ENSC 833-3: NETWORK PROTOCOLSAND PERFORMANCE
CMPT 885-3: SPECIAL TOPICS: HIGH-PERFORMANCE
NETWORKS

End System Multicast: Implementation and Simulation
Spring 2001

FINAL PROJECT

Wen Jin
wjin@cs.sfu.ca

1. Abstract

The conventional wisdom has been that IP is the natural protocol layer for
implementing multicast related functionality. However, ten years after itsinitial proposal,
IP Multicast is plagued with concerns pertaining to scalability, network management,
deployment and support for higher layer functionality such as error, flow and congestion
control. IP multicast serviceis till not applied widely because it requires al the routersin
the path supporting multicast function. In this project, | try an alternative architecture,
where end systems implement all multicast related functionalities including membership
management and packet replication. Such a scheme is called End System Multicast. This
shifting of multicast support from routers to end systems has the potential to address most
problems associated with [P Multicast. | will design a multicast membership management
protocol, develop an end system multicast prototype, and use ns2 to simulate and analyze
the system performance and scal ability etc.

2. Introduction

BCIT Victoria

SFU (ROOT!

D Routers with multicast support

Figure 1 Traditional Structure of Multicast Systems

BCIT Victorial

Victoria 2
SFU (ROOT)

UBC1

=t

I:l Routers WITHOUT multicast support UBC2

Figure 2 Structure of End System Multicast

Figure 1 shows the structure of atraditional multicast system. Here the data source as
root is SFU, and several other machines in other places join this multicast group such as
UBC, Telus, Victoriaand BCIT together with root. Each of these machines sends requests

to a group address and the routers will process these multicast requests. Later all these
joined machines construct a multicast tree. The lines with arrow depict the physical path
between source and destinations. Ellipse nodes depict client machines where the data are
consumed and the square nodes depict multicast IP routers. Data has to be replicated in
the internal nodes which have multiple recipients. Many agorithms can be applied to
decide the structure of the multicast tree, such as flooding, spanning trees and reverse
path forwarding. However, most of the internal nodes are commercial routers that don't
support multicast function in the current Internet. That is the main reason why the
multicast service can't be deployed widely although ten years has passed from the
concept's emergence. Since multicast service is so important to today’'s multimedia
service, we need to think of some other ways to explore the good nature of multicast in
which we will use end systems to implement all multicast functions.

In contrast to traditional multicast systems, end system multicast is built on top of the
unicast services provided by network or transport layer. See figure 2, the edges are links
in the network layer or connections in the transport layer and the root is the data source.
The internal square nodes are routers without multicast support, and they are used only to
do unicast transfer. The ellipse leaf nodes are end systems. Data is replicated in the
application level of end systems which act as sub-server(the end system who is the father
of other clients for passing data) such as Telus in Fig 2. In this project, | designed a
multicast membership management protocol, developed an end system multicast
prototype, and used ns2 to simulate and analyze the system performance and scalability
etc. The system prototypeisillustrated with video streaming as the data source.

End System Design

3.1. Architecture

As shown in figure 3, there is one root central member management server (MM-server)
and one data server which is the data source of video stream. Clientsacted assub-servers
are also video servers of their children. Each client has two connections: one for control
connection (TCP) and the other for video transfer connection (UDP). All of the control
information will be transmitted to the root MM-server. And the MM-server maintains all
the information about its multicast tree, controls each client’s corresponding actions.

Figure 3. System architecture: Thinner black lines are member management messages, thicker
bluelines are video streams, thicker red lineindicatesthe direction from MM-server to dataserver.

3.2. Joining and leaving oper ations
The main function of a multicast control system isthat it must process the clients’

randomly joining and leaving requests. We use one finite state machine to illustrate these
operations as in figure 4.

P /
” L7A
” ,’/ Gét—Lev*

7 casord | sbiveq- =\ Conf-Lev/-
/7 Snd-ghogse /
/ // Utl-
/
. Initia-join
/ /// Waiting ack gu
/ 4 Snd-L\req/
Get-Lev/- il-ack/~ T
Ack-RmSfm 1’ , \ck-(!hos Fail-ack/ Chpose-fath
/ conf-| evI '\ /Add-&ream \
N <
| | S~ Toin prog Wait for confrim
\ \ L
/
Temp left |\ req/~
Stmadeled S-Agk-Join/-
Switc

tN N /SAck\in
All-Switch-done/ S

Rm-\%trm N
S d Suwten-
Get-leyfsu
omtteh-fah

Figure 4 End system membership management state transition
Solid line represents client side transition, dashed line server side, and the thin line indicates
some unusual actions.

In the end system multicast scheme, when a client want to join the group, it will send ajoin
request, the MM -server will judge what are the optional sub-servers which are already in the
group thisclient can join, it isjudged by looking at the network addressto try to find those in
the same network as that client. If none of them exist, server can choose some machines
arbitrarily and send to the client. Client will use its judging strategy to find one of these
optional parent nodes as the father and send acknowledge to server. The selection strategy can
be the shortest hops or the shortest round trip time. If the server successfully informsthe sub-
server this client selected to add a node as child, the join completes successfully. Otherwise,
the client hasto go to the initial state and do rejoin again. After the client joined the group, it
can receive the data from his parent continuously.

In the case of leaving, client will send leave request first, the server will check whether this
client has any children, if not, the server will inform father node of this client to remove the
node from his children list and then send the confirm leave to the client. If this client has
some children, the server has to send switch father command to each of those children and ask
them to transform its father node. The server can decide what the new father for each child is
mandatory, or it can ask that child to do arejoin process. After al the children have switched
to anew father node successfully, the server can inform that client to leave safely.

4 End System Implementation and Simulation

Prototype I mplementation

This is a standalone prototype system. To demonstrate the end system
multicasting function, video streaming is used as the data source to show that each
relay and leaf nodes in the tree structure receiving and play the same video image
a the same time. The implementation process just follows the state transition
chart asFig 4.

The prototype system consists of two parts which are Server and Client part respectively.

Both server and client parts include membership management and data distribution. The
central membership management server maintains all the clients’ current membership
state and process their joining and leaving request including the abrupt leave. It is also

responsible for the video transmission to its direct children nodes. While the client part is
on behalf of the user, it will send join or leave request and receive the video to do aloca

play. Also if it is a subserver, it will be responsible to accept command from the central

server and transfer the data to its children.

The prototype is developed using standard JDK and JMF which is a java media
packet for multimedia application. In both server and client sides, two threads are
used to deal with membership management and data distribution respectively.

In the strategy of optional sub-server selection, the central server uses ahash table
indexed by the IP address to find whether there are any nodes that are in the
network as that client. While the client side uses the round trip time to judge
which optional sub-server he will like to join. For the abrupt leave, the java
connection exception is caught and the server will do the remaining job for
switching those children of the node which left abruptly. The total code for the
prototype system is over 3000 lines.

System Simulation

| use NS-2 to do the system simulation. In order to transmit application-level datain ns, a
uniform structure is needed to pass data among applications, and to pass data from
applications to transport agents. It has three major components: a representation of a uniform
applicationlevel data unit (ADU), a common interface to pass data between applications, and
a mechanism to pass data between applications and transport agents. The functionality of an
ADU is similar to that of a Packet. It needs to pack user data into an array, which is then
included inthe user data area of an ns packet by an Agent. | use the agent wrapper TcpApp to
transfer user data from application, in our case, EmulApp. The ADU in end system multicast
is the data packet called EmulData. The following figure 5 shows the application simulation
structurein NS for the system.

Application(EmulApp)

Send_Data Process_data
(EmulData) (EmulData)
Agent Wrapper'
(TcpApp)
Send(bytes) T Recv(bytes)
Agent(TCP)
Packets

Figure 5 General Application Simulation Structurefor End System Multicast

In NS, each object to be smulated is a subclass of TclObject, the same as our end
system multicast application EmulApp. Under the general end system multicast
application class, | also defined two subclass as server and client. The base class of
Application, Process, allows applications to pass data or request data between each other.
EmulApp is implemented as the subclass of Application. The following two figures (6
and 7) show the class hierarchy and the data handling structure of the end system
multicast.

TclObject
? (End System Multicast Application Protocol)
EmulApp
Emul/Server Emul/Client

Figure 6 ClassHierarchy of End System Multicast

TclObject

*

Process

/Y

Application

EmulApp Application/TcpApp

Figure 7 Hierarchy of Classrelated to EmulApp data Handling

In NS-simulation, each of the protocol primitive such as send-join, send-leave,

choose-father, ack-join etc. isimplemented as a command in the c++ classes
Emul App, Emul Server and EmulClient, or implemented as a method in the TclClass
Emul, Emul/Server and Emul/Client. Figure 8 and figure 9 show the join and leaving
process simulation in NS-2 using these primitives.

The whole simulation code is written by C++ and TCL. Tota source codeis
above 2000 lines.

Tcl Object: Emul/Client Tcl Object: Emul/Server

$client send-Jreq $server P $server get-join $self $server

$client choose-father ‘/bserver ack-join $self $father
$father add-stream $child/

$client complete-join $father

Figure 8 Join Sequence Simulation in Ns-2

Tcl Object: Emul/Client Tcl Object: Emul/Server

$client send-Lreq $serve—» $server get-L eave $self $server

$client switch-father 4/> $server ack-leave $self

$father remove-stream $éRild

N\

$client complete-leave $father

Figure 10 Leaving Sequence Simulation in Ns-2

In the smulation, thereis one central server, and it will accept quite severa
clients' request simultaneously. We use the following scheme to allocate connections
to each client. Figure 11 shows the connection allocation procedure in the level of tcp.
And after the tcp agent is created, the actual communication agent TcpApp is built for
the application on the clients to use.

clientl

client2

Client-n
Figure 11 Server connection allocation

5 Experimental Evaluation
5.1 Standalone End System Multicast Demo
To demonstrate the end system multicasting function, we will use the video streaming as
the data source to show that each relay and leaf nodes in the tree structure receiving and
play the same video image at the same time. In the demo, we first run server side program
in one machine, it then starts to listen to the requests from clients side. At the same time,
it will play the source of video. Then we run the client side program at different machines,
when it starts, it will send join requests to server. After some time, the message shows it
has been joined the group, then the video is played locally. After al the clients started, we
can see al the clients display the video simultaneously .
After some time, type*“quit” on one of the client, it will quit normaly. If it is a sub-server,
it will take a short time, and the child node of this client can be seen switched to another
node as the father, because the video appears on the child node takes a short while to
transfer and then displayed normally. If type ctrl-c on one of the clients, the similar
phenomenon will happen. The demo shows that the end system can finish multicast
functionalities well without support of any commercial multicast routers.

5.2 Ns-2 Simulation Results

To further understand the performance features of end system multicast such as time
delay in join, leaving, switch-father, data replication etc., we use ns2 to smulate these
functionalities in end system, then analyze the simulation results with different flow rate,
and different size of packet etc.

As for different topology of simulation, we can write TCL scripts to generate different
size of groups for simulation, and also the bandwidth and delay for different links
between these nodes can be specified. In the experiment, severa different sizes of
topology are simulated. The following two figures (12 and 13) show two cases with
different nodes number in the network as 7 and 50.

[TIVMEY TIE. ThY - Hlil
Mie Vews fnalysts | st |
A | - [] [(13 | - || 5203545 | Step: T34
- |

=3
S @

"_
3 -

O]

EE

*\‘@
/G)/‘
@

NN

T;IIII II|IIIII III|IIII IIIIIIII IIIIIIII (NN III IIIE‘T_EIIIIII Labirr IIIIII 1 IIIIII 1 IIIIII L 11 II‘II-

Lutolamoul: Ca U5 Cx (W15 dteralows |IIJ W Herale m—launltl resetl

Figure 12 Topology of nodes (7)

L p=meaitnam . =1z >
Me Viewrs Analyaks Ul AT

44 | - | u - | . | + UL T TIT TR UL L
|_ r r —— -
rn
1
Bl
5

= =
= = T T TR T T AT R AT N T AT T AR TN T R T A TR T 1 A T T M T S T TR I T AT AN 1 R TR TN T AT T A
Aukn lagnait Ca |bLIE or |n.|s IFrrnlbnan I1I'I o Nenale IIEIH,rIII‘I mank

Figure 13 Topology of nodes (50)

In the simulation, we can see some node begin join, and after some time, it joined and the
color of the node changed from blue to green, aso there is some data flow send to it from its
parent. And when some node begin to leave, if it is a sub-server, we can see its children being
switched to some other node as the father, and then this node changes color from green to red
which meansit left the group.

In the NS simulation, | use the dynamic routing policy for the whole network, that means the
client node can compute the hops to any of other nodes, so that it can choose the node with
the shortest metric as its father when the server send several optional sub-servers for it to
choose.

In the switching father process of leaving, for the simplicity of implementation, | just let the
server ask the child to switch to the parent of the leaving node (the child’s original
grandfather).

For testing the data send time delay, | let the leaf or any sub-server node to send data to the
root. Each parent of a node receives the data, it will send to its parent again. When this
iteration completes, the data reached the server, and the server calculate the transfer time by
subtracting the current scheduling time with the data start time.

Table 1 and figure 14 give the time delay for different process such as join, leave, data
transfer etc. for different size of network. It is reasonable to see that when the number of the
relay (sub-server) nodes between the server and the clients grows, the data delay will increase
in some extent, but it is also acceptable.

Type Top(5) Top(10) Top(20) Top(30) Top(50)
Join 0.195 0.214 0.181 0.193 0.217
Leave 0.065 0.107 0.112 0.082 0.103
Switch-Father 0.087 0.094 0.120 0.065 0.096
Data Transfer 0.148 0.195 0.245 0.356 0.430

Tablel timedelay for different operationsin end system
Top(n): topology with n nodes. Time: seconds
Flow character: Packet size: 500bytes, burst time: 1 sec., idle time: 0.5sec. Traffic rate: 2Mb/sec

Time Delay Simulation Results

-

9 0.5

L, 0.4 —e— Join

> 0.3 —=— Leave

< N

E 0.2 o———*—¢——o Switch-Father
o 0-1 T o— v Data Transfer
I§ O 1 1 1 1

'_

Group Size (n)

Figure 14 Timedelay chart for the operationsin end system

To measure the actual flow in some links, we choose several links to observe the flow
variations during the testing period. | use an exponential distributed flow to test with the peak
rate of 2Mb/s, Packet size: 500bytes, burst time: 1 sec., idletime: 0.5sec. Thefollowing figure
shows the case of network size of 50 nodes with 3 link samples between nodes 4-5, 12-26, 4-
41. It showsin the network configuration of the test topology, all the sasmpled links can
satisfy the flow requirements without any packet loss. For example, the flow of the green one
reaches the peak datarate of 2Mb/s which meets the flow requirement.

L ngraph =B] %
lh-p m”ﬁ % Graph
g D olekae] Ar
S e e e R
1000 flcccoodo cooos cosos oooak coooo CoOoEs SooMs SEOOo So050 COS0S Do000 OGS 1 COD0Y COO0S £ 000 CooES o |Il ----- f-qﬁ---'-{i --------------- :---
!
| B3ZE 9 ! o |I
.. O O U NN PO SR N R S
| 4320 , Foyi i 7 ||
oy J-" L i I|l !
I ZEE RS 'l-f".'i"'"n""" k
& Mo .)
/ (TE TNV
| T | o I b | ||
: : ; it :
T i i II|II III'.i M ll: |II
:) Lo ! ;
; ¥ L AN '
el H P n i
: : : W 3 !
! il ! ! ! '-\ !
AT IRl m e e eeee eeee e e eeee eee P ?I ----------------------- R b
s ! T Ty
A i 1 TP
3 o0 2000c o £.2E00 20030 03600 15 B00n » o

Figure15 Flow rate of 3linksunder network size of 50

6 Discussion and Conclusion
In this project, | finish end system prototype with multicast functionalities. | simulate the
end system protocol in NS-2 in order to analyze its performance and scalability. The

experiments show this approach is feasible, especially for medium-size groups. The
simulation can be contributed to NS-2. The future work can be extended to distributed
control and dynamical topology strategy.

Acknowledge
Thanks Prof. Ljiljana Trajkovic and Milan for their very useful suggestionsin this

project.

Reference

[1] S. Deering. “Multicast routing in internetworks and extended lans.” In
proceedings of the ACM SIGCOMM 88, pages 55-64, Stanford, CA, Aug. 1988.

[2] E. Bommaiah, A. McAuley, R.Tapade, and M. Liu. “Y allcast: Extending the internet
multicast architecture” Technique report, Sept.1999, http://www.yallcast.com

[3] J. Liebeherr and B.S. Sethi. “A scalabe control topology for multicast
communications.” In proceedings of IEEE Infocom, April 1998

[4] Y .H.Chu, S.G.Rao, and H.Zhang, “A Case for End System Multicast.”, In proceedings
of ACM Sigmetrics, Santa Clara, CA, June 2000

[5] H. Schulzrinne, V. Kumar. “Frequently Asked Questions (FAQ) on the Multicast

[6] Backbone (MBONE).” http://www.cs.columbia.edu/~hgs/internet/mbone-fag.html.

Appendix
CodeList (NS-2 simulation codeis attached)

