

ENSC 833-3: NETWORK PROTOCOLS AND
PERFORMANCE

Session Initiation Protocol User Agent Prototype
Spring 2001

Final Project

by

Meng-Chauug Peter Lee(mclee@sfu.ca)
Kwok-Cheong Thomas Pang(ktpang@sfu.ca)

April 13, 2001

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 2/38 04/22/01

ABSTRACT

Internet telephony is evolving from its use as an "inexpensive" way to make long distance
calls to a serious business telephony capability. Supporting the widespread use of Internet
telephony requires a host of standardized protocols to ensure quality of services (QoS),
transport audio and video data, provide directory services, and enable signaling.
Signaling protocols are of particular interest because they enable such advanced services
as mobility, universal numbers, multiparty conferencing, voice mail, and automatic call
distribution. Two signaling protocols have been emerged to fill this need: ITU H.323 and
IETF Session Initiation Protocol (SIP). Analysts expect SIP to overpass H.323 in the next
two years because of its strength - simplicity, scalability, extensibility, and modularity.[3]

SIP is developed by Internet Engineering Task Force (IETF) and is modeled after the
simple mail transfer protocol (SMTP) and the hypertext transfer protocol (HTTP). SIP is
an application-layer control protocol for creating, modifying application-layer control
protocol for creating, modifying and terminating sessions with one or more participants.
These sessions include Internet multimedia conferences, Internet telephone calls and
multimedia distribution.

In this project, we will implement SIP messages that are required for a basic session
initiation, and SIP user agent. Due to its complexity and tight schedule of the course,
proxy/redirect server will not be implemented. All the SIP messages and user agent will
be written in C. In order to demonstrate the functionality and capability of each SIP
component, the following call scenario will be demonstrated: simple call establishment
and release, busy call, call not answer, and call holding.

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 3/38 04/22/01

ACKNOWLEDGEMENT

We would like to thank Professor Ljiljana Trajkovic for her approval, support, and
feedback of this project. Further thank goes to Department of Engineer Science, Simon
Fraser University for providing computing facilities for this project. We would also like
to express our appreciation to the knowledge acquired from ENSC 833.

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 4/38 04/22/01

GLOSSARY

AAL2 ATM Adaptation Layer 2
API Application Programming Interface
ATM Asynchronous Transfer Mode
HTTP Hypertext Transfer Protocol
IETF Internet Engineering Task Force
IP Internet Protocol
ISDN Integrated Service Digital Network
ISUP SS7 ISDN User Part
PSTN Public Switched Telephone Network
QoS Quality of Service
RTP Real-Time Protocol
SCTP Stream Control Transmission Protocol
SDP Session Description Protocol
SIP Session Initiation Protocol
SMTP Simple Mail Transfer Protocol
SS7 Signaling System 7
TCP Transmission Control Protocol
UAC User Agent Client
UAS User Agent Server
UDP User Datagram Protocol
VoATM Voice over ATM
VoIP Voice over IP

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 5/38 04/22/01

TABLE OF CONTENT

ABSTRACT.. 2

ACKNOWLEDGEMENT.. 3

GLOSSARY.. 4

1. INTRODUCTION ... 6

1.1 OVERVIEW ... 6
1.2 SIP ARCHITECTURE... 6
1.3 SIP MESSAGES .. 8

2 PROJECT REQUIREMENTS..10

3 HIGH LEVEL DESIGN ...11

3.1 SYSTEM OVERVIEW ...11
3.2 DATA STRUCTURE ...12
3.3 FUNCTION PROTOTYPES ..14
3.4 STATE MACHINE..16
3.5 PROGRAM FLOW ..20

4 CODING GUIDELINE...22

5 TEST RESULTS ..24

5.1 TEST ENVIRONMENT ...24
5.2 BASIC CALL SETUP AND RELEASE, CALL HOLDING..25
5.3 CALL NOT ANSWER...30
5.4 BUSY CALL...32
5.5 UNKNOWN HOSTNAME ..33
5.6 USER NOT FOUND ..33

6 CONCLUSIONS ..35

7 REFERENCES...36

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 6/38 04/22/01

1. INTRODUCTION

The primary goals of this project are to understand the Session Initiation Protocol (SIP)
and to implement the SIP messages that are required for a basic session initiation. SIP
network servers (i.e., proxy and redirect) will not be implemented due to its complexity
and tight schedule of the course. The SIP User Agent is developed using C programming
language on SPARC Solaris platform. In order to demonstrate the functionality and
capabilities of each SIP component, the following call scenario will be demonstrated:
simple call establishment and release, busy call, call not answer and call holding.

1.1 Overview

SIP is a control protocol for creating, modifying and terminating sessions with one or
more participants. Sessions can be internet multimedia conference, internet telephone
calls and multimedia distribution. SIP is a lightweight protocol in which it requires only
six primary methods for managing a basic session: INVITE, BYE, OPTIONS, ACK,
REGISTER, CANCEL and INFO. INVITE request is used to invite a user to join a call;
BYE terminates the call between two of the users on a call; OPTIONS requests
information on the capabilities of a server (will be discussed later); ACK confirms that a
client has received a final response to an INVITE; REGISTER provides the map for
address resolution, i.e., letting a server know the location of other users; CANCEL ends a
pending request, but does not end the call; and INFO is used to carry mid-call
information. In this project, the following methods will be supported: INVITE, BYE,
OPTIONS, and ACK.

SIP is independent of the packet layer. It is typically used over User Datagram Protocol
(UDP), Transmission Control Protocol (TCP), or even Stream Control Transmission
Protocol (SCTP). In this project, UDP is used for transporting SIP message because of
its simplicity.

1.2 SIP Architecture

A SIP system has two components: user agents and network servers. A user agent is an
end system that acts on behalf of someone who wants to participate in calls. A user agent
contains both a protocol client called a user agent client (UAC), and a protocol server
called a user agent server (UAS). The UAC is used to initiate a call, and the UAS is used
to answer a call. The presence of both in a user agent enables peer-to-peer operation to
take place using a client-server protocol [3].

SIP provides for two different types of network servers: proxy and redirect. A SIP proxy
server receives requests, determines where to send these, and then forwards the request to
the next server, i.e., it forks the request. A redirect server receives requests, but rather
than passing these onto the next server, it sends a response to the caller indicating the

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 7/38 04/22/01

address of the called user, and the caller contacts the called party at the next server
directly.

The main function of a SIP network server is to provide for name resolution and user
location (i.e., very much like domain name server and router). Due to their complexity
and the tight schedule of the course, SIP network servers will NOT be implemented in
this project. To better understand SIP architecture, lets go through a simple call setup
procedure with the system shown in figure 1.

Figure 1. SIP Architecture

1. To initiate a session, the caller (User A) sends a request with a SIP URL of the called

party (User B). If the client knows the location of the invited party, it can send the
request directly to their IP address; if not, the client can send it to a locally configured
SIP network server. In our example, the request is sent to SIP Proxy Server.

2. The SIP Proxy Server cannot resolve the called party's location and "forks" the
request on behalf of User A to the redirect server.

SIP Redirect Server

SIP Proxy Server SIP Proxy ServerSIP User Agent
(User A)

SIP User Agent
(User B)

SIP Proxy Server

1

2 3

4

5 6

7

8 9

101112

Location Service

DB

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 8/38 04/22/01

3. Redirect server returns the address of the next hop. Please note that redirect server
does NOT fork request.

4. Based on the returned address from the redirect server, the proxy server forks the
request to the next hop.

5. The proxy server may consult a location server using other protocol.
6. The location server returns the address of the next hop.
7. Based on the returned address from the location server, the proxy server forks the

request to the next hop.
8. This time the proxy knows the location of the called party and forks the invitation

request to User B.
9-12. The acknowledgement message from User B will be returned to User A using the

same path. As we will see later, the call setup involves multiple messages and the
above procedures will therefore be repeated several times. Once the call setup
procedure is complete, the voice path will directly be established between User A
and B. For IP network, the voice stream will be carried over IP using Real Time
Protocol (RTP). For ATM network, the voice stream will be carried using AAL2.

Another entity that comprises SIP is SIP Registrar. The user agent sends a registration
message to the SIP Registrar and the Registrar stores the registration information in a
location service via a non-SIP protocol. Once the information is stored, the Registrar
sends the appropriate response back to the user agent. Please see Figure 2.

Figure 2. SIP Registrar

1.3 SIP Messages

SIP messages can be classified into request and response. A SIP request message consists
of three elements: Request Line, Header, and Message Body. A SIP response message
contains status line, header and message body. The request line and header fields define
the nature of the call in terms of services, addresses, and protocol features. The message
body is independent of the SIP protocol and can contain anything. The status line
contains a 3-digit integer result code indicating the outcome of the attempt to understand
and satisfy the request, and optionally the reason phrase.

SIP use the Session Description Protocol (SDP) for describing audio, video and
multimedia sessions. The SDP will be included in the body part of a SIP message.

SIP User Agent
(caller) Location Service

DB

SIP Regisrar

1
2

34

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 9/38 04/22/01

Figure 3 is an example of a sample basic session initiation and release using SIP.
Machine A is initiating a session, and B is terminating the session.

Figure 3. Basic SIP Call Message Flow

Machine A Machine B

INVITE

RTP Stream (both way)

180 Ringing

200 OK

ACK

BYE

200 OK

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 10/38 04/22/01

2 PROJECT REQUIREMENTS

Below summarizes the requirements and assumptions of this project:

• To implement User Agent Client and User Agent Server

• To handle the following call scenarios:

- Normal call setup and release
- Busy call
- Call not answer
- Call Holding

• In order to fulfill (1) and (2), the following SIP messages will be implemented:

INVITE, ACK, BYE, 180 RINGING, 200 OK, 400 Bad Request.

• Assume the media type in the SIP request is always application/sdp.

• Session Description Protocol (SDP) will not be implemented and it will be faked
in the body part of the SIP message.

• Proxy server will NOT be implemented. Messages such as TRYING and fields

such as Record-Route, Route, and Server will NOT be supported.

• Only HTTP-like URL will be supported.

• Support IP call only, i.e., call generated from PSTN will not be supported.
Therefore, the mapping of ISUP message to SIP message or how ISUP messages
are carried by SIP message will NOT be considered. Please refer to [5] if reader is
interested in supporting PSTN call.

• Simultaneous sessions will not be supported. Therefore, transaction management

is not required in this project.

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 11/38 04/22/01

3 HIGH LEVEL DESIGN

3.1 System Overview

Figure 4. SIP User Agent System Diagram

Our SIP User Agent consists of the following components:

• User Console for initiating call, replying/rejecting call, and configuring the user
agent.

• Composer - for building SIP request and response messages.
• Parser - for parsing the incoming SIP messages and converting them into internal

SIP message structure sip_msg_t. Please see Data Structure section for detail.
• State machine - maintains the state of a SIP session and defines the action and the

transition to be taken in response to the external events. Please see State Machine
section for detail. It is running as a thread, called it sip_sem.

• UDP Transport (send and listen) - for receiving and sending SIP messages via the
configured UDP port. To allow concurrent receipt of events from User Console
and SIP messages from remote User Agent, "UDP Listen" is run as a thread,
called it sip_udp_listen. Sip_sem and sip_udp_listen are communicating using
shared memory.

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 12/38 04/22/01

3.2 Data Structure

Below are primary data structure definitions for our SIP User Agent program. Most of
them are self-explanatory from their structure names.

/* SIP Event */
typedef enum sip_event
{
 sip_ui_invite_evt = 0,
 sip_ui_bye_evt,
 sip_ui_hold_evt.
 sip_ui_resume_evt,
 sip_ui_answer_evt,
 sip_invite_evt,
 sip_bye_evt,
 sip_hold_evt,
 sip_resume_evt,
 sip_rsp_ok_evt,
 sip_rsp_nok_evt,
 sip_rsp_ack_evt,
 sip_rsp_busy_evt,
 sip_rsp_ring_evt,
 sip_timeout_evt,
 sip_last_evt
}
sip_event;

/* SIP Message Type */
typedef enum sip_msg_type
{
 SIP_INVITE = 0,
 SIP_OK,
 SIP_NOK,
 SIP_ACK,
 SIP_BYE,
 SIP_BUSY,
 SIP_RING,
 SIP_CANCEL,
 SIP_OPTIONS,
 SIP_REGISTER,
 SIP_LAST_MSG_TYP
}
sip_msg_type;

/* SIP Via field */
typedef struct sip_via_t {
 char address[32];
 int udp_port;
}
sip_via_t;

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 13/38 04/22/01

/* SIP URL */
typedef struct sip_url_t {
 char username[32];
 char hostname[32];
 char alias[16];
 int tag;
}
sip_url_t;

/* Media type of the SIP message body */
typedef enum sip_media_typ
{
 SIP_APPL_SDP = 0,
 SIP_TEXT_HTM,
 SIP_LAST_MEDIA
}
sip_media_typ;

/* SIP Message */
typedef struct sip_msg_t {
 char version[5];
 sip_msg_type msg_type;
 sip_event event_type;
 sip_url_t from;
 sip_url_t to;
 sip_via_t via;
 sip_url_t contact;
 char callid[32];
 int cseq;
 sip_media_typ media;
 int content_len;
 sip_msg_type rspto; /* msg type of the orig. req. */
 int ret; /* return code */
}
sip_msg_t;

/* SIP Session State-Event Machine structure */
typedef struct sip_sem_tbl_t {

 sip_state state; /* next state */

 /* Event handler
 * evt – sip event
 * cseq – call sequence number
 * status – status of the handler execution
 */
 void (*fn) (sip_event evt, int cseq, int *status);

} sip_sem_tbl_t;

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 14/38 04/22/01

3.3 Function Prototypes

This section describes the API interfaces that are exported to the developers of the SIP
User Agent program.

Function SIP_COMPOSE_MSG
Purpose To compose SIP message (applicable to both request and

response)
Syntax char * sip_compose_msg(sip_msg_t *msg, char *body);
Input Parameters msg - pointer to internal SIP message structure sip_msg_t

body - pointer to the body text to be included in the SIP message
Output Parameters None
Return Composed message

Function SIP_COMPOSE_SDP
Purpose To mimic SDP message for the body part of a SIP message. For

event of sip_ui_hold_evt, the connection address of the
connection information line will be set to 0.0.0.0; otherwise, it
will be set to the IP address of the local host.

Syntax char * sip_compose_sdp(sip_url_t *url, sip_event evt);
Input Parameters url – SIP URL

evt – Event to SIP user agent program
Output Parameters None
Return Composed SDP

Function SIP_NEW_TAG
Purpose To generate a new tag for SIP message
Syntax int sip_new_tag(void);
Input Parameters None
Output Parameters None
Return New tag to be used in SIP message

Function SIP_NEW_CSEQ
Purpose To generate a call sequence number for SIP message
Syntax int sip_new_cseq(void);
Input Parameters None
Output Parameters None
Return New call sequence number to be used in SIP message

Function SIP_GET_TAG
Purpose To obtain the current tag for SIP message

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 15/38 04/22/01

Syntax int sip_get_tag(void);
Input Parameters None
Output Parameters None
Return Current tag to be used in SIP message

Function SIP_GET_CSEQ
Purpose To obtain the current call sequence number for SIP message
Syntax int sip_get_cseq(void);
Input Parameters None
Output Parameters None
Return Current call sequence number to be used in SIP message

Function SIP_PARSE_MSG
Purpose To parse the incoming SIP message
Syntax int sip_parse_msg(char *msg, sip_msg_t *rsp);
Input Parameters msg – incoming SIP message
Output Parameters rsp – parsed message in internal SIP structure
Return 1 – the incoming message is SIP response

0 – the incoming message is SIP request

Function SIP_UDP_LISTEN
Purpose To listen UDP port for SIP message. The received message will

be placed into the shared memory and set the flag indicating the
receipt of the message. This function will be running as a thread.

Syntax void* sip_udp_listen(void *arg);
Input Parameters Pointer to arguments (not used)
Output Parameters None
Return None

Function SIP_UDP_SEND_MSG
Purpose To send UDP message to the designated UPD port of the

specified host.
Syntax int sip_udp_send_msg(char *msg_out, int rmtport, char

*hostname);
Input Parameters msg_out - point to the message to be sent out

rmtport - udp port of the target host
hostname - hostname of the target host

Output Parameters None
Return 0 – success

-1 – failure

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 16/38 04/22/01

Function SIP_SEM
Purpose SIP state-event main control loop. This function will be running

as a thread.
Syntax void* sip_sem(void *arg);
Input Parameters None
Output Parameters None
Return None

Function SIP_DB_OPEN
Purpose To open shared memory for use in the SIP user program
Syntax sip_db_t* sip_db_open(int* exist_p);
Input Parameters None
Output Parameters exist_p – flag to indicate if the shared memory has been allocated

or not.
Return Pointer to the shared memory

Function SIP_HANDLER_X
Purpose Event handler of SIP state-event machine
Syntax void sip_handler_X(sip_event evt, int cseq, int *status);
Input Parameters evt – sip event

cseq – call sequence number
Output Parameters status – status of the handler execution
Return None

3.4 State Machine

SIP session state machine is the brain of the SIP User Agent (UA). It defines the behavior
of the UA that expects the following events:

UI_INVITE - Call initiation from the input interface
UI_BYE - Call termination from the input interface
UI_HOLD - Call holding from the input interface
UI_RESUME - Call resume from the input interface
UI_ANSWER - Answer call from the input interface
INVITE - Call initiation from the remote end
BYE - Call termination from the remote end
HOLD - Call holding from the remote end
RESUME - Call resume from the remote end
RSP_OK - 200 OK from remote end
RSP_NOK - 400 Bad Request from remote end

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 17/38 04/22/01

RSP_ACK - ACKnowledgement from remote end
RSP_BUSY - 486 Busy from remote end
RSP_RINGING - 180 Ringing from remote end
TIMEOUT - Timeout before the expected response is arrived

The following states are expected:

IDLE - Session is free for use
WAITING - Waiting response for the INVITE request
CONNECTED - Session connected
HOLDING - Session is being put on hold
PAUSE - Session is put on hold
RESUMING - Session is being resumed
DISCON - Session is being disconnected

Since we are not going to implement proxy server, some messages such as TRYING are
not expected. Methods such as CANCEL and INFO are not supported neither.

The table below describes the session state machine of our SIP User Agent (applicable to
both client and server). Each entry inside the matrix specifies the next state of the session
and the number specifies the action to be taken.

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 18/38 04/22/01

Table 3.1 State Event Matrixes

Event \ State IDLE WAITING CONNECTED HOLDING PAUSE RESUMING DISCON
UI_INVITE WAITING, 1 WAITING, 5 CONNECTED, 5 HOLDING, 5 PAUSE, 5 RESUMING, 5 DISCON, 5
UI_BYE IDLE, 3 IDLE, 3 DISCON, 19 DISCON, 19 DISCON, 19 DISCON, 19 DISCON
UI_HOLD IDLE, 3 WAITING, 3 HOLDING, 15 HOLDING, 3 PAUSE, 3 RESUMING, 3 DISCON, 3
UI_RESUME IDLE, 3 WAITING, 3 CONNECTED, 3 HOLDING, 3 RESUMING, 18 RESUMING, 3 DISCON, 3
UI_ANSWER IDLE, 3 WAITING, 7 CONNECTED, 3 HOLDING, 3 PAUSE, 3 RESUMING, 3 DISCON, 3
UI_CANCEL IDLE, 3 IDLE, 23 IDLE, 23 IDLE, 23 IDLE, 23 IDLE, 23 IDLE, 23
INVITE WAITING, 2 WAITING, 6 CONNECTED, 6 HOLDING, 6 PAUSE, 6 RESUMING, 6 DISCON, 6
BYE IDLE, 4 IDLE, 24 IDLE, 14 IDLE, 14 IDLE, 14 IDLE, 14 IDLE, 14
HOLD IDLE, 4 WAITING, 3 HOLDING, 7 HOLDING, 4 PAUSE, 4 RESUMING, 4 DISCON, 4
RESUME IDLE, 4 WAITING, 3 CONNECTED, 4 HOLDING, 4 RESUMING, 7 RESUMING, 4 DISCON, 4
RSP_OK IDLE, 4 CONNECTED, 9 CONNECTED, 4 PAUSE, 16 PAUSE, 4 CONNECTED, 9 IDLE, 17
RSP_ACK IDLE, 4 CONNECTED, 8 CONNECTED PAUSE, 22 PAUSE CONNECTED, 8 DISCON, 4
RSP_BUSY IDLE, 4 IDLE, 10 CONNECTED, 4 HOLDING, 4 PAUSE, 4 RESUMING, 4 DISCON, 4
RSP_RINGING IDLE, 4 WAITING, 11 CONNECTED, 4 HOLDING, 4 PAUSE, 4 RESUMING, 4 DISCON, 4
TIMEOUT IDLE, 3 IDLE, 12 IDLE, 13 IDLE, 13 IDLE, 13 IDLE, 13 IDLE, 13
RSP_NOK IDLE, 21 WAITING, 21 CONNECTED, 21 HOLDING, 21 PAUSE, 21 RESUMING, 21 DISCON, 21

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 19/38 04/22/01

Notes of using the above state machine:

• The number right besides the next state in the SIP Session State Machine (SM)

indicates the action to be taken. Do nothing but simply change state as per the SM if
there is no number besides.

• When printing out an error message, please specify the current state and the event
received.

• Only the party who initializes the call hold can issue RESUME request.
• Two timer objects should be created in each session: timer for request/response pair

and the maximum session hold time. Therefore, the TIMEOUT event occurs when the
User Agent does not receive the expected response / event within the configured
timeout period, or when the maximum session time expires. In this project, there is
no limit applied to total session period.

• Re-transmission will not be implemented in this prototype.

Actions used in the state machine:
1. Issue INVITE to remote end.
2. Issue RINGING (optional) or OK (depending on configuration) to the remote end.
3. Print out the error log indicating invalid request/event.
4. Issue "400 Bad request" to the remote end. The remote should print out error

indicating invalid request.
5. Print out error indicating the session in use, i.e., Busy session.
6. Issue "486 Busy" to the remote end
7. Issue "200 OK" to remote end.
8. Activate RTP transmission
9. Issue ACK to remote end and activate RTP transmission
10. Print out error indicating the remote end is busy.
11. Play waiting tone locally.
12. Print out error indicating request timed out.
13. Issue BYE to remote end and terminate RTP session
14. Issue "200 OK" and terminate RTP session
15. Issue INVITE (c=0) to remote end
16. Issue ACK to remote end and de-activate RTP transmission
17. De-activate RTP transmission
18. Issue INVITE to put the remote end off hold
19. Issue BYE to remote end
20. Do Nothing
21. Print out error indicating bad request
22. Issue "200 OK"
23. Handle User cancel call routine

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 20/38 04/22/01

3.5 Program Flow

Start

1. User Login

2. Initialized SEM &
UDP listen threads

3. Listen to the UDP
port

 that the user
specified

during startup

4.
if udp in

status is set

5. Set the udp in
status flag and copy
the receive msg to
the share memory

6. Wait for user to init a call
or udp in status flag to be set

7. Prompt user to
enter callee info

8.
if receive msg
is invite event

9. Genrate invite
event to callee &

set call in
progress flag

10.
if the invite is

for user

11. Generate not OK
to remote end

12. Store the caller info
and set call in progess &
clear udp in status flag

13. Call in progress

14. Wait for UI or UDP
event to happen

15. Decompose the
message and get the
event. Call the event

function based on
SEM table. Clear
udp in status flag

16. Prompt for
user request

17. ProcessUI
request by calling

event handler from
SEM

18. Goto next state

19. if call in
progress

clear

Yes

UI Event
UDP Event

Yes

No

No

No

Yes

Yes

UDP event
UI Invite

No

Figure 5. Program Flow Chat

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 21/38 04/22/01

Program Flow Description:
1. Program start. Prompt user to input User Name, Alias and UDP for listening.
2. Initialize the State Machine Thread and the UDP Listen Thread.
3. This is a loop that keep listening to the user specified UDP port for incoming

message.
4. Receive new message, check the UDP_IN status flag, if this flag is set, this

indicated that the previous receive message haven’t been process by the SEM yet
and wait here until the flag get clear.

5. Save the receive message to the shared memory and set the UDP_IN flag, this
flag is also act as a UDP event trigger point. SEM is periodically checking for this
flag.

6. Waiting for User to press enter to initialize a call or waiting UDP message coming
from the network.

7. User presses enter to make a call. It will prompt the user to enter callee
information: User Name, Alias, UDP port and Host Name and got to step 9.

8. Check the receive message is an Invite event. If yes, it will proceed with step 10,
else it jump to step 11.

9. Callee information will be stored in a temporally memory and generate an Invite
event to the callee at remote end.

10. Check whether the Invite is for the User that is login. If yes, it proceed with step
12, else it will jump to step 11.

11. Clear the UDP_IN flag and go back to step 6 to wait for User Input or UDP event.
12. Store the Caller information, set the Call In Progress flag, clear the UDP_IN flag

and move on to step 13.
13. This is the Call In Progress loop enter point and will stay as long as the call is in

progress.
14. Waiting for User Input and UDP receive event to be happened. If it detects an

UDP event, it will proceed to step 15. If it detects a User Input event, it will
proceed to step 16.

15. Call the parser routine to decompose the receive message and find out the remote
request event. It will then pass the event to the SEM and clear the UDP_IN flag.
The SEM will call the routine according to the state event matrix that shown in
Table 3.1. It will then move on to step 18.

16. It will ask to the to select one of the following selections: End Call, Hold Call,
Release Call, Answer Call and Cancel Call. It will pass the according event to the
SEM and proceed with step 17.

17. The SEM will call the routine according to the state event matrix that shown in
Table 3.1. It will then move on to step 18.

18. Move to next state.
19. Check the Call In Progress flag is clear. If yes, it will go back to step 6 to wait for

user to initialize call again or waiting for remote party to call. Else it continues in
the call in progress and move on to step 13. Note: The call in progress will be
cleared in the routine that handle end call or cancel call.

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 22/38 04/22/01

4 CODING GUIDELINE

Different developers have different program style. This section specifies the minimal
coding guideline that developers in this project should follow for three primary reasons:

• Improving quality of the software
• Facilitating software maintenance and future enhancement
• Improving clarity of the code, i.e., better understanding for readers

Below lists the coding guideline for this project:

• 3-letter module name: SIP
• All files in SIP module should start with "sip_", for example, sip_ua.c
• All data structures should be prefixed with sip_ and ended with _t. For example,

struct sip_header_t {...}
• Try to use typedef for all structure definitions. Subsequent data definition based on

those structures does not require the quantifier "struct".
• Avoid any unnecessary casting.
• No warning or error messages are allowed in the compilation of the final code.
• Check pointer prior to de-referencing it or segmentation fault
• Always initialize storage before using it.
• All functions should have the following heading and they should be ended with the

function name. For example:

/*
 * Purpose:
 *
 * In:
 * parm1 -
 * parm2 -
 *
 * Out:
 * parm3 -
 *
 * Return:
 * Note:
 */
 void sip_ensc833_func(void)
 {

 } /* sip_ensc833_func */

• Try to implement all the messages specified in the protocol spec., even though we are

not using all of them. Put some comments for those messages not supported. Provide
reference for each message. For example:

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 23/38 04/22/01

 /* SIP URL (RFC 2543 - section 2) */
 typedef struct sip_url_t
 {
 sip_userinfo_t user_info;
 sip_hostport_t hostport;
 sip_transport_t transport;
 int ttl;
 char maddr[16];
 sip_user_t userparm;
 sip_method_t method;
 char uuid[16];

 /* other parm not supported */
 /* telephone subscriber not supported */
 }
 sip_url_t;

• Replace nested if-else statements by case statement if possible.
• Always take error/exception into consideration.

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 24/38 04/22/01

5 TEST RESULTS

The following call scenarios will be tested: basic call setup and release, call holding, call
not answer, busy call, invalid called party, and unknown host of the target user agent.

5.1 Test Environment

The test will be performed on SPARC Solar machine in room ASB 9884, Engineering
Science building of Simon Fraser University. The following machines will be used:

§ lorentz (IP address: 199.60.6.109)
§ hall (IP address: 199.60.6.25)
§ faraday (IP address: 199.60.6.19)

Below describes the start up script on each machine:

lorentz

lorentz 27: /ensc/grad1/ktpang/March21> bin/sip

**
SIP User Agent Program
Authors: Peter Lee, Thomas Pang
Copyright @ 2001 Simon Fraser University

**
Please Enter user name : tpang
Please Enter user alias : thomas
Please Enter local udp port : 4000
Please Enter SIP Version : 2.0
Automatic Call Answer(Y/N): N
Maximum call waiting period (in sec): 10

sip_user_session_info.user_name = tpang
sip_user_session_info.alias = thomas
sip_user_session_info.local_udp_port = 4000
sip_user_session_info.sip_version = 2.0
sip_user_session_info.hostname = lorentz

Press Return to make a call.

hall

hall 26: /ensc/grad1/ktpang/March21/bin> sip

**
SIP User Agent Program
Authors: Peter Lee, Thomas Pang
Copyright @ 2001 Simon Fraser University

**
Please Enter user name : mclee

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 25/38 04/22/01

Please Enter user alias : peter
Please Enter local udp port : 4000
Please Enter SIP Version : 2.0
Automatic Call Answer(Y/N): Y
Maximum call waiting period (in sec): 10

sip_user_session_info.user_name = mclee
sip_user_session_info.alias = peter
sip_user_session_info.local_udp_port = 4000
sip_user_session_info.sip_version = 2.0
sip_user_session_info.hostname = hall

Press Return to make a call.

faraday

faraday 23: /ensc/grad1/ktpang/March21/bin> sip

**
SIP User Agent Program
Authors: Peter Lee, Thomas Pang
Copyright @ 2001 Simon Fraser University

**
Please Enter user name : userC
Please Enter user alias : userC
Please Enter local udp port : 4000
Please Enter SIP Version : 2.0
Automatic Call Answer(Y/N): Y
Maximum call waiting period (in sec): 10

sip_user_session_info.user_name = userC
sip_user_session_info.alias = userC
sip_user_session_info.local_udp_port = 4000
sip_user_session_info.sip_version = 2.0
sip_user_session_info.hostname = faraday

Press Return to make a call.

5.2 Basic Call Setup and Release, Call Holding

This test case will verify the basic call setup and release of our SIP user agent. It will
also demonstrate the support of call holding.

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 26/38 04/22/01

tpang@lorentz.sfu.ca mclee@hall.sfu.ca

RTP is terminated
on both side

tpang cannot release
the hold because he

is not the one initiating
the hold

RTP is activated (two way)

RTP is re-activated

(1) INVITE

(2) 200 OK

(3) ACK

(4) INVITE (c=0)

(5) 200 OK

(6) ACK

(7) INVITE

(8) 200 OK

(9) ACK

(10) BYE

(11) 200 OK

RTP is terminated!

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 27/38 04/22/01

1. Press Return to make a call.

--- Please enter the Callee inforamtion ---
Username: mclee
Alias: peter
Hostname: hall
Callee UDP port: 4000

---- Message Sent ----
INVITE sip:mclee@hall SIP/2.0
Via: SIP/2.0/UDP lorentz:4000
From: thomas <sip:tpang@lorentz>
To: peter <sip:mclee@hall>
Call-ID: 1@lorentz
CSeq: 1 INVITE
Contact: thomas <sip:tpang@lorentz>
Content-Type: application/sdp
Content-Length: 146

v=0
o=thomas 2890844527 2890844527 IN IP4 lorentz
s=Session SDP
c=IN IP4 199.60.6.109
t=3034423619 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

2. ---- Message received ----

SIP/2.0 200 OK
Via: SIP/2.0/UDP lorentz:4000
From: thomas <sip:tpang@lorentz>
To: peter <sip:mclee@hall>
Call-ID: 1@hall
CSeq: 1 INVITE
Contact: thomas <sip:tpang@lorentz>
Content-Type: application/sdp
Content-Length: 141

v=0
o=peter 2890844527 2890844527 IN IP4 hall
s=Session SDP
c=IN IP4 199.60.6.25
t=3034423619 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

3. ---- Message Sent ----

ACK sip:mclee@hall SIP/2.0
Via: SIP/2.0/UDP lorentz:4000
From: thomas <sip:tpang@lorentz>
To: peter <sip:mclee@hall>
Call-ID: 1@lorentz

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 28/38 04/22/01

CSeq: 1 ACK
Content Length:0

RTP is activated at this point, i.e., tpang can now talk to mclee.

4. mclee put tpang on hold.

---- Message received ----
INVITE sip:tpang@lorentz SIP/2.0
Via: SIP/2.0/UDP hall:4000
From: peter <sip:mclee@hall>
To: thomas <sip:tpang@lorentz>
Call-ID: 1@lorentz
CSeq: 1 INVITE
Contact: peter <sip:mclee@hall>
Content-Type: application/sdp
Content-Length: 141

v=0
o=thomas 2890844527 2890844527 IN IP4 lorentz
s=Session SDP
c=IN IP4 0.0.0.0
t=3034423619 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

5. ---- Message Sent ----

SIP/2.0 200 OK
Via: SIP/2.0/UDP hall:4000
From: peter <sip:mclee@hall>
To: thomas <sip:tpang@lorentz>
Call-ID: 1@lorentz
CSeq: 1 INVITE
Contact: peter <sip:mclee@hall>
Content-Type: application/sdp
Content-Length: 0

6. ---- Message received ----

ACK sip:tpang@lorentz SIP/2.0
Via: SIP/2.0/UDP hall:4000
From: peter <sip:mclee@hall>
To: thomas <sip:tpang@lorentz>
Call-ID: 1@lorentz
CSeq: 1 ACK
Content Length:0

RTP is terminated, session is in hold stage!
Please note that tpang cannot release the hold because it is mclee
initiating the call hold.

Press Return for more options.

1. End Call.

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 29/38 04/22/01

2. Hold Call
3. Hold Release
4. Answer Call
5. Cancel Call

Please make your selection: 3
Invalid hold release.

7. mclee releases the hold.

---- Message received ----
INVITE sip:tpang@lorentz SIP/2.0
Via: SIP/2.0/UDP hall:4000
From: peter <sip:mclee@hall>
To: thomas <sip:tpang@lorentz>
Call-ID: 1@lorentz
CSeq: 2 INVITE
Contact: peter <sip:mclee@hall>
Content-Type: application/sdp
Content-Length: 142

v=0
o=thomas 2890844527 2890844527 IN IP4 hall
s=Session SDP
c=IN IP4 199.60.6.25
t=3034423619 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

8. ---- Message Sent ----

SIP/2.0 200 OK
Via: SIP/2.0/UDP hall:4000
From: peter <sip:mclee@hall>
To: thomas <sip:tpang@lorentz>
Call-ID: 1@lorentz
CSeq: 2 INVITE
Contact: peter <sip:mclee@hall>
Content-Type: application/sdp
Content-Length: 0

9. ---- Message received ----

ACK sip:tpang@lorentz SIP/2.0
Via: SIP/2.0/UDP hall:4000
From: peter <sip:mclee@hall>
To: thomas <sip:tpang@lorentz>
Call-ID: 1@lorentz
CSeq: 2 ACK
Content Length:0

The RTP is re-activated!

10. tpang terminates the call.

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 30/38 04/22/01

Press Return for more options.

1. End Call.
2. Hold Call
3. Hold Release
4. Answer Call
5. Cancel Call

Please make your selection: 1
Issue BYE to remote end.

---- Message Sent ----
BYE sip:mclee@hall SIP/2.0
Via: SIP/2.0/UDP lorentz:4000
From: thomas <sip:tpang@lorentz>
To: peter <sip:mclee@hall>
Call-ID: 1@lorentz
CSeq: 2 BYE
Content Length:0

11. ---- Message received ----

SIP/2.0 200 OK
Via: SIP/2.0/UDP lorentz:4000
From: thomas <sip:tpang@lorentz>
To: peter <sip:mclee@hall>
Call-ID: 1@lorentz
CSeq: 2 BYE
Contact: thomas <sip:tpang@lorentz>
Content-Type: application/sdp
Content-Length: 0

RTP is terminated!

5.3 Call Not Answer

mclee@hall calls tpang@lorentz but tpang does not answer. Eventually, the call session
will be timed out and the session will be terminated. Please note that tpang have
“automatic call answer” disabled and the maximum call waiting time for both users are
set to 10 seconds (please see section 5.1).

Below are the traces for both tpang and mclee.

tpang@lorentz

---- Message received ----
INVITE sip:tpang@lorentz SIP/2.0
Via: SIP/2.0/UDP hall:4000
From: peter <sip:mclee@hall>;tag=97616
To: thomas <sip:tpang@lorentz>
Call-ID: 1@hall
CSeq: 3 INVITE

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 31/38 04/22/01

Contact: peter <sip:mclee@hall>;tag=97616
Content-Type: application/sdp
Content-Length: 141

v=0
o=peter 2890844527 2890844527 IN IP4 hall
s=Session SDP
c=IN IP4 199.60.6.25
t=3034423619 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

---- Message Sent ----
SIP/2.0 180 Ringing
Via: SIP/2.0/UDP hall:4000
From: peter <sip:mclee@hall>
To: thomas <sip:tpang@lorentz>
Call-ID: 1@lorentz
CSeq: 3 INVITE
Content Length:0

Paying Ring Tone.
Do Doooo Doooo.
Do Doooo Doooo....

No answer!

mclee@hall

--- Please enter the Callee inforamtion ---
Username: tpang
Alias: thomas
Hostname: lorentz
Callee UDP port: 4000

---- Message Sent ----
INVITE sip:tpang@lorentz SIP/2.0
Via: SIP/2.0/UDP hall:4000
From: peter <sip:mclee@hall>;tag=97616
To: thomas <sip:tpang@lorentz>
Call-ID: 1@hall
CSeq: 3 INVITE
Contact: peter <sip:mclee@hall>;tag=97616
Content-Type: application/sdp
Content-Length: 141

v=0
o=peter 2890844527 2890844527 IN IP4 hall
s=Session SDP
c=IN IP4 199.60.6.25
t=3034423619 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 32/38 04/22/01

---- Message received ----
SIP/2.0 180 Ringing
Via: SIP/2.0/UDP hall:4000
From: peter <sip:mclee@hall>
To: thomas <sip:tpang@lorentz>
Call-ID: 1@lorentz
CSeq: 3 INVITE
Content Length:0

Playing Ring Tone.
dooooo do do
dooooo do do ...

No answer!

5.4 Busy call

While tpang is talking to mclee, userC make a call to mclee. The call attempt will be
rejected because mclee’s session is in use. Please see the result below:

--- Please enter the Callee inforamtion ---
Username: mclee
Alias: peter
Hostname: hall
Callee UDP port: 4000

---- Message Sent ----
INVITE sip:mclee@hall SIP/2.0
Via: SIP/2.0/UDP faraday:4000
From: userC <sip:userC@faraday>
To: peter <sip:mclee@hall>
Call-ID: 1@faraday
CSeq: 1 INVITE
Contact: userC <sip:userC@faraday>
Content-Type: application/sdp
Content-Length: 144

v=0
o=userC 2890844527 2890844527 IN IP4 faraday
s=Session SDP
c=IN IP4 199.60.6.19
t=3034423619 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Press Return for more options.

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 33/38 04/22/01

---- Message received ----
SIP/2.0 486 Busy
Via: SIP/2.0/UDP faraday:4000
From: userC <sip:userC@faraday>
To: peter <sip:mclee@hall>
Call-ID: 1@lorentz
CSeq: 5 INVITE
Content-Type: application/sdp
Content-Length: 0

Invite is not success: Remote session is busy!!

5.5 Unknown hostname

Attempt to make a call with unknown hostname and it will be reject as below:

--- Please enter the Callee inforamtion ---
Username: tpang
Alias: thomas
Hostname: hello
Callee UDP port: 4000

Target host not found!

5.6 User not found

UserC@faraday tries to make a call to Peter at the machine “hall” but put down a wrong
username plee instead of mclee. When the call arrives hall, it will be discarded. The call
invitation at faraday will eventually be timed out.

--- Please enter the Callee inforamtion ---
Username: plee
Alias: peter
Hostname: hall
Callee UDP port: 4000

---- Message Sent ----
INVITE sip:plee@hall SIP/2.0
Via: SIP/2.0/UDP faraday:4000
From: userC <sip:userC@faraday>
To: peter <sip:plee@hall>
Call-ID: 1@faraday
CSeq: 1 INVITE
Contact: userC <sip:userC@faraday>
Content-Type: application/sdp
Content-Length: 144

v=0
o=userC 2890844527 2890844527 IN IP4 faraday
s=Session SDP
c=IN IP4 199.60.6.19

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 34/38 04/22/01

t=3034423619 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

<after 10 seconds>

No answer!

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 35/38 04/22/01

6 CONCLUSIONS

As we have seen in this project, SIP is a very simple, lightweight signaling protocol for
creating, modifying and terminating sessions with one or more participants. It is client-
server protocol and is independent of the packet layer. The protocol is an open standard
and is scalable. SIP is more or less equivalent to the Q.931 and H.225 components of
H.323. These protocols are responsible for call setup and call signaling. SIP system
primarily consists of user agent, network server, and registrar. In this project, we have
successfully developed SIP User Agent, both client and server for peer-to-peer
operations. The program is written in C and is running on SPARC Solaris platform. We
have successfully demonstrated the following call handling: basic call setup and release,
call holding, busy call, call not answer, invalid called party, and unknown target host.

Since SIP has been gaining popularity in VoIP arena, analysts predict it will surpass
H.323 in the next several years. We therefore suggests School of Engineering Science,
Simon Fraser University, the following tasks for the future enhancement of our SIP User
Agent program:

§ support the rest of the basic SIP methods: REGISTER, CANCEL, OPTIONS
§ implement transaction manager in the existing user agent program to allow multiple

simultaneous SIP sessions
§ implement SIP network servers (proxy and redirect) and registrar
§ improve exception handling of the existing SIP user agent program
§ include SDP
§ support different call forwarding including 700-, 800-, 900- type calls, no answer,

busy, unconditional, and other address-translation services
§ verify the capability to reach a called party under a single, location-independent

address even when the user changes terminals
§ invitations to multicast conferences
§ investigate how SIP call procedure affects the traffic pattern in the packet network

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 36/38 04/22/01

7 REFERENCES

[1] RFC 2543bis-02, SIP: Session Initiation Protocol, IETF, November 24, 2000

[2] SIP Telephony Service Examples, IETF, November 2000

[3] Henning G.Schulzinne and Jonathan D.Rosenberg, "The Session Initiation Protocol:
Providing Advanced Telephony Services Across the Internet", Bell Labs Technical
Journal, October- December 1998.

[4] "Overview of the SIP protocol", the SIP Center
http://www.sipcenter.com/overview.htm

[5] SIP for Telephones (SIP-T): Context and Architectures, IETF, November 21, 2000.

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 37/38 04/22/01

APPENDIX I - Interim Status (2001/03/08)

Below is our project plan proposed to Prof. Ljiljana Trajkovic
on January 21, 2001 with the interim status:

Task Target Date Status
1. Preliminary study of SIP 2001/02/02 Done
2. Requirement Specifications 2001/02/11 Done
3. High Level Design 2001/02/18 Done
4. Coding 2001/03/18 60%
5. Testing 2001/03/24 20%
6. Demo Planning 2001/03/24 20%
7. Class Presentation 2001/03/29 -
8. Actual Demo 2001/04/03 -
9. Final write up 2001/04/06 -

As of March 8, 2001, our project is on schedule. We intend to complete the entire project
by April 6, 2001 instead of April 13, 2001 proposed by the professor.

ENSC 833 – Network Protocols and Performance SIP User Agent Prototype

Simon Fraser University 38/38 04/22/01

APPENDIX II – Code Listing

Below is the list of source files for our SIP User Agent program:

sip.h - contains all data structures being used by the SIP user agent program
sip_global.h – contains all the global variables being used by the SIP user agent program
sip_proto.h – function prototypes
sip.c – SIP User Agent main program which creates two thread: sip_udp_listen and

sip_sem
sip_db_open.c – contains functions for allocating and opening shared memory for use in

the SIP user agent program
sip_process_msg.c - contains functions for composing and parsing SIP messages
sip_sem.c - SIP session state machine and handlers
sip_udp_send_msg.c – to send the SIP message to other SIP user agent
sip_udp_listen.c – listen to the UDP port
sip_test.c - test driver for sip_process_msg.c
Makefile – for building the software

