FINAL PROJECT PRESENTATIONS Spring 2001

Dynamic Scheduling Approach to SDF in DSP Network

Zhenhua Xiao <Zxiao@sfu.ca>

What is this project about?

- Propose a Dynamic Scheduling Approach to SDF in DSP Network
 Construct a Model Using Opnet to Do algorithm simulation
 Simulate Scenario to verify the
- feasibility

What does DSP Network Look Like?

What is Synchronous DataFlow Graph?

Why Static Scheduling?

Input & Output Token is known
It can be done at compilation time
Transport Overhead is minimized
Algorithm is Optimized

Why Dynamic Scheduling?

Rules oriented instead of detail oriented
Schedule done at run time
Better Scalability
Easy to maintain the software

What is Dynamic Scheduling Approach to SDF?

- All Static Scheduling Algorithm can have a Dynamic Scheduling Approach with more or less finite rules
- Dynamic Approach should have as little knowledge as possible
- The Dynamic Scheduling Approach meets performance level in basic environment, out performs in others

How to Find the Approach?

Find rules in Static Scheduling

Apply rules to Dynamic Scheduling Algorithm

Simulate the Result

Meet?

Ν

What are the rules? Explicit and Implicit

- Shortest ETE Delay
 - First In First Out
 - Smallest Jitter
 - Optimum Memory Buffer
 - Task Load Balance
 - CPU Load Balance

BCC BCABCCCBCABCCCBCA

Processes Implemetation

How to model a Synchronous Data Flow Graph?

()

()

What is Simulation Result?

Dynamic Scheduling Algorithm should be carefully chosen and simulated
Combination of Algorithm may be used
Dynamic Scheduling need time to merge to performance of Static Schedule

Difficulties and Future Works?

- Can we always be able to find a Dynamic Solution in all cases? Using known library?
- Can we tell the time to merge according to SDF Matrix?
- About Trade-Off from overhead created from Dynamic Scheduling, what is the balance?

References

[1]E.A.Lee and D.G.Messerschmitt.

Static scheduling of synchronous data flow programs for digital signal processing. IEEE Transactions on Computers, 1987 Jan, 36(1):24-35

[2]E.A.Lee and D.G.Messerschmitt.

Pipeline interleaved programmable DSPs: Synchronous Data Flow Programming. IEEE Transactions on Acoustics, Speech and Signal Processing, 1987, ASSP-35:1334-1345

[3]Guoning Liao, Guang R.Gao, Vinod K. AgarwalA Dynamically Scheduled Parallel DSP Architecture for Stream Flow Programing, ACAPS Technical Memo 45, June 4, 1993

[4]E.A.Lee, Thomas M.Parks Dataflow Process networks, Proceeding of the IEEE, May, 1995.

[5]Timothy W.O'Neil, Edwin H.-M.Sha, Sissades Tongsima Parallelizing Synchronous Data-Flow Graphs via Retiming

References

[6] P. K. Murthy, <u>Scheduling Techniques for Synchronous and Multidimensional Synchronous</u> <u>Dataflow</u>, Technical Report UCB/ERL M96/79, Ph.D. Dissertation, EECS Department, University of California, Berkeley, CA 94720, December 1996.

- [7] Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A. Lee, "<u>Synthesis of</u> <u>Embedded Software from Synchronous Dataflow Specifications</u>," *Journal of VLSI Signal Processing Systems*, Vol. 21, No. 2, June 1999.
- [8] T. M. Parks, *Bounded Scheduling of Process Networks*, Technical Report UCB/ERL-95-105.
 Ph.D. Dissertation. EECS Department, University of California. Berkeley, CA 94720, December 1995.
- [9] J. L. Pino, S.S. Bhattacharyya and E. A. Lee, <u>A Hierarchical Multiprocessor Scheduling</u> Framework for Synchronous Dataflow Graphs, UCB/ERL M95/36, May 30, 1995

That's about it...

any question or comments?