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Abstract  
Multi Protocol Label Switching (MPLS) was 
initially proposed to overcome the bottleneck of 
IP routing over ATM while retaining the 
efficiency of ATM's label swapping and 
forwarding abilities.  Now with the advent of 
gigabit routers the issue of connection oriented 
forwarding and IP routing integration is more 
focused on the additional advantages that 
MPLS provides: to manage traffic not 
necessarily based on shortest path measures, 
to provide QoS routing, the ability to set up 
Virtual Private Networks (VPN) and to 
implement congestion management control 
strategies.  One control standard that allows 
MPLS to provide QoS based routing is the 
Constraint based Routing Label Distribution 
Protocol (CR-LDP).  This paper reports on a 
graduate course project that uses simulation to 
demonstrate MPLS with CR-LDP to improve 
real-time traffic service quality while reducing 
congestion and improving network utilization. 
 
1.  INTRODUCTION 
 
Internet Protocol (IP) networks have proven to 
be highly scalable and efficient platforms for 
delivering e-mail, Web and other classic Internet 
traffic where the delay of "best-effort" delivery 
are tolerable.  It is widely believed that in order 
for the Internet to evolve into our future 
"universal information infrastructure" the 
Internet must be able to deliver real-time multi-
media traffic – such as voice and video.  
Unfortunately by its nature, real-time traffic is 
sensitive to delay – for example; delay over 100 
to 200 ms on a telephone connection impedes 
normal conversation. 
 
In the current literature, achieving low delay with 
some probability of success (e.g., 98% of 
packets delivered within 100 ms) is referred to 
as "traffic engineering".  Essentially this means 
availability of network resources to carry the 
traffic within the specified constraints.  Which 
means, in turn, that network resources must be 
provisioned ahead of the offered real-time traffic 
and/or some connection admission policy must 
reject new connections that will, if otherwise 
accepted, overload and congest the network. 

 
Multi Protocol Labeled Switching (MPLS) is a 
packet forwarding mechanism that is currently 
receiving considerable attention.  One virtue of 
MPLS is its ability to support traffic engineering.  
The objective of our project is to demonstrate 
through simulation how MPLS can improve the 
quality of service (QoS) for real-time traffic on 
an IP network that is carrying a mix of real-time 
and best-effort traffic.  Secondary objectives 
include: (i) to incorporate the MPLS and Label 
Distribution Protocol (LDP) software written for 
"network simulator" version 2.5b into version 
2.6b; (ii) to extend the authors' understanding of 
the capabilities, limitations and implementation 
issues of MPLS; and (iii) for the authors to gain 
a working knowledge of an important network 
simulation tool. 
 
This paper is organized to follow our project 
approach and methodology.  Specifically, in 
Section 2, we present a concise description of 
MPLS and CR-LDP supported by key 
references.  Section 3 describes our simulation 
in terms of the network, traffic, performance 
measurement arrangements, and results.  The 
paper concludes in Section 4 with a brief 
discussion of results, observations, and 
possible future extensions to this work. 
 
2.  OVERVIEW of MPLS & CR-LDP 
 
MPLS grew out of the efforts to make the 
Internet more scalable by reducing the 
complexity (cost) and increasing the speed of 
forwarding packets through a core (backbone) 
Internet router.  The basic concept of MPLS is 
to forward packets using a short label instead of 
using the IP destination address to look-up the 
next hop in a routing table.  Because the routing 
table is set up by a prearranged routing protocol 
(e.g. OSPF), the current "paradigm" combines 
packet forwarding with network routing.  MPLS 
is a packet forwarding mechanism.  The routing 
decisions may be made, and distributed in a 
variety of ways.  One way, and the way 
explored in our project, is using Constraint-
based Routing over the Label Distribution 
Protocol (CR-LDP). 
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Figure-1    Basic elements and terminology for 
Multi Protocol Label Switching (MPLS) 

 
As shown in Figure-1, MPLS works along what 
is called a label switched path (LSP) that is set 
up through a set of label switched routers 
(LSRs) – i.e., routers supporting MPLS.  After 
the LSP is set up, packets follow this path and 
this traffic becomes "flow" or connection 
oriented.  Path set up requires a suitable 
signaling protocol such as the Reservation 
Protocol (RSVP) or Label Distribution Protocol 
(LDP).  An LSP originates at the edge of an 
MPLS domain where the first LSR maps the 
incoming traffic into forward equivalent classes 
(FECs).  FECs are flexibly defined by a set of 
attributes such as a destination IP address, and 
for constraint-based routing (CR), class of 
service (CoS) or quality of service (QoS) 
parameters.  Packets with the same FEC 
classification are given the same label and sent 
to the next LSR based on that label.  Each LSR 
forwards the packet based only on the label and 
without using any other packet header 
information.  At the last LSR in the MPLS 
domain, the label is removed and the packet is 
forwarded as a normal IP packet. 
 
In the absence of routing constraints, the LSP is 
set up hop by hop using the routers IP 
forwarding table and thus the LSP is the path an 
IP packet would have followed using whatever 
default IP routing protocol is used.  The LSP is 
"explicitly routed" if it is set up based on 
constraints specified by the network operator or 
computed using some network management 

algorithm that is independent of the default IP 
routing protocol.  When LDP is used, this 
becomes constraint-based routing over LDP or 
CR-LDP.  LDP provides LSRs with the following 
functions: (i) peer discovery (used to identify 
other LSRs in the MPLS domain), (ii) session 
(used to establish, maintain and delete sessions 
between LSR peers), (iii) advertisement (used 
to create, change and delete label mappings for 
FECs), and (iv) notification (used to provide 
status, diagnostic and error information).  
Advertisement messages include "requests" to 
set up an LSP which propagate forward, and 
label "mappings" which propagate back through 
the network. 
 
For CR-LDP, an LSP is set up when a series of 
label request messages propagate forward from 
the ingress to the egress LSR and then, if the 
requested path satisfies the constraints (e.g., 
sufficient resources available), then labels are 
allocated and distributed (mapped) by a set of 
label-mapping messages that propagate 
backward from the egress LSR to the ingress 
LSR. 
 
As of February 2001, when our project was 
developing, MPLS and LDP had become 
Internet standards [4,5] and CR-LDP was the 
subject of several Internet Drafts [1,2].  For 
additional information on MPLS and CR-LDP, 
including simulation and the application of 
MPLS for traffic engineering, refer to [3,6,7,8,9]. 
 
3.  SIMULATION 
 
Although MPLS has several desirable 
capabilities, we have chosen to demonstrate its 
ability to provide "traffic engineering" – i.e., to 
deliver adequate QoS for real-time traffic in a 
network that is carrying both best-effort and 
real-time traffic.  To demonstrate this capability, 
we set up and ran the simulation described 
below using the network simulator tool "ns-2" 
including the animator "nam" [10].  See 
Appendix-A for a copy of the "Tcl" script.  The 
simulation parameters were finalized for our 
demonstration runs after calculations and 
experimentation to ensure reasonable and 
illustrative results (see Section 4, Discussion). 
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3.1  Network Arrangements 
 
The basic network topology, shown in Figure-2, 
was chosen with two paths such that default 
routing would be along the shortest path (i.e., 
through nodes 6 and 7).  All nodes can be 
considered IP routers with nodes 2 through 8 
also being MPLS capable – i.e., LSRs. 
 

 
Figure-2    Network arrangements for our 
simulation of MPLS with CR-LDP. 

 
All links were set up as duplex with 10 ms delay 
and using statistical fair queuing.  The link data 
rates are shown on Figure-2.  Note that (i) link 
6-7 is a bottleneck on the shortest path between 
nodes 2 and 8; and (ii) the total network 
capacity between nodes 2 and 8 is 1 Mbps. 
 
Queue monitors were set at each node to 
enable queuing delay to be observed during the 
network animations and to enable data to be 
dumped to file for performance analysis. 
 
3.2 Traffic 
 
The network was loaded with a mix of simulated 
"real-time" and "best effort" traffic.  The best 
effort traffic provides background traffic, with the 
real-time traffic being of interest in terms of 
quality of service. 
 
The real-time traffic connection was set up 
between node 0 and node 9 using User 
Datagram Protocol (UDP).  We assumed 
constant bit rate (CBR) voice traffic with 48 byte 
packets and 3 ms inter arrival time.  This 

represents, for example, 2 voice channels 
running at 64 kbps (G.711 PCM) with 6 ms 
packet delay.  The 48 byte packets are 
indicative of an underlying Asynchronous 
Transfer Mode (ATM) cell relay bearer. 
 
The best effort traffic connection was set up 
between node 1 and 10 using Transmission 
Control Protocol (TCP).  We used the default 
ns-2 version of TCP (Tahoe) and packet size 
(1000 bytes).  For authenticity, we used a 
genuine traffic trace exhibiting long range 
dependency (self-similar distribution). 
 
Specifically, we used the pOct98_2000.TL trace 
from the course Web site [13].  This trace was 
collected starting at 11:00 on October 5, 1989 
from local Ethernet traffic at Bellcore Morristown 
Research and Engineering facility [14]. The 
traffic trace contains packet arrival time and 
packet size in an ASCII format.  Since ns-2 
requires traffic traces to be in binary format, we 
wrote a trace conversion program in C, which is 
included in Appendix-B1. 
 
3.3 Performance Measurements 
 
The animation tool "nam" was used to view the 
simulation.  Nam proved to be an excellent 
means of visualizing network behavior for 
supporting simulation configuration decisions 
and for troubleshooting. 
 
Measured performance included packet delay 
(for real-time traffic), packet loss and network 
utilization.  We obtained the data for these 
parameters by saving the simulator trace from 
each simulation run in an output file.  The output 
file was then post processed by, first filtering for 
the relevant data using a custom script written 
in Perl (see Appendix-C); then the filtered data 
was ported to a spreadsheet and manipulated 
into the tables and graphs for this report. 
 
We captured and analyzed data from three 
basic simulation scenarios.  These scenarios 

                                                   
1 Note that together with an inverse program, that we 
also wrote, there is a slight accumulated error in 
arrival times between the original trace file and the 
one we translated into and back out of binary.  This 
error is small and deemed inconsequential for the 
purposes of this simulation. 
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and the results are presented in the following 
sub sections. 
3.4  Demonstration Scenario 
 
To illustrate the impact of using CR-LDP to 
invoke explicit routing for a specific class of 
traffic (i.e., providing traffic engineering), the 
network in Figure-2 was operated (i) without any 
explicit routing for a short initial period during 
which all traffic takes the default (shortest path) 
route through nodes 6 and 7; then (ii) after this 
period, CR-LDP was used to invoke an explicit 
route for the real-time traffic through nodes 3, 4 
and 5.  The time line for this demonstration is 
shown in Figure-3 and the actual "Tcl" script 
has been appended as Appendix-A. 
 
Figure-4 illustrates the results of a typical run, 
showing severe delay, delay variation and 
packet loss being experienced by the real-time 
traffic prior to the invocation of an "engineered" 
LSP for the real-time traffic. 

 
Figure-3    Demonstration Script Time Line 

 
 
3.5  Default (Non Engineered) Scenario 
 
To collect sufficient simulation data to illustrate 
the consequences of the uncontrolled mixing of 
real-time and best effort traffic on a busy 
network, The network was simulated for 60 
seconds using MPLS, however the routing for 
all traffic was determined by the default routing 
protocol and thus followed the shortest path 
through nodes 6 and 7.  The results were 
aggregated and presented in Figure-5 (showing 
real-time packet delay distribution) and Figure-6 
(showing packet loss rates and network  

Figure-4    Scatter plot graph of delay to simulated 
real-time traffic versus time.  At time t = 2, traffic 
engineering is implemented by routing the real-
time and best effort traffic onto separate LSPs. 

 
utilization).  Note that 69% of the real-time traffic 
packets were dropped under these congestion 
situations. 

 
Figure-5    Real-time packet delay distribution for 
loaded network operation without traffic 
engineering.  Note – 69% of packets dropped. 

 
3.6  Traffic Engineered Scenario 
 
After CR-LDP sets up an explicit route that has 
been engineered for the real-time traffic, the 
quality of service problem disappears and the 
performance measurements become stable and 
uninteresting (as may be seen from the right 
hand side of the graph in Figure-4).  Simulation 
data with traffic engineering was used as a 
reference baseline for comparison.  A 60 
second simulation was run with all real-time 
traffic explicitly routed through nodes 3, 4 and 5. 
 
The results are presented in Figure-6 (packet 
loss rates and network utilization comparisons).  
The delay for real-time traffic stabilized at 63.84 
ms (as is seen from Figure-4 and is consistent 
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with expectations based on the calculated 
delay).  

WITHOUT WITH
Traffic Traffic

Parameter (units) Engineering Engineering
Offered Traffic (Erl) 0.555 0.624
Packet Loss TCP 1.0% 0.5%
Rate (%) CBR 69.4% 0.0%
Network Utilization (Erl) 0.462 0.622  
 
Figure-6    Comparison table of packet loss rate 
and network utilization (based on averages across 
the total simulation periods). 

 
 
4.  DISCUSSION 
 
The network topology and other simulation 
parameters were chosen to demonstrate a 
seriously degraded quality of service condition.  
The configuration was arrived at after some 
calculation and experimentation with network 
scale (number of nodes, link capacity and 
delay) and traffic arrangements (sources and 
packet sizes, and CBR packet arrival rates).  In 
particular, and as expected, smaller TCP 
packets improve the performance of the CBR 
traffic (in terms of both delay and loss) but at 
the expense of slower TCP start up.  Although 
the chosen parameters can be argued to be 
artificially extreme, the mechanisms affecting 
performance, the general delay and loss effects 
do illustrate why, for example, voice over IP on 
the Internet suffers from unpredictable and often 
unusable quality. 
 
The affect of best effort traffic over TCP on real-
time traffic is amply demonstrated by our 
example network.  Figure-4 is particularly 
illustrative.  The series of delay escalations (and 
gaps where packets are dropped) is graphic 
evidence of the TCP window opening to sense 
the allowable capacity, then closing in response 
to congestion. 
 
Using "nam" to observe network behavior 
during the non-engineered scenario runs, we 
witness (i) the default routing of all traffic on the 
shortest path, (ii) the build up of queue depth at 
node 6 where the capacity bottleneck starts, 
and (iii) the stranding and overflow of CBR 
(real-time) traffic in proportion to the number of 

packets2.  When traffic engineering is invoked 
by the set up of an explicit route for the CBR 
traffic, we noted that there was a period during 
which CBR packets were arriving out of order 
as the buffers on the shortest path route cleared 
their queues.  The comparison table in Figure-6 
summarizes the performance gains achieved 
through traffic engineering for our specific 
network and traffic situation. 
 
The outcome of our project was highly 
predictable – separating the real-time traffic 
onto routes that can be engineered for 
adequate resources to deliver a good quality of 
service, improves overall network performance 
in terms of packet loss rates and delay.  In this 
sense, our project does not extend the state of 
the art.  It was, however, instructive for the 
authors and we submit the following course 
contributions: 
 
(a)  Incorporating the MPLS and CR-LDP 
modules from [11] into ns-2.6b and building an 
ns-2.6b executable version. 
(b)  Writing a flexible Tcl script for 
demonstrating the operation and application of 
MPLS and CR-LDP for traffic engineering 
(Appendix-A). 
(c)  Developing a routine in C to convert the 
Bellcore Ethernet traffic traces [13,14] into a 
form compatible with ns-2 (Appendix-B). 
(d)  Writing a flexible script in Perl to filter the 
relevant data from the full simulation trace 
(Appendix-C). 
 
The ns-2 executable is available in 
/ensc/grad1/cwfuchs/proj/ns-2.1b6/ns .  The 
other contributions are in the appendices to this 
report and will be made available for download 
from the course project Web site [13]. 
 
The use of CR-LDP to provide traffic 
engineering by invoking an explicit route for 
designated traffic classes was useful for 
demonstration.  This method involves 
intervention by an intelligent operator to 
engineer the network.  While this is not as 
elegant as a fully automated process that uses 
a suitable policy based routing algorithm, 
                                                   
2 In ns-2, statistical fair queuing appears to be packet 
based and, since the CBR constitutes a relatively 
large number of packets, it suffers proportionally 
higher packet loss in the buffer overflows. 
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"manual" route assignment can be extremely 
useful.  Specifically, voice traffic is generally 
well behaved statistically and engineering for it 
is a well developed and understood discipline.  
Thus, with MPLS and CR-LDP, it is easy to 
visualize the rapid evolution of efficient and 
effective network architectures to support real-
time multi-media traffic. 
 
Of course the end game should be to provide a 
fully automated and self organizing network 
capability.  A future extension to our project 
would be to implement policy based CR-LDP 
such that flows (LSPs) are set up 
autonomously.  Implementing this as a 
simulation in ns-2 was investigated and the 
following steps identified: 
 
§ Implementing the ability to negotiate 

resources at LSRs and to maintain these 
resource reservations (hold state). 

§ Implementing a suitable routing algorithm, 
for example, a type of distance vector 
algorithm where vector parameters include 
link capacity, traffic loading, delay, etc. 

 
Although we investigated the implementation of 
these enhancements, they require a significant 
amount of customization to several ns-2 
modules and were thus considered unattainable 
in the course time frame.  In addition to 
customizing the ns-2 code, it would also be 
necessary to implement a more complex 
network with more routing choices and more 
complex background traffic arrangements. 
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Appendix-A 
Simulation Tcl Script 
# ENSC-833 Project by Fuchs, Culley & Sharp 
# Spring Semester 2001 
# MPLS Simulation Script 
 
# Current File Name: z5.tcl 
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# Developed to run on ns-2.6b  
# Using MPLS & LDP code from 
# Gaeil Ahn (fog1@ce.cnu.ac.kr), Jan. 2000 
 
  
# SIMULATOR PRELIMINARIES 
 
# Create a simulator object 
set ns [new Simulator] 
 
# Open a name trace file 
set nf [open test-mpls.nam w] 
$ns namtrace-all $nf 
 
# Open a parameter trace file 
set nfz [open z3.out w] 
$ns trace-all $nfz 
 
# Define a 'finish' procedure 
proc finish {} { 
 global ns nf nfz 
 $ns flush-trace 
 close $nf 
 close $nfz 
 exec nam test-mpls.nam & 
 exit 0 
} 
 
# DEFINE the NETWORK 
# as 2 source nodes connecting 2 destination 
# nodes thru a network of MPLS LSRs 
 
# Create network nodes 
set n0 [$ns node] 
set n1 [$ns node] 
set LSR2   [$ns MPLSnode] 
set LSR3   [$ns MPLSnode] 
set LSR4   [$ns MPLSnode] 
set LSR5   [$ns MPLSnode] 
set LSR6   [$ns MPLSnode] 
set LSR7   [$ns MPLSnode] 
set LSR8   [$ns MPLSnode] 
set n9 [$ns node] 
set n10 [$ns node] 
 
# Create network links 
$ns duplex-link $n0 $LSR2  1Mb  10ms DropTail 
$ns duplex-link $n1 $LSR2  1Mb  10ms DropTail 
$ns duplex-link $LSR2  $LSR3  0.5Mb  10ms DropTail 
$ns duplex-link $LSR3  $LSR4  0.5Mb  10ms DropTail 
$ns duplex-link $LSR4  $LSR5  0.5Mb  10ms DropTail 
$ns duplex-link $LSR5  $LSR8  0.5Mb  10ms DropTail 
$ns duplex-link $LSR2  $LSR6  1Mb  10ms SFQ 
$ns duplex-link $LSR6  $LSR7  0.5Mb  10ms SFQ 
$ns duplex-link $LSR7  $LSR8  1Mb  10ms SFQ 
$ns duplex-link $LSR8  $n9  1Mb  10ms DropTail 
$ns duplex-link $LSR8  $n10  1Mb 10ms DropTail 
 
# Set queue monitors 
$ns duplex-link-op $n0 $LSR2 queuePos 0.5 
$ns duplex-link-op $n1 $LSR2 queuePos 0.5 
$ns duplex-link-op $LSR2 $LSR3 queuePos 0.5 
$ns duplex-link-op $LSR3 $LSR4 queuePos 0.5 
$ns duplex-link-op $LSR4 $LSR5 queuePos 0.5 

$ns duplex-link-op $LSR2 $LSR6 queuePos 0.5 
$ns duplex-link-op $LSR6 $LSR7 queuePos 0.5 
$ns duplex-link-op $LSR5 $LSR8 queuePos 0.5 
$ns duplex-link-op $LSR7 $LSR8 queuePos 0.5 
$ns duplex-link-op $LSR8 $n9 queuePos 0.5 
$ns duplex-link-op $LSR8 $n10 queuePos 0.5 
 
# Configure LDP agents on all MPLS nodes 
$ns configure-ldp-on-all-mpls-nodes 
 
# Set LDP message color for animation 
$ns ldp-request-color     blue 
$ns ldp-mapping-color     red 
$ns ldp-withdraw-color     magenta 
$ns ldp-release-color     orange 
$ns ldp-notification-color  yellow 
 
# Set colors for traffic animation 
$ns color 1 Hotpink  
$ns color 2 Navyblue  
 
# Set LDP events  
$ns enable-control-driven 
 
# Other LDP event options 
#$ns enable-data-driven 
#$ns enable-on-demand 
#$ns enable-ordered-control 
 
# Set up default routing protocol 
$ns rtproto DV 
 
# DEFINE the TRAFFIC 
# by setting up a UDP "connection" for CBR traffic 
# and a TCP connection for trace traffic 
 
# Create UDP "connection" between n0 & n9 
set udp0 [new Agent/UDP] 
set null [new Agent/Null] 
$ns attach-agent $n0 $udp0 
$ns attach-agent $n9 $null 
$ns connect $udp0 $null 
$udp0 set class_ 1 
 
# Put CBR traffic on UDP connection 
set Src0 [new Application/Traffic/CBR] 
$Src0 set packetSize_ 48 
$Src0 set interval_ 0.003 
$Src0 attach-agent $udp0 
 
# Create TCP connection between n1 & n10 
# and set packet (segment) size to 1000 (ns default) 
set tcp [new Agent/TCP] 
$tcp set packetSize_ 1000 
set tcpsink [new Agent/TCPSink] 
$ns attach-agent $n1 $tcp 
$ns attach-agent $n10 $tcpsink 
$ns connect $tcp $tcpsink 
$tcp set class_ 2 
 
# Put trace driven traffic over the TCP connection 
set tfile [new Tracefile] 
$tfile filename pOct89_2000_TL.bin 
set Src1 [new Application/Traffic/Trace] 
$Src1 attach-tracefile $tfile 
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$Src1 attach-agent $tcp 
 
# SCHEDULE the SIMULATION 
$ns at 0.05  "$Src0 start" 
$ns at 0.1  "$Src1 start" 
$ns at 1.6  "$LSR8 ldp-trigger-by-withdraw 9 -1" 
$ns at 1.8  "$LSR2 make-explicit-route 8  2_3_4_5_8  
3000  -1" 
$ns at 2.0  "$LSR2 flow-erlsp-install  9 -1   3000" 
#The following line turns off our explicit routing 
$ns at 2.8  "$LSR2 ldp-trigger-by-release  9 3000" 
$ns at 3.0 "$Src1 stop" 
$ns at 3.0 "$Src0 stop" 
 
# EXCECUTE the SIMULATION  
 
# Call finish procedure after 3.2 secs of simulation time 
$ns at 3.2 "finish" 
 
# Run the simulation 
$ns run 

 
 
 
Appendix-B 
Program to Convert Traffic Trace 
 
#include <stdio.h> 
 
typedef struct _trec { 
  unsigned int trec_time; 
  unsigned int trec_len; 
} trec; 
 
main (int argc, char** argv) 
{ trec t; 
  double last_time; 
  double this_time; 
  void exit(); 
  char *pt; 
  char i; 
  FILE *infile; 
  FILE *outfile; 
 
  if (argc == 3)  
  { infile = fopen (argv[1], "r"); 
    if (infile == NULL) 
    { fprintf (stderr, "Unable to open %s for reading\n", 
argv[1]); 
      exit (0); 
    } else  
    { fprintf (stderr, "Opening %s for reading\n", argv[1]); 
    }  
    outfile = fopen (argv[2], "w"); 
    if (outfile == NULL) 
    { fprintf (stderr, "Unable to open %s for writing\n", 
argv[2]); 
      exit (0); 
    } else  
    { fprintf (stderr, "Opening %s for writing\n", argv[2]); 
    } 
  } else  
  { fprintf (stderr, "Wrong number of args: %d\n", argc); 
    fprintf (stderr, "  USAGE: %s infile outfile\n", argv[0]); 

 
Appendix-C 
Program to Filter Simulator Trace File 
#!/usr/local/bin/perl 
# 
# 
@n = split (/\//, $0); 
$0 = $n[$#n]; 
$debugfile = "$0.debug"; 
 
die "usage: $0 data-filename \n" unless (-e $ARGV[0]); 
$outfil=$ARGV[0]; 
 
open(DATA,"$outfil"); 
open (DEBUG, ">$debugfile") || die "$0: Can't open 
$debugfile for writing\n"; 
 
while ($line=<DATA>) { 
  
($que,$tim,$src,$dst,$typ,$siz,$flg,$ipflw,$ipsrc,$ipdst,$
seq,$id)= 
  split(/\s+/,$line); 
 
  print DEBUG; 
  next if ($typ ne 'cbr'); 
 
  if ($src == 0 && $que eq '+' ) { 
   $p{$id}{s}=$tim; 
   print DEBUG "id:$id s:$tim\n"; 
   next 
  } elsif ($que eq 'r' && $dst == 9 && exists($p{$id}) ) { 
        $p{$id}{r}=$tim; 
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        print DEBUG "id:$id r:$tim\n"; 
  } 
} 
close(DATA); 
 
@srt=sort {$p{$a}{s} <=> $p{$b}{s}} (keys(%p)); 
 
$drop = 0; 
foreach $key (@srt) { 
  $transit=$p{$key}{r}-$p{$key}{s}; 
  $timein=$p{$key}{s}; 
  if ($p{$key}{r} eq "") 
  { $drop += 1; 
    print "id = $key send_time=$timein DROP=$drop\n"; 
  }  
  else  
  { print "id = $key send_time=$timein transit=$transit 
(s=$p{$key}{s} r=$p{$key 
}{r})\n"; 
  }  
}; 
 

 


