
ENSC-833 – Culley, Fuchs, Sharp Page 1

ENSC 833-3: NETWORK PROTOCOLS and PERFORMANCE
CMPT 885-3: SPECIAL TOPICS: HIGH-PERFORMANCE NETWORKS

An INVESTIGATION of MPLS
TRAFFIC ENGINEERING CAPABILITIES

using CR-LDP

Spring 2001

FINAL PROJECT REPORT

David Culley
<culleyd@pmc-sierra.com>

Chris Fuchs

<chris.fuchs@bchydro.com>

Duncan Sharp
<dsharp@planetworks.ca>

April 12, 2001

ENSC-833 – Culley, Fuchs, Sharp Page 2

Abstract
Multi Protocol Label Switching (MPLS) was
initially proposed to overcome the bottleneck of
IP routing over ATM while retaining the
efficiency of ATM's label swapping and
forwarding abilities. Now with the advent of
gigabit routers the issue of connection oriented
forwarding and IP routing integration is more
focused on the additional advantages that
MPLS provides: to manage traffic not
necessarily based on shortest path measures,
to provide QoS routing, the ability to set up
Virtual Private Networks (VPN) and to
implement congestion management control
strategies. One control standard that allows
MPLS to provide QoS based routing is the
Constraint based Routing Label Distribution
Protocol (CR-LDP). This paper reports on a
graduate course project that uses simulation to
demonstrate MPLS with CR-LDP to improve
real-time traffic service quality while reducing
congestion and improving network utilization.

1. INTRODUCTION

Internet Protocol (IP) networks have proven to
be highly scalable and efficient platforms for
delivering e-mail, Web and other classic Internet
traffic where the delay of "best-effort" delivery
are tolerable. It is widely believed that in order
for the Internet to evolve into our future
"universal information infrastructure" the
Internet must be able to deliver real-time multi-
media traffic – such as voice and video.
Unfortunately by its nature, real-time traffic is
sensitive to delay – for example; delay over 100
to 200 ms on a telephone connection impedes
normal conversation.

In the current literature, achieving low delay with
some probability of success (e.g., 98% of
packets delivered within 100 ms) is referred to
as "traffic engineering". Essentially this means
availability of network resources to carry the
traffic within the specified constraints. Which
means, in turn, that network resources must be
provisioned ahead of the offered real-time traffic
and/or some connection admission policy must
reject new connections that will, if otherwise
accepted, overload and congest the network.

Multi Protocol Labeled Switching (MPLS) is a
packet forwarding mechanism that is currently
receiving considerable attention. One virtue of
MPLS is its ability to support traffic engineering.
The objective of our project is to demonstrate
through simulation how MPLS can improve the
quality of service (QoS) for real-time traffic on
an IP network that is carrying a mix of real-time
and best-effort traffic. Secondary objectives
include: (i) to incorporate the MPLS and Label
Distribution Protocol (LDP) software written for
"network simulator" version 2.5b into version
2.6b; (ii) to extend the authors' understanding of
the capabilities, limitations and implementation
issues of MPLS; and (iii) for the authors to gain
a working knowledge of an important network
simulation tool.

This paper is organized to follow our project
approach and methodology. Specifically, in
Section 2, we present a concise description of
MPLS and CR-LDP supported by key
references. Section 3 describes our simulation
in terms of the network, traffic, performance
measurement arrangements, and results. The
paper concludes in Section 4 with a brief
discussion of results, observations, and
possible future extensions to this work.

2. OVERVIEW of MPLS & CR-LDP

MPLS grew out of the efforts to make the
Internet more scalable by reducing the
complexity (cost) and increasing the speed of
forwarding packets through a core (backbone)
Internet router. The basic concept of MPLS is
to forward packets using a short label instead of
using the IP destination address to look-up the
next hop in a routing table. Because the routing
table is set up by a prearranged routing protocol
(e.g. OSPF), the current "paradigm" combines
packet forwarding with network routing. MPLS
is a packet forwarding mechanism. The routing
decisions may be made, and distributed in a
variety of ways. One way, and the way
explored in our project, is using Constraint-
based Routing over the Label Distribution
Protocol (CR-LDP).

ENSC-833 – Culley, Fuchs, Sharp Page 3

Figure-1 Basic elements and terminology for
Multi Protocol Label Switching (MPLS)

As shown in Figure-1, MPLS works along what
is called a label switched path (LSP) that is set
up through a set of label switched routers
(LSRs) – i.e., routers supporting MPLS. After
the LSP is set up, packets follow this path and
this traffic becomes "flow" or connection
oriented. Path set up requires a suitable
signaling protocol such as the Reservation
Protocol (RSVP) or Label Distribution Protocol
(LDP). An LSP originates at the edge of an
MPLS domain where the first LSR maps the
incoming traffic into forward equivalent classes
(FECs). FECs are flexibly defined by a set of
attributes such as a destination IP address, and
for constraint-based routing (CR), class of
service (CoS) or quality of service (QoS)
parameters. Packets with the same FEC
classification are given the same label and sent
to the next LSR based on that label. Each LSR
forwards the packet based only on the label and
without using any other packet header
information. At the last LSR in the MPLS
domain, the label is removed and the packet is
forwarded as a normal IP packet.

In the absence of routing constraints, the LSP is
set up hop by hop using the routers IP
forwarding table and thus the LSP is the path an
IP packet would have followed using whatever
default IP routing protocol is used. The LSP is
"explicitly routed" if it is set up based on
constraints specified by the network operator or
computed using some network management

algorithm that is independent of the default IP
routing protocol. When LDP is used, this
becomes constraint-based routing over LDP or
CR-LDP. LDP provides LSRs with the following
functions: (i) peer discovery (used to identify
other LSRs in the MPLS domain), (ii) session
(used to establish, maintain and delete sessions
between LSR peers), (iii) advertisement (used
to create, change and delete label mappings for
FECs), and (iv) notification (used to provide
status, diagnostic and error information).
Advertisement messages include "requests" to
set up an LSP which propagate forward, and
label "mappings" which propagate back through
the network.

For CR-LDP, an LSP is set up when a series of
label request messages propagate forward from
the ingress to the egress LSR and then, if the
requested path satisfies the constraints (e.g.,
sufficient resources available), then labels are
allocated and distributed (mapped) by a set of
label-mapping messages that propagate
backward from the egress LSR to the ingress
LSR.

As of February 2001, when our project was
developing, MPLS and LDP had become
Internet standards [4,5] and CR-LDP was the
subject of several Internet Drafts [1,2]. For
additional information on MPLS and CR-LDP,
including simulation and the application of
MPLS for traffic engineering, refer to [3,6,7,8,9].

3. SIMULATION

Although MPLS has several desirable
capabilities, we have chosen to demonstrate its
ability to provide "traffic engineering" – i.e., to
deliver adequate QoS for real-time traffic in a
network that is carrying both best-effort and
real-time traffic. To demonstrate this capability,
we set up and ran the simulation described
below using the network simulator tool "ns-2"
including the animator "nam" [10]. See
Appendix-A for a copy of the "Tcl" script. The
simulation parameters were finalized for our
demonstration runs after calculations and
experimentation to ensure reasonable and
illustrative results (see Section 4, Discussion).

2

Source

Ingress

Destination

43

6 7

8

5

0

1

9

10

MPLS Domain

LSP - Label Switched Path

LEGEND

Egress

LSR - Label Switch Router

ENSC-833 – Culley, Fuchs, Sharp Page 4

3.1 Network Arrangements

The basic network topology, shown in Figure-2,
was chosen with two paths such that default
routing would be along the shortest path (i.e.,
through nodes 6 and 7). All nodes can be
considered IP routers with nodes 2 through 8
also being MPLS capable – i.e., LSRs.

Figure-2 Network arrangements for our
simulation of MPLS with CR-LDP.

All links were set up as duplex with 10 ms delay
and using statistical fair queuing. The link data
rates are shown on Figure-2. Note that (i) link
6-7 is a bottleneck on the shortest path between
nodes 2 and 8; and (ii) the total network
capacity between nodes 2 and 8 is 1 Mbps.

Queue monitors were set at each node to
enable queuing delay to be observed during the
network animations and to enable data to be
dumped to file for performance analysis.

3.2 Traffic

The network was loaded with a mix of simulated
"real-time" and "best effort" traffic. The best
effort traffic provides background traffic, with the
real-time traffic being of interest in terms of
quality of service.

The real-time traffic connection was set up
between node 0 and node 9 using User
Datagram Protocol (UDP). We assumed
constant bit rate (CBR) voice traffic with 48 byte
packets and 3 ms inter arrival time. This

represents, for example, 2 voice channels
running at 64 kbps (G.711 PCM) with 6 ms
packet delay. The 48 byte packets are
indicative of an underlying Asynchronous
Transfer Mode (ATM) cell relay bearer.

The best effort traffic connection was set up
between node 1 and 10 using Transmission
Control Protocol (TCP). We used the default
ns-2 version of TCP (Tahoe) and packet size
(1000 bytes). For authenticity, we used a
genuine traffic trace exhibiting long range
dependency (self-similar distribution).

Specifically, we used the pOct98_2000.TL trace
from the course Web site [13]. This trace was
collected starting at 11:00 on October 5, 1989
from local Ethernet traffic at Bellcore Morristown
Research and Engineering facility [14]. The
traffic trace contains packet arrival time and
packet size in an ASCII format. Since ns-2
requires traffic traces to be in binary format, we
wrote a trace conversion program in C, which is
included in Appendix-B1.

3.3 Performance Measurements

The animation tool "nam" was used to view the
simulation. Nam proved to be an excellent
means of visualizing network behavior for
supporting simulation configuration decisions
and for troubleshooting.

Measured performance included packet delay
(for real-time traffic), packet loss and network
utilization. We obtained the data for these
parameters by saving the simulator trace from
each simulation run in an output file. The output
file was then post processed by, first filtering for
the relevant data using a custom script written
in Perl (see Appendix-C); then the filtered data
was ported to a spreadsheet and manipulated
into the tables and graphs for this report.

We captured and analyzed data from three
basic simulation scenarios. These scenarios

1 Note that together with an inverse program, that we
also wrote, there is a slight accumulated error in
arrival times between the original trace file and the
one we translated into and back out of binary. This
error is small and deemed inconsequential for the
purposes of this simulation.

Best Effort
Traffic
Source

Real Time
Traffic
Source

Real Time
Traffic

Destination

Best Effort
Traffic

Destination

43

6 7

82

5

0

1

9

10

MPLS Domain

1.0 Mbps

0.5 Mbps

LEGEND

ENSC-833 – Culley, Fuchs, Sharp Page 5

and the results are presented in the following
sub sections.
3.4 Demonstration Scenario

To illustrate the impact of using CR-LDP to
invoke explicit routing for a specific class of
traffic (i.e., providing traffic engineering), the
network in Figure-2 was operated (i) without any
explicit routing for a short initial period during
which all traffic takes the default (shortest path)
route through nodes 6 and 7; then (ii) after this
period, CR-LDP was used to invoke an explicit
route for the real-time traffic through nodes 3, 4
and 5. The time line for this demonstration is
shown in Figure-3 and the actual "Tcl" script
has been appended as Appendix-A.

Figure-4 illustrates the results of a typical run,
showing severe delay, delay variation and
packet loss being experienced by the real-time
traffic prior to the invocation of an "engineered"
LSP for the real-time traffic.

Figure-3 Demonstration Script Time Line

3.5 Default (Non Engineered) Scenario

To collect sufficient simulation data to illustrate
the consequences of the uncontrolled mixing of
real-time and best effort traffic on a busy
network, The network was simulated for 60
seconds using MPLS, however the routing for
all traffic was determined by the default routing
protocol and thus followed the shortest path
through nodes 6 and 7. The results were
aggregated and presented in Figure-5 (showing
real-time packet delay distribution) and Figure-6
(showing packet loss rates and network

Figure-4 Scatter plot graph of delay to simulated
real-time traffic versus time. At time t = 2, traffic
engineering is implemented by routing the real-
time and best effort traffic onto separate LSPs.

utilization). Note that 69% of the real-time traffic
packets were dropped under these congestion
situations.

Figure-5 Real-time packet delay distribution for
loaded network operation without traffic
engineering. Note – 69% of packets dropped.

3.6 Traffic Engineered Scenario

After CR-LDP sets up an explicit route that has
been engineered for the real-time traffic, the
quality of service problem disappears and the
performance measurements become stable and
uninteresting (as may be seen from the right
hand side of the graph in Figure-4). Simulation
data with traffic engineering was used as a
reference baseline for comparison. A 60
second simulation was run with all real-time
traffic explicitly routed through nodes 3, 4 and 5.

The results are presented in Figure-6 (packet
loss rates and network utilization comparisons).
The delay for real-time traffic stabilized at 63.84
ms (as is seen from Figure-4 and is consistent

Time
(sec) Action
0.00 Start simulation run
0.05 Start real-time traffic source
0.10 Start best effort traffic source
1.60 Send withdraw real-time traffic route

message using CR-LDP
1.80 Send explicit route set up for real-

time traffic to take LSP thru 3, 4 & 5
2.00 Issue LSP install directive at node 2
2.80 Send withdraw real-time traffic route
3.00 Stop traffic sources
3.20 Stop simulation run

0%

5%

10%

15%

20%

25%

30%

35%

0.
02

0.
06 0.

1

0.
14

0.
18

0.
22

0.
26 0.

3

0.
34

0.
38

0.
42

0.
46 0.

5

0.
54

Packet Delay (s)

P
er

ce
nt

 o
f P

ac
ke

ts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2 2.5 3 3.5

Send time (Seconds)

P
ac

ke
t D

el
ay

 (S
ec

on
ds

)

Transit

ENSC-833 – Culley, Fuchs, Sharp Page 6

with expectations based on the calculated
delay).

WITHOUT WITH
Traffic Traffic

Parameter (units) Engineering Engineering
Offered Traffic (Erl) 0.555 0.624
Packet Loss TCP 1.0% 0.5%
Rate (%) CBR 69.4% 0.0%
Network Utilization (Erl) 0.462 0.622

Figure-6 Comparison table of packet loss rate
and network utilization (based on averages across
the total simulation periods).

4. DISCUSSION

The network topology and other simulation
parameters were chosen to demonstrate a
seriously degraded quality of service condition.
The configuration was arrived at after some
calculation and experimentation with network
scale (number of nodes, link capacity and
delay) and traffic arrangements (sources and
packet sizes, and CBR packet arrival rates). In
particular, and as expected, smaller TCP
packets improve the performance of the CBR
traffic (in terms of both delay and loss) but at
the expense of slower TCP start up. Although
the chosen parameters can be argued to be
artificially extreme, the mechanisms affecting
performance, the general delay and loss effects
do illustrate why, for example, voice over IP on
the Internet suffers from unpredictable and often
unusable quality.

The affect of best effort traffic over TCP on real-
time traffic is amply demonstrated by our
example network. Figure-4 is particularly
illustrative. The series of delay escalations (and
gaps where packets are dropped) is graphic
evidence of the TCP window opening to sense
the allowable capacity, then closing in response
to congestion.

Using "nam" to observe network behavior
during the non-engineered scenario runs, we
witness (i) the default routing of all traffic on the
shortest path, (ii) the build up of queue depth at
node 6 where the capacity bottleneck starts,
and (iii) the stranding and overflow of CBR
(real-time) traffic in proportion to the number of

packets2. When traffic engineering is invoked
by the set up of an explicit route for the CBR
traffic, we noted that there was a period during
which CBR packets were arriving out of order
as the buffers on the shortest path route cleared
their queues. The comparison table in Figure-6
summarizes the performance gains achieved
through traffic engineering for our specific
network and traffic situation.

The outcome of our project was highly
predictable – separating the real-time traffic
onto routes that can be engineered for
adequate resources to deliver a good quality of
service, improves overall network performance
in terms of packet loss rates and delay. In this
sense, our project does not extend the state of
the art. It was, however, instructive for the
authors and we submit the following course
contributions:

(a) Incorporating the MPLS and CR-LDP
modules from [11] into ns-2.6b and building an
ns-2.6b executable version.
(b) Writing a flexible Tcl script for
demonstrating the operation and application of
MPLS and CR-LDP for traffic engineering
(Appendix-A).
(c) Developing a routine in C to convert the
Bellcore Ethernet traffic traces [13,14] into a
form compatible with ns-2 (Appendix-B).
(d) Writing a flexible script in Perl to filter the
relevant data from the full simulation trace
(Appendix-C).

The ns-2 executable is available in
/ensc/grad1/cwfuchs/proj/ns-2.1b6/ns . The
other contributions are in the appendices to this
report and will be made available for download
from the course project Web site [13].

The use of CR-LDP to provide traffic
engineering by invoking an explicit route for
designated traffic classes was useful for
demonstration. This method involves
intervention by an intelligent operator to
engineer the network. While this is not as
elegant as a fully automated process that uses
a suitable policy based routing algorithm,

2 In ns-2, statistical fair queuing appears to be packet
based and, since the CBR constitutes a relatively
large number of packets, it suffers proportionally
higher packet loss in the buffer overflows.

ENSC-833 – Culley, Fuchs, Sharp Page 7

"manual" route assignment can be extremely
useful. Specifically, voice traffic is generally
well behaved statistically and engineering for it
is a well developed and understood discipline.
Thus, with MPLS and CR-LDP, it is easy to
visualize the rapid evolution of efficient and
effective network architectures to support real-
time multi-media traffic.

Of course the end game should be to provide a
fully automated and self organizing network
capability. A future extension to our project
would be to implement policy based CR-LDP
such that flows (LSPs) are set up
autonomously. Implementing this as a
simulation in ns-2 was investigated and the
following steps identified:

§ Implementing the ability to negotiate

resources at LSRs and to maintain these
resource reservations (hold state).

§ Implementing a suitable routing algorithm,
for example, a type of distance vector
algorithm where vector parameters include
link capacity, traffic loading, delay, etc.

Although we investigated the implementation of
these enhancements, they require a significant
amount of customization to several ns-2
modules and were thus considered unattainable
in the course time frame. In addition to
customizing the ns-2 code, it would also be
necessary to implement a more complex
network with more routing choices and more
complex background traffic arrangements.

ACKNOWLEDGEMENTS

We are indebted to Gaeil Ahn (at
fog1@ce.cnu.ac.kr) in Korea for the MPLS
node, CR- LDP and associated software
modules [11]. We also sincerely appreciated
the timely advice and support from our course
professor, Dr. Ljiljana Trajkovic, and our TA,
Mr. Milan Nikolic.

REFERENCES

[1] "Constraint-Based LSP Setup using LDP",
IETF Internet Draft, July 2000,
[http://search.ietf.org/internet-drafts/draft-ietf-
mpls-cr-ldp-04.txt]

[2] "LDP State Machine", IETF Internet Draft,
January 2000, [http://search.ietf.org/internet-
drafts/draft-ietf-mpls-ldp-state-03.txt]
[3] B. Davie & Y. Rekhter, "MPLS Technology
and Applications, Morgan Kaufman Publishers
Inc., US, 2000
[4] "Multiprotocol Label Switching Architecture",
IETF Internet Request for Comments, RFC
3031, January 2001 [http://www.ietf.org/rfc/
rfc3031.txt?number=3031]
[5] "LDP Specification", IETF Request for
Comments, RFC 3036, January 2001
[http://www.ietf.org/rfc/rfc3036.txt?number=
3036]
[6] T. Chen & T. Oh, "Reliable Services in
MPLS", IEEE Communications Magazine,
Vol.37, No.12, pp.58-62, Dec 1999
[7] E. Lim, H. Shin, Y. Kim, "Implementation of
the Simulation Model for the MPLS Signaling
Protocol and OAM Functions With OPNET",
[http://www.mil3.com/products/modeler/biblio.ht
ml]
[8] "Using CR-LDP for Service Interworking,
Traffic Engineering, and Quality of Service in
Carrier Networks", Nortel Networks, White
Paper, September 2000
[9] A. Ghanwani et al, "Traffic Engineering
Standards in IP Networks Using MPLS", IEEE
Communications Magazine, Vol.37, No.12,
pp.49-53, December 1999]
[10] ns-2 network simulator,
[http://www.isi.edu/nsnam/ns/]
[11] MPLS nodes & CR-LDP modules,
[http://www.raonet.com]
[12] T. Nguyen, et al, "Voice over IP Service
and Performance in Satellite Networks", IEEE
Communications Magazine, Vol.39, No.3,
pp.164-171, March 2001
[13] SFU ENSC-833, Course Web site
[http://www.ensc.sfu.ca/people/faculty/ljilja/
ENSC833]
[14] W. Leland et al, "On the Self-Similar
Nature of Ethernet Traffic", ACM SIGComm '93,
San Francisco, USA, September 1993

APPENDIXES

Appendix-A
Simulation Tcl Script
ENSC-833 Project by Fuchs, Culley & Sharp
Spring Semester 2001
MPLS Simulation Script

Current File Name: z5.tcl

ENSC-833 – Culley, Fuchs, Sharp Page 8

Developed to run on ns-2.6b
Using MPLS & LDP code from
Gaeil Ahn (fog1@ce.cnu.ac.kr), Jan. 2000

SIMULATOR PRELIMINARIES

Create a simulator object
set ns [new Simulator]

Open a name trace file
set nf [open test-mpls.nam w]
$ns namtrace-all $nf

Open a parameter trace file
set nfz [open z3.out w]
$ns trace-all $nfz

Define a 'finish' procedure
proc finish {} {
 global ns nf nfz
 $ns flush-trace
 close $nf
 close $nfz
 exec nam test-mpls.nam &
 exit 0
}

DEFINE the NETWORK
as 2 source nodes connecting 2 destination
nodes thru a network of MPLS LSRs

Create network nodes
set n0 [$ns node]
set n1 [$ns node]
set LSR2 [$ns MPLSnode]
set LSR3 [$ns MPLSnode]
set LSR4 [$ns MPLSnode]
set LSR5 [$ns MPLSnode]
set LSR6 [$ns MPLSnode]
set LSR7 [$ns MPLSnode]
set LSR8 [$ns MPLSnode]
set n9 [$ns node]
set n10 [$ns node]

Create network links
$ns duplex-link $n0 $LSR2 1Mb 10ms DropTail
$ns duplex-link $n1 $LSR2 1Mb 10ms DropTail
$ns duplex-link $LSR2 $LSR3 0.5Mb 10ms DropTail
$ns duplex-link $LSR3 $LSR4 0.5Mb 10ms DropTail
$ns duplex-link $LSR4 $LSR5 0.5Mb 10ms DropTail
$ns duplex-link $LSR5 $LSR8 0.5Mb 10ms DropTail
$ns duplex-link $LSR2 $LSR6 1Mb 10ms SFQ
$ns duplex-link $LSR6 $LSR7 0.5Mb 10ms SFQ
$ns duplex-link $LSR7 $LSR8 1Mb 10ms SFQ
$ns duplex-link $LSR8 $n9 1Mb 10ms DropTail
$ns duplex-link $LSR8 $n10 1Mb 10ms DropTail

Set queue monitors
$ns duplex-link-op $n0 $LSR2 queuePos 0.5
$ns duplex-link-op $n1 $LSR2 queuePos 0.5
$ns duplex-link-op $LSR2 $LSR3 queuePos 0.5
$ns duplex-link-op $LSR3 $LSR4 queuePos 0.5
$ns duplex-link-op $LSR4 $LSR5 queuePos 0.5

$ns duplex-link-op $LSR2 $LSR6 queuePos 0.5
$ns duplex-link-op $LSR6 $LSR7 queuePos 0.5
$ns duplex-link-op $LSR5 $LSR8 queuePos 0.5
$ns duplex-link-op $LSR7 $LSR8 queuePos 0.5
$ns duplex-link-op $LSR8 $n9 queuePos 0.5
$ns duplex-link-op $LSR8 $n10 queuePos 0.5

Configure LDP agents on all MPLS nodes
$ns configure-ldp-on-all-mpls-nodes

Set LDP message color for animation
$ns ldp-request-color blue
$ns ldp-mapping-color red
$ns ldp-withdraw-color magenta
$ns ldp-release-color orange
$ns ldp-notification-color yellow

Set colors for traffic animation
$ns color 1 Hotpink
$ns color 2 Navyblue

Set LDP events
$ns enable-control-driven

Other LDP event options
#$ns enable-data-driven
#$ns enable-on-demand
#$ns enable-ordered-control

Set up default routing protocol
$ns rtproto DV

DEFINE the TRAFFIC
by setting up a UDP "connection" for CBR traffic
and a TCP connection for trace traffic

Create UDP "connection" between n0 & n9
set udp0 [new Agent/UDP]
set null [new Agent/Null]
$ns attach-agent $n0 $udp0
$ns attach-agent $n9 $null
$ns connect $udp0 $null
$udp0 set class_ 1

Put CBR traffic on UDP connection
set Src0 [new Application/Traffic/CBR]
$Src0 set packetSize_ 48
$Src0 set interval_ 0.003
$Src0 attach-agent $udp0

Create TCP connection between n1 & n10
and set packet (segment) size to 1000 (ns default)
set tcp [new Agent/TCP]
$tcp set packetSize_ 1000
set tcpsink [new Agent/TCPSink]
$ns attach-agent $n1 $tcp
$ns attach-agent $n10 $tcpsink
$ns connect $tcp $tcpsink
$tcp set class_ 2

Put trace driven traffic over the TCP connection
set tfile [new Tracefile]
$tfile filename pOct89_2000_TL.bin
set Src1 [new Application/Traffic/Trace]
$Src1 attach-tracefile $tfile

ENSC-833 – Culley, Fuchs, Sharp Page 9

$Src1 attach-agent $tcp

SCHEDULE the SIMULATION
$ns at 0.05 "$Src0 start"
$ns at 0.1 "$Src1 start"
$ns at 1.6 "$LSR8 ldp-trigger-by-withdraw 9 -1"
$ns at 1.8 "$LSR2 make-explicit-route 8 2_3_4_5_8
3000 -1"
$ns at 2.0 "$LSR2 flow-erlsp-install 9 -1 3000"
#The following line turns off our explicit routing
$ns at 2.8 "$LSR2 ldp-trigger-by-release 9 3000"
$ns at 3.0 "$Src1 stop"
$ns at 3.0 "$Src0 stop"

EXCECUTE the SIMULATION

Call finish procedure after 3.2 secs of simulation time
$ns at 3.2 "finish"

Run the simulation
$ns run

Appendix-B
Program to Convert Traffic Trace

#include <stdio.h>

typedef struct _trec {
 unsigned int trec_time;
 unsigned int trec_len;
} trec;

main (int argc, char** argv)
{ trec t;
 double last_time;
 double this_time;
 void exit();
 char *pt;
 char i;
 FILE *infile;
 FILE *outfile;

 if (argc == 3)
 { infile = fopen (argv[1], "r");
 if (infile == NULL)
 { fprintf (stderr, "Unable to open %s for reading\n",
argv[1]);
 exit (0);
 } else
 { fprintf (stderr, "Opening %s for reading\n", argv[1]);
 }
 outfile = fopen (argv[2], "w");
 if (outfile == NULL)
 { fprintf (stderr, "Unable to open %s for writing\n",
argv[2]);
 exit (0);
 } else
 { fprintf (stderr, "Opening %s for writing\n", argv[2]);
 }
 } else
 { fprintf (stderr, "Wrong number of args: %d\n", argc);
 fprintf (stderr, " USAGE: %s infile outfile\n", argv[0]);

Appendix-C
Program to Filter Simulator Trace File
#!/usr/local/bin/perl

@n = split (/\//, $0);
$0 = $n[$#n];
$debugfile = "$0.debug";

die "usage: $0 data-filename \n" unless (-e $ARGV[0]);
$outfil=$ARGV[0];

open(DATA,"$outfil");
open (DEBUG, ">$debugfile") || die "$0: Can't open
$debugfile for writing\n";

while ($line=<DATA>) {

($que,$tim,$src,$dst,$typ,$siz,$flg,$ipflw,$ipsrc,$ipdst,$
seq,$id)=
 split(/\s+/,$line);

 print DEBUG;
 next if ($typ ne 'cbr');

 if ($src == 0 && $que eq '+') {
 $p{$id}{s}=$tim;
 print DEBUG "id:$id s:$tim\n";
 next
 } elsif ($que eq 'r' && $dst == 9 && exists($p{$id})) {
 $p{$id}{r}=$tim;

ENSC-833 – Culley, Fuchs, Sharp Page 10

 print DEBUG "id:$id r:$tim\n";
 }
}
close(DATA);

@srt=sort {$p{$a}{s} <=> $p{$b}{s}} (keys(%p));

$drop = 0;
foreach $key (@srt) {
 $transit=$p{$key}{r}-$p{$key}{s};
 $timein=$p{$key}{s};
 if ($p{$key}{r} eq "")
 { $drop += 1;
 print "id = $key send_time=$timein DROP=$drop\n";
 }
 else
 { print "id = $key send_time=$timein transit=$transit
(s=$p{$key}{s} r=$p{$key
}{r})\n";
 }
};

