nP −≈−−=η

Comparison of ARQ Efficiencies
Assume na and no are negligible relative to nf, and
L = 2(tprop+tproc)R/nf =(Ws-1), then

For Pf≈0, SR & GBN same

For Pf→1, GBN & SW same

58

ARQ Efficiency Comparison

0

0.5

1

1.5

-9 -8 -7 -6 -5 -4 -3 -2 -1

- LOG(p)

Ef
fic

ie
nc

y

Selective
Repeat

Go Back N 10

Stop and Wait
100

Go Back N 100

Stop and Wait
10

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

p

Delay-Bandwidth product = 10, 100

ARQ Efficiencies

59

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

Flow Control

60

Flow Control

Receiver has limited buffering to store arriving
frames
Several situations cause buffer overflow

Mismatch between sending rate & rate at which user can
retrieve data
Surges in frame arrivals

Flow control prevents buffer overflow by regulating
rate at which source is allowed to send information

Information frame

Control frame

Transmitter

Receiver

buffer fill

61

on off offon

A

B

2Tprop

Time

Time

X ON / X OFF

Transmit Transmit

Information frame

X OFF

Transmitter

Receiver

threshold

Threshold must activate OFF signal while 2 Tprop R bits still
remain in buffer 62

A

B

tcycle

Return of permits

Time

Time

Window Flow Control

Sliding Window ARQ method with Ws equal to buffer available
Transmitter can never send more than Ws frames

ACKs that slide window forward can be viewed as permits to transmit
more
Can also pace ACKs as shown above

Return permits (ACKs) at end of cycle regulates transmission rate
Problems using sliding window for both error & flow control

Choice of window size
Interplay between transmission rate & retransmissions
TCP separates error & flow control

63

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

Timing Recovery

64

Network

Synchronous source
sends periodic
information blocks

Network output
not periodic

Timing Recovery for Synchronous
Services

Applications that involve voice, audio, or video can generate a
synchronous information stream
Information carried by equally-spaced fixed-length packets
Network multiplexing & switching introduces random delays

Packets experience variable transfer delay
Jitter (variation in interpacket arrival times) also introduced

Timing recovery re-establishes the synchronous nature of the stream
65

Introduce Playout Buffer

Playout
Buffer

Packet Arrivals Packet Playout

• Delay first packet by maximum network delay
• All other packets arrive with less delay
• Playout packet uniformly thereafter

Packet Arrivals

Packet Playout

Tmax

Sequence numbers help order
packets

66

Send
times

Playout
times

Arrival times

Tplayout time

Time

Receiver too
slow;

buffer fills and
overflows

Tplayout time

Time
Receiver too fast
buffer starvation

Many late
packets

Tplayout time

Time
Receiver speed
just right

Playout clock must
be synchronized to

transmitter clock

67

Recovered
clock

t4 t3 t2 t1
Timestamps

Add Smoothing
filter

Adjust
frequency

Counter

+

-

Buffer for information blocks

Error
signal

Playout
command

Clock Recovery

Counter attempts to replicate transmitter clock
Frequency of counter is adjusted according to arriving timestamps
Jitter introduced by network causes fluctuations in buffer & in local clock

Timestamps inserted in
packet payloads

indicate when info was
produced

68

Network clock

fn

Transmitter

Network

Receiver

fs fr
M M

Synchronization to a Common
Clock

Clock recovery simple if a common clock is available to transmitter &
receiver

E.g. SONET network clock; Global Positioning System (GPS)
Transmitter sends Δf of its frequency & network frequency
Receiver adjusts network frequency by Δf
Packet delay jitter can be removed completely

fr=fn-Δf

M=#ticks in local clock
In time that net clock

does N ticks
N ticks N ticksfn/fs=N/M

Δf=fn-fs=fn-(M/N)fn

69

Example: Real-Time Protocol

RTP (RFC 1889) designed to support real-
time applications such as voice, audio, video
RTP provides means to carry:

Type of information source
Sequence numbers
Timestamps

Actual timing recovery must be done by
higher layer protocol

MPEG2 for video, MP3 for audio

70

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

TCP Reliable Stream Service &
Flow Control

71

Send buffer

Segments

Receive buffer

Application Layer
writes bytes into send
buffer through socket

ACKs

Transmitter Receiver

TCP Reliable Stream Service

Application Layer reads
bytes from receive buffer

through socket

TCP transfers byte
stream in order, without
errors or duplications

Application layer

Transport layer

Write 45 bytes
Write 15 bytes
Write 20 bytes

Read 40 bytes
Read 40 bytes

72

TCP ARQ Method
• TCP uses Selective Repeat ARQ

• Transfers byte stream without preserving boundaries
• Operates over best effort service of IP

• Packets can arrive with errors or be lost
• Packets can arrive out-of-order
• Packets can arrive after very long delays
• Duplicate segments must be detected & discarded
• Must protect against segments from previous connections

• Sequence Numbers
• Seq. # is number of first byte in segment payload
• Very long Seq. #s (32 bits) to deal with long delays
• Initial sequence numbers negotiated during connection setup

(to deal with very old duplicates)
• Accept segments within a receive window

73

Transmitter

Slast Slast + Ws – 1

...

Send Window

Srecent
octets

transmitted
& ACKed

... ...

Slast + Wa-1

Slast oldest unacknowledged byte
Srecent highest-numbered
transmitted byte
Slast+Wa-1 highest-numbered byte
that can be transmitted
Slast+Ws-1 highest-numbered byte
that can be accepted from the
application

Receiver

Receive Window

Rnext

Rlast Rlast + WR – 1

Rlast highest-numbered byte not
yet read by the application
Rnext next expected byte
Rnew highest numbered byte
received correctly
Rlast+WR-1 highest-numbered
byte that can be accommodated
in receive buffer

Rnew

74

TCP Connections
TCP Connection

One connection each way
Identified uniquely by Send IP Address, Send TCP Port #,
Receive IP Address, Receive TCP Port #

Connection Setup with Three-Way Handshake
Three-way exchange to negotiate initial Seq. #’s for
connections in each direction

Data Transfer
Exchange segments carrying data

Graceful Close
Close each direction separately

75

Host A Host B

Three-way
Handshake

Data Transfer

Three Phases of TCP Connection

Graceful
Close

76

1st Handshake: Client-Server
Connection Request

SYN bit set indicates request to
establish connection from client to

server

Initial Seq. # from
client to server

77

2nd Handshake: ACK from Server

ACK bit set acknowledges
connection request; Client-

to-Server connection
established

ACK Seq. # =
Init. Seq. # + 1

78

2nd Handshake: Server-Client
Connection Request

SYN bit set indicates request to
establish connection from server

to client

Initial Seq. # from
server to client

79

3rd Handshake: ACK from Client

ACK bit set acknowledges
connection request;
Connections in both

directions established

ACK Seq. # =
Init. Seq. # + 1

80

TCP Data Exchange
Application Layers write bytes into buffers
TCP sender forms segments

When bytes exceed threshold or timer expires
Upon PUSH command from applications
Consecutive bytes from buffer inserted in payload
Sequence # & ACK # inserted in header
Checksum calculated and included in header

TCP receiver
Performs selective repeat ARQ functions
Writes error-free, in-sequence bytes to receive
buffer

81

Data Transfer: Server-to-Client
Segment

12 bytes of payload
carries telnet option

negotiation

Push set

12 bytes of payload

82

Graceful Close: Client-to-Server
Connection

Client initiates closing
of its connection to

server

83

Graceful Close: Client-to-Server
Connection

Server ACKs request; client-
to-server connection closed

ACK Seq. # =
Previous Seq. # + 1

84

Flow Control
TCP receiver controls rate at which sender transmits to prevent
buffer overflow
TCP receiver advertises a window size specifying number of
bytes that can be accommodated by receiver

WA = WR – (Rnew – Rlast)
TCP sender obliged to keep # outstanding bytes below WA

(Srecent - Slast) ≤ WA

Receive Window

Rlast Rlast + WR – 1 Rnew

WA

Slast Slast + Ws – 1

...

Send Window

Srecent

... ...

Slast + WA-1

85

Host A Host B

t1

t2

t3

t4

t0

TCP window flow control

86

TCP Retransmission Timeout
TCP retransmits a segment after timeout period

Timeout too short: excessive number of retransmissions
Timeout too long: recovery too slow
Timeout depends on RTT: time from when segment is sent to
when ACK is received

Round trip time (RTT) in Internet is highly variable
Routes vary and can change in mid-connection
Traffic fluctuates

TCP uses adaptive estimation of RTT
Measure RTT each time ACK received: τn

tRTT(new) = α tRTT(old) + (1 – α) τn

α = 7/8 typical
87

RTT Variability
Estimate variance σ2 of RTT variation
Estimate for timeout:

tout = tRTT + k σRTT

If RTT highly variable, timeout increase accordingly
If RTT nearly constant, timeout close to RTT estimate

Approximate estimation of deviation

dRTT(new) = β dRTT(old) + (1-β) | τn - tRTT |

tout = tRTT + 4 dRTT

88

	 Chapter 5 �Peer-to-Peer Protocols and Data Link Layer
	 Chapter 5 �Peer-to-Peer Protocols and Data Link Layer
	Chapter Overview
	 Chapter 5 �Peer-to-Peer Protocols and Data Link Layer
	Peer-to-Peer Protocols
	Service Models
	Connection-Oriented Transfer Service
	Connectionless Transfer Service
	Message Size and Structure
	Segmentation & Blocking
	Reliability & Sequencing
	Pacing and Flow Control
	Timing
	Multiplexing
	Privacy, Integrity, & Authentication
	End-to-End vs. Hop-by-Hop
	Error control in Data Link Layer
	Error Control in Transport Layer
	Slide Number 19
	End-to-End Approach Preferred
	 Chapter 5 �Peer-to-Peer Protocols and Data Link Layer
	Automatic Repeat Request (ARQ)
	Stop-and-Wait ARQ
	Need for Sequence Numbers
	Sequence Numbers
	1-Bit Sequence Numbering Suffices
	Stop-and-Wait ARQ
	Applications of Stop-and-Wait ARQ
	Stop-and-Wait Efficiency
	Stop-and-Wait Model
	S&W Efficiency on Error-free channel
	Example: Impact of Delay-Bandwidth Product
	S&W Efficiency in Channel with Errors
	Example: Impact of Bit Error Rate
	Go-Back-N
	Go-Back-N ARQ
	Slide Number 37
	Go-Back-N with Timeout
	Go-Back-N Transmitter & Receiver
	Sliding Window Operation
	Slide Number 41
	ACK Piggybacking in Bidirectional GBN
	Applications of Go-Back-N ARQ
	Required Timeout & Window Size
	Required Window Size for� Delay-Bandwidth Product
	Efficiency of Go-Back-N
	Example: Impact Bit Error Rate on GBN
	Selective Repeat ARQ
	Selective Repeat ARQ
	Selective Repeat ARQ
	Send & Receive Windows
	What size Ws and Wr allowed?
	Ws + Wr = 2m is maximum allowed
	Why Ws + Wr = 2m works
	Applications of Selective Repeat ARQ
	Efficiency of Selective Repeat
	Example: Impact Bit Error Rate on Selective Repeat
	Comparison of ARQ Efficiencies
	ARQ Efficiencies
	 Chapter 5 �Peer-to-Peer Protocols and Data Link Layer
	Flow Control
	X ON / X OFF
	Window Flow Control
	 Chapter 5 �Peer-to-Peer Protocols and Data Link Layer
	Timing Recovery for Synchronous Services
	Introduce Playout Buffer
	Slide Number 67
	Clock Recovery
	Synchronization to a Common Clock
	Example: Real-Time Protocol
	 Chapter 5 �Peer-to-Peer Protocols and Data Link Layer
	TCP Reliable Stream Service
	TCP ARQ Method
	Slide Number 74
	TCP Connections
	Three Phases of TCP Connection
	1st Handshake: Client-Server Connection Request
	2nd Handshake: ACK from Server
	2nd Handshake: Server-Client Connection Request
	3rd Handshake: ACK from Client
	TCP Data Exchange
	Data Transfer: Server-to-Client Segment
	Graceful Close: Client-to-Server Connection
	Graceful Close: Client-to-Server Connection
	Flow Control
	TCP window flow control
	TCP Retransmission Timeout
	RTT Variability

