
 - 1 -

Dynamic Scheduling Implementation

to Synchronous Data Flow Graph
in DSP Networks

ENSC 833 Project Final Report
Zhenhua Xiao (Max)

zxiao@sfu.ca

April 22, 2001

Department of Engineering Science, Simon Fraser University

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 2 - April 22, 2001

Contents

Contents.. 2
1. Abstract .. 3
2. Introduction.. 3

2.1 Motivation.. 3
2.2 Introduction.. 4

3. Dynamic Scheduling Implementation.. 6
3.1 DSP Network Evolvement.. 6
3.2 Dynamic Scheduling Approach.. 7
3.3 Modeling DSP Structure Using Opnet... 10

3.3.1 Scheduling Unit.. 10
3.3.2 Opnet Modeling Layout... 11
3.3.3 Data Structure and Elements ... 12
3.3.4 Mapping the SDF into Opnet .. 13
3.3.5 Scheduling Unit Process Model.. 15

4. Simulation Results... 17
5. Conclusions.. 20

5.1 Conclusions.. 20
5.2 Difficulties In The Project and What Was Learned .. 20
5.3 Future Work... 20

6. References.. 21
Appendix:... 22

A-1 Descriptions of Algorithms Used in Simulation .. 22
A-1-1 Earliest Deadline .. 22
A-1-2 Balanced Schedule ... 22

A-2 Selected Code List ... 22

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 3 - April 22, 2001

1. Abstract

Synchronous data flow graph was first introduced by E.A.Lee in 1987[1]. It can describe
a large part of the DSP applications. Static Scheduling can be done at compilation time
because of the nature of SDF, which makes application fast and transportation overhead
minimized. As the DSP hardware evolves, more and more high-speed communication
channels and nodes are added to one board without high cost. This makes speed and
transportation a less concern while development time becomes critical for the market.
This project investigates a dynamic scheduling method to implement the static scheduling
algorithm, and using Opnet to do the simulation. The result shows that such an
implementation will achieve the same performance under certain condition, and has some
advantages over the Static Scheduling, such as code size, scalability and maintenance.
The method will shorten the software development time with only minor performance
degradation on real application.

2. Introduction

2.1 Motivation
A lot of papers are dealing with how to optimize the Synchronous Data Flow Graph on a
given application. As a result of the optimized SDF Graph, a Static Scheduling Algorithm
could be done at compilation time. Such a Static Scheduling Algorithm has a lot of
advantages, such as minimized memory usage, high utilization of DSP, in order to
achieve high system performance. As a software engineer, one question came out of my
mind is that to implement Static Scheduling Algorithm is not easy from a software point
of view. Since we need to program in every detail, while once the configuration changes,
the old code is largely unusable.

 The point here is after we are given the application, after we optimized the SDF, and get
the Static Scheduling Algorithm, we know what is the best performance could be, can we
use Dynamic Scheduling Algorithm to implement the software, and we still can achieve
the same performance? One thing I want to make clear is: we first need to get the Static
Scheduling Algorithm, to know what is the best, then we can use Dynamic Scheduling to
achieve that “best”, as a goal.

The purpose of this project is: given the application, given the known best SDF and Static
Scheduling, I try to use Dynamic Scheduling to meet the “best performance”, and
implement it in software. If that could be done, then we not only get the best
performance, but also gain some advantages coming with Dynamic Scheduling, such as
code maintenance, scalability. Or we could say in other way, we get the best performance
of Static Scheduling, but also overcome some disadvantages out of it.

For the relationship with the course, we know DSP is used in a device, which can be a
surveillance unit in packet network, or receiver in Software Defined Radio. The goal of

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 4 - April 22, 2001

Dynamic Scheduling Implementation is to achieve the high system through put in
network devices, to increase the network performance. Since more and more DSPs are
used in network devices, this is becoming more important.

2.2 Introduction

Synchronous Data Flow Graphs was first introduced by E.A.Lee in 1987[1]. As the
definition, SDF contains two basic elements: Block and Arc. Block represents actions or
tasks. A block is said to be Synchronous if we can specify a priori the number of input
samples consumed on each input and the number of output samples produced on each
output each time the block is invoked. Arc represents the flow of data, and the
corresponding sequence of the firing of blocks. Arc could also be treated as the FIFO,
since one block on one side of the arc put the samples into arc, and another block on
other side of the arc consumes the sample. In the following report, we names sample as
token, in the sense that a block could be invoked only when the number of tokens
accumulated on the arc exceeds the thresh hold value.

A Synchronous Data Flow (SDF) graph is a network of synchronous blocks. Following is
an example:

A B C
2 12 1 1

3 3 3

Figure 2-1 A Synchronous Data Flow Graph Example.

In this example (we will use the same example through out the paper), Task A can be
fired at any time when input token number is bigger than or equal to 1, once it is fired, it
will create 2 tokens on the output arc. Every time Task B is invoked, it will first
consumes one token created by Task A, then produces 2 token at the time it finishes.
Task C will consume 1 token when it invokes. All tasks take equally 3 time unit to finish
as indicated above the circle.

Lets imagine in a situation that every packet (generally speaking it is called signal, we
say it packet because we use packet structure in Opnet to do simulation) entering into the
system create one token for Task A, Task A will have token to invoke one time for this
packet, Task B will have enough token to invoke 2 times, and Task C will have tokens to
invoke 4 times (because Task B will eventually produce 4 tokens for Task C). Once the
Task C is invoked 4 times for the same packet, we assume that the packet has been
completely processed and can leave the system. In this case, if there is only one DSP to
perform all the tasks, the sequence of the Tasks executed could be one of the following
schedules:

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 5 - April 22, 2001

Static Scheduling SS1:
• ABBCCCC
• ABCBCCC
• ABCCBCC

The Service Time for each of the Scheduling Algorithm is 21 time units.

Although the 3 schedules have the same Service Time, the 3rd schedule is mostly
optimized because it needs the lowest buffer memory. But if we are only concerning the
Service Time of the system, then those 3 scheduling algorithm are equally good.

Apparently, this schedule will not be valid if there are 2 DSPs ready for executing,
because the above schedule doesn’t take into count the parallel computing power. The
same problem will remain if we want to upgrade the system from 2 DSPs to 3 DSPs and
later on. Following Figure show the best scheduling for 2 DSPs. (We want to get the
shortest Service Time for every packet in and out). We will use this for a comparison
later:

Static Scheduling SS2:
DSP 1: ABCCABCCCBCABCCCBCABCCCBC
DSP 2: BCCBCABCCCBCABCCCBCABCC

The Service Time for first packet is 15 time units, for second packet is 16.5 units, the
third has 15 time units, forth has 16.5 time units and so on. The 1.5 time unit oscillation is
due to 1.5 unit time waiting for SPU on the even numbered packet, because at the time
the packet entering the system, the SPU is not ready.

As we have seen, SDF is good for static scheduling, since all the input, output and other
relations between tasks are known. Static Scheduling has a lot of advantages: SDF graph
can be optimized using technique such as retiming[5], transportation overhead can also
be minimized. All of those can be done and tested in compilation time. If the situation or
environment remains the same, the solution will remain the perfect one. However, once
the environment is changed, e.g., the arriving packets speed increased, more DSP added
into the board to increase the throughput, new scheduling algorithm should be applied,
and that takes a lot of time to develop a new algorithm, code and load the program into
the system: the old algorithm is obsolete at that time. From software perspective, it is not
efficient if we have to redo every programming.

This project is to investigate the feasibility of Dynamic Scheduling Algorithm
Implementation to SDF, that is to address the following question on the above example:

Can we design a system, using one Dynamic Scheduling Algorithm, achieve as good a
performance as a Static Scheduling in 1 DSP environment? If the answer is yes, Can that
Dynamic algorithm also achieve as good a performance in 2 DSP configuration without
change in Dynamic Algorithm?

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 6 - April 22, 2001

Since we already know the best algorithm using Static Scheduling techniques, i.e., we
know SS1 (either one) is best for 1 DSP environment, SS2 is best for 2 DSP environment.
Then our objective is to find a Dynamic Scheduling Algorithm, so that in a 1 DSP
environment, it will have same Service Time as in “SS1” and in 2 DSPs environment, it
will have same Service Time as “SS2”. If we can achieve this, then we successfully find
out a Dynamic Scheduling Implementation, in the sense that not only the implementation
can achieve the same performance or have the same Service Time as Static Scheduling,
or rather, match the performance of Static Scheduling Algorithm, but also, the Dynamic
Scheduling Algorithm brings something which we are short of in Static Scheduling
Algorithm: scalability, maintenance, modulation, flexibility in software. The performance
is something we cannot sacrifice, the advantages coming with Dynamic Scheduling are
what we want.

The contribution of this project includes:

• Proposed a procedure to find the Dynamic Scheduling Algorithm matching the
performance as good as Static Scheduling Algorithm. Details in 3.2

• Construct a new model in Opnet, the new model is acting as a simulation, it can

do the simulation for different SDF Graphs. Details in 3.3.2

• Find a way to map the SDF into several simple matrixes, the matrixes are for
DSP to have the knowledge of SDF and for decision making purpose. Details in
3.3.4

• Simulate the example to show that a Dynamic Scheduling Approach to the SDF

with performance equal to Static Scheduling is feasible. Details in 4.

The paper is organized as follows. First discuss the recent evolvement in DSP structure,
which makes speed and memory usage a less concern. Then propose a procedure to find
the best Dynamic Scheduling Algorithm. Based on the SDF and process, a model in
Opnet is created. The SDF is mapped into the system using square matrix. Simulation
results show that such implementation is possible. Finally, summarize and point out
future research direction.

3. Dynamic Scheduling Implementation

3.1 DSP Network Evolvement
DSP applications were put a lot of attention on minimize the code size, memory usage to
achieve high through in real time. Excessive transportation overhead was avoided as
much as possible. In recent years, significant improvement has been done on the DSP
board. A typical DSP board contains 4 – 8 DSPs. There are a lot of high speed channels
between DSPs. Such a high channel could reach the speed of 150Mbyte/second. With the
existing of such dual direction and dedicated channel, it becomes a less concern the time
takes to transport the information between DSPs. The speed of DSP increases
dramatically and the memory spaces are abundant also.

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 7 - April 22, 2001

DSP DSP DSP

DSP

Figure 3-1 DSP Network Structure

Based on such a DSP structure, the time to market becomes a more critical issue.
Whether the software put on the DSP is easy to maintain, easy to upgrade and ready to
expand the scale is more and more important.

Another issue is that some applications need to vary the configuration in run time. For
example, in the morning we may want 3 DSPs dedicated in on channel, in the afternoon,
due to surge of traffic, we may want to allocate 5 DSPs into that channel. The change in
the configuration will cause the change of algorithm.

3.2 Dynamic Scheduling Approach
First we make it precise what is the role of this Dynamic Scheduling Implementation.
Following note details the some important properties, roles and objectives of this
approach:

1. The Dynamic Scheduling Implementation is not to replace the Synchronous Data
Flow Graph and Static Scheduling Algorithm.
The purpose of the Dynamic Scheduling Algorithm is based on the Synchronous
Data Flow Graph, a lot of optimization has to be done firstly to make the SDF fits
the application best. Techniques such as retiming could be used at that time.

2. The Static Scheduling Algorithm should be available before hand in order to
verify that we have found the right Dynamic Scheduling Algorithm.
Rather than to replace the Static Scheduling Algorithm, we need the Static
Scheduling result to verify that we have found the right Dynamic Scheduling
Algorithm. Because the Dynamic one is always trying to meet the static
algorithm, not pass. In the certain fixed condition, like in 1 DSP environment, or
2 DSP environment, the Dynamic Algorithm could meet the performance, but can
not exceed the performance which the Static Scheduling can achieve.

3. The Advantage of the Dynamic Scheduling Algorithm is we can have a single
algorithm in several or all environments, which the Static Scheduling Algorithm
can certainly not be able to achieve.
It is clear that the Static Scheduling Algorithm can fit for one environment in a
case. For example, the best algorithm for 1 DSP won’t fit for 2 DSPs. But in an
environment the resources need to be allocated depending on the traffic, if we use

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 8 - April 22, 2001

Static Scheduling Algorithm, we have to code for the different cases and load all
these code into the memory. But with Dynamic Scheduling Algorithm, we can
possibly using one and fits all. Of cause, the Dynamic Scheduling must be
simulated and tested before it is loaded into the board.

4. There is no guarantee whether there indeed exists a Dynamic Algorithm that
satisfies all our objectives.
The procedure is a method to find the result, but not telling any thing about
whether the Dynamic Algorithm is existing or not. There could be no such a
Dynamic Scheduling Algorithm which can meet the best performance in all cases.
Our chance is we have possibility to find a Dynamic Scheduling Algorithm for up
to certain number of DSPs, which is sufficient for the application.

5. An additional Scheduling Unit is needed to facilitate the Scheduling Task.

The Scheduling Unit (SU) is not a normal DSP, it is a dedicated DSP only to do
the scheduling, rather than do the actual tasks. Because of the existing of such a
supervisory DSP, all knowledge could be centralize to this DSP, and the other
DSP since they have little knowledge, can be simply expanded. All the upgrade
could also be done on SU only, this will reduce the software maintenance effort.

6. We are considering the Implementation in an environment that the time to finish
the task is much bigger than the time to transmit the packets. The Dynamic
Approach will certainly bring more transportation overhead. But because of the
high speed channel between DSPs, those additional transportation overhead may
not be excessive. In this project, we omit the transportation overhead brought
from the new algorithm in order to focus on the topic. The trade off from the
Dynamic Algorithm is mentioned as a future investigation in Chapter 4.

Following Figure shows the procedure to find the best Dynamic Scheduling Algorithm.

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 9 - April 22, 2001

START

Define Application

Optimize Synchronous Data Flow Graph

Find the Static Scheduling Algorithm for cases

Apply SDF in Simulation Machine

Apply different Dynamic Scheduling Rules

Run the Simulation

Match the
Result?

N

Y

END

Figure 3-2 Procedure to Find The Best Dynamic Scheduling Algorithm.

In the Figure 3-2, we can also see some properties of the approach. We can see that we
first obtain the Scheduling Algorithm using the Static method, then we try to match the
Dynamic Result to the Static one.

The Dynamic Scheduling Implementation has several advantages over the Static
Scheduling:

1. The Dynamic Scheduling rule can apply to several conditions, unlike the Static
Scheduling, which need one algorithm for each condition. This will eventually
largely reduce the code size. And the code is more efficient in the sense that they
can be reused in other condition.

2. Another important property of Dynamic Scheduling is that it is rules oriented

instead of detail oriented. Rule-oriented doesn’t mean that the Dynamic
Scheduling need not the knowledge of SDF, it does need that knowledge. But the

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 10 - April 22, 2001

Scheduling Unit when perform the scheduling task, it merely uses the rules to
determine which task to send to the SPU. While in Static Scheduling, the DSP
should have all the knowledge, how many tasks to do, in what sequence.

3.3 Modeling DSP Structure Using Opnet
In this section, we will describe how we create the Simulation engine in Opnet to do the
Dynamic Scheduling Simulation, and find the best fitting algorithm. The simulation
engine should only have the knowledge of SDF, and based on the current status do the
scheduling task. We will first discuss the logical lay out in a Scheduling Unit, which is
the core unit in such a system. Then we discuss the Opnet model. We will further show
the data structure and how to map the SDF in this engine. This engine can simulate
different tasks and SDFs, please note that same engine can also be ported to DSP and
used in the real world.

3.3.1 Scheduling Unit

S c h e d u l i n g
U n i t

S i g n a l
P r o c e s s i n g

U n i t

S e n d T a s k

T a s k F i n i s h e d

I n

o u t

Figure 3-3 Scheduling Unit Logical Lay Out.

The upper graph shows the logical lay out of the DSP architecture. There are 2 basic roles
here, Scheduling Unit and Signal Processing Unit.

Scheduling Unit (SU) is the core unit, it receives packets, arrange tokens, assign tasks to
Signal Processing Unit, and receives the acknowledgement from Signal Processing Unit
when the task is done[3]. SU has the knowledge of application, has the knowledge of
SDF, but it doesn’t has the knowledge of how scheduling is to be done. That has to be
done in the run time according to certain rules set by the user. And the SU will schedule
according to the rules. Since SU will not have the knowledge of what future will happen,
e.g., it cannot know when the next packet is to come, the SU will always make the
judgments based on what happen before and what is the current status. Following Figure
shows the logical element in the Scheduling Unit.

Signal Processing Unit (SPU) is the unit to do the actual signal processing, which we can
see from its name. SU usually only has one copy in the architecture, while SPU can have

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 11 - April 22, 2001

multiple copies. Also, SPU number can be increased or decreased in the run time. This
comes true when in a big application, resources are allocated dynamically, in such an
environment, the Dynamic Scheduling in SU will be informed the changes in SPU
numbers and change the scheduling thereafter.

3.3.2 Opnet Modeling Layout

Figure 3-4 Opnet Modeling Of Scheduling Unit.

Scheduling Unit (SU) is the core of the network. Almost all the knowledge is put into the
SU. SU has several responsibilities. First, it is an interface for the system to face the
outside world: the SU is receiving incoming packets from SRC and send out packets out
to SINK. Second, SU will do the actual scheduling. SU knows how many SPU is
connected and available for computing, it knows the SDF, knows how many tasks need to
be done for a packet, when to send the packet out when it is finished. SU holds all the
task tokens in the queue, and based on the existing SPU ready/busy status, based on the
current packet status, it will decide which packet which task to perform, then send the
task to the best SPU.

Signal Processing Unit (SPU) is the DSP which does the actual task. It will receive the
task assignment from SU and execute it according to instruction in the assignment packet.
When task finished, it will resent it back to SU.

Links between SU and SPU represents the high speed communication channel in real
board. The link with in the Opnet node model has no transmission delay and propagation
delay. Of cause, the fastest link has above two delays, but since this project’s purpose is
to see the Dynamic Approach to SDF in such an environment that the time need to
perform the task is much bigger than the time for transportation. So we use this kind of
link.

Token_Delay is a special module. This should be within the SU in a real application
environment. We have a separate module in Opnet to make the program more clean and
clear. The purpose of this module is to delay those tokens that once they are created,

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 12 - April 22, 2001

certain amount of time need to be delayed before they are available for the next task. In
SDf, it is a bar on the arc. In Opnet model, we use token delay matrix to describe this.

Src and Sink are for external packet source and external destination after the packet has
all tasks performed.

3.3.3 Data Structure and Elements
There are different type of packets, queues, variables in the engine, some of most
importance are listed and described below:

General Packets is packets that come in and out of the DSP system. The represents the
actual packets flowing in the network.

Token Packets. All tokens created after the task finishes or consumed when the task is
invokes has type of Token Packet. The Token Packets format contains the information
such as which General Incoming Packet it is for and the Task Id. Token Packet is only for
SU internal usage, it never actual exits the SU module. The token is destroyed at the time
the Task Packet created in scheduling procedure. We need Token Packet and Task Packet
separately because one Task Packet may consume one or more different Token Packets.

Task Packets is the Packet that SU assign the task and send to SPU. SPU receive this type
of packet and execute the task described in the Task Packet.

Queues exists for General Incoming Packets, Token Packets. We need to store them
temporary and delete the structure in the queue when no longer needed. All queues are
listed queue, the packets added to the queue is appended at the tail. But since we
scheduling dynamically, the packets come in first may not be served first. So all the
queues are not FIFO queues. In the queue elements, they not only contain the packets or
tokens, but also have variables indicating the useful information such as the last served
time. The queue structure is listed in the appendix.

S c h e d u l i n g
U n i t

S i g n a l
P r o c e s s i n g

U n i t

S e n d T a s k

T a s k F i n i s h e d

I n

o u t

T a s k P k

G e n e r a l I n c o m i n g P k
T o k e n P K , i n t e r n a l o n l y

Figure 3-5 Effective Area Of Packet Variable.

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 13 - April 22, 2001

The above figure illustrates the effective area in the Model.

3.3.4 Mapping the SDF into Opnet
In order for SU to have the knowledge of SDF, a mapping of SDF into Opnet is used.
There are 2 ways to map the SDF into Opnet: we can use a list structure to represent the
blocks, and the list structure can have several leaves, one leaf can have several parent
leaves. The advantage of this mapping algorithm is its visibility in resembling the SDF
structure, but the disadvantage is also obvious, the computer has to traverse the whole
tree to allocate one element.

Another way of mapping is to use the matrix to map the SDF, this is the method we will
use in the modeling, since this mapping is clear and easy to locate the resources, it is
discussed in detail in the following:

A

B

C

D

2

1

2

1

2

1

2

1

1

Figure 3-6 SDF For Matrixes Examples.

For the above topology, we can see that every incoming packet will allow Task A to
execute once, Task B C D all execute once. After the Task D’s execution, the packet will
exit the system. We use one topology matrix to describe the topology of the Graph.

0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

the topology matrix is 5 * 5 matrix, we denote the start of the program to be node 1, then
task A be node 2, task B is node 3, and C node 4, D node 5. if there is a “1” in the matrix
at i row and j column, e.g., element at [1,2] is value 1, it means there is a connect from
node 1 (Task A) to node 2 (Task B). We specify that node 1 is the entry point, for other
node, the node number assigned to each task is arbitrary. This matrix shows all the arcs in
the topology, those arcs are Fifos containing the tokens.

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 14 - April 22, 2001

Another matrix we create is the “produce token matrix” and “consume token matrix”.
These matrix are of the same size of Topology matrix. We have seen that the “1” valued
element in topology matrix represents an arc, in the same location in “produce token
matrix”, the value means how many tokens will be created on that arc when node i
finishes the task. And correspondingly the same for “consume token matrix”. So for the
above topology, the “produce matrix” is:

0 1 0 0 0
0 0 2 2 0
0 0 0 2 0
0 0 0 0 2
0 0 0 0 0

the “consume token matrix” is:

0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

The element in “Delay matrix” represents the time delay for the token between the time
the token is created and the time the token is ready to use. The “Delay matrix” for the
above example is as following:

0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Above matrixes are needed before the program runs. This means the SU should have the
knowledge to begin. The following matrix are status matrix, they are for SU to determine
the current status of all tasks, all tokens and all packets.

We need a “token number matrix”. The element on location [i, j] means how many
tokens are existing on that arc.

We need a “token queue matrix”. We have said that each arc is acting like a FIFO, which
contains tokens. This expression is not accurate. For example, on arc from node 2 (Task
A) to node 3 (Task B), there can be multiple tokens, those tokens could be for different
packets. But it is not necessary that the token created first be consumed first. Sometimes
it is better for the token created later to execute for better overall system performance and
the token created first is discarded. In this case, a list is needed instead of a FIFO. So the
“Token queue matrix” is actually a matrix pointing to a series of lists or queues. But only

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 15 - April 22, 2001

those locations that arc exists will have a queue, other elements will remain NULL and
never be accessed since there is no arc for that element.

Matrix

Queues

Figure 3-7 Matrixes and Queues in SU.

The advantages of having those matrixes are obvious. We can input the SDF in a simple
way, and the simulation model can traverse the matrix to do the scheduling. Those
matrixes are actually serving as an abstract layer of the real SDF and program.

3.3.5 Scheduling Unit Process Model Using Opnet

Figure 3-8 Scheduling Unit Process Model in Opnet

Figure 3-8 shows the detailed implementation of Scheduling Unit Process Model in
Opnet. There are total 7 states in the process. We discuss the most important states in the
following, the whole process shows how SU do the scheduling internally.

1. Init State
The Scheduling Unit gets the knowledge of Synchronous Data Flow Graph in this
state. Several matrix such as topology matrix, consume matrix, produce matrix,
delay matrix, task duration matrix are set at this point. The SU should also know
how many Signal Process Unit is ready. Although we have 4 SPU connected to
SU, they are not necessary all ready for task. This state only be reached once at
the beginning of the program.

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 16 - April 22, 2001

2. Ready State
The process will always be at this state between interrupts. In this state, the SU
did nothing except waiting for incoming interrupts, the interrupts could be from
incoming packets, or from SPUs if they have finished their assigned job. The
interrupt can also be from the token_delay module. When the token is ready to
add to the queue after the delay time expires, the token_delay module will send
the token back to SU. In the real world, this can be done internally in SU instead
of 2 modules.

3. Check_new_PK State
SU check the link for incoming packets. If there are incoming packets, the SU will
store the packet in a listed queue and generate one token or tokens according to
SDF immediately. The token will be marked for which task and for which packet.
The queue size will also be updated. The task will not be scheduled until step 6.

4. Get_delay_token State
If a token need to be delayed a certain time before available for next task, the
token will be send to token_delay module. After the delay time expires, the
token_delay module will send back the token or tokens. If SU receives token from
token_delay module, it assumes that the token(s) are available immediately, SU
will store the token in the list queue according to its task type.

5. Check_task_return State
In order for SPU to execute the assigned task, the SU will send a task assignment
token to SPU, after the SPU finishes the task, SPU will send back the task
assignment token. SU receives the token, check which task is finished and the task
is for which packet, then SU will go to packet queue, mark the corresponding
packet the this task has been done. SU will check whether all the necessary task
has been done on this packet, if this is the case, SU send out the packet and delete
this block in the queue. If not, SU will check whether this task will produce
tokens on out arc, if yes, the SU will create tokens and append them. But if the
token need some delay time to be available, the SU will send it to token_delay
module immediately instead of pending them.

6. Scheduler State

The scheduler is making decision based on the status of SDF. The status means
how many packets is waiting in the queue and how many tokens are there for each
individual task, are the SPUs busy or not. We know that one packet require
several different tasks to be done. The status could be modified in Step 3, 4, 5.
This is the core of the whole simulation machines. We need to choose different
rules and expect different performance. Rules are like earliest deadline, task
balance.

7. Stop State
Stop is the final state when SU receives a simulate stop interrupt. It will then
report some essential values indicating the system performance.

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 17 - April 22, 2001

4. Simulation Results

First we present the 1 DSP Service Time graph using Dynamic Scheduling
Implementation as a bottom line for comparison of the others. All simulations are based
on the SDF Graph depicted in Figure 2-1. We set the incoming packet interval differently
according to the following table, which is the maximum load for each configuration:

Simulation results are done with 2 different Dynamic Scheduling Algorithms: Balanced
Schedule and Earliest Deadline. The detailed scheduling implementation logic is
described in appendix. In brief:

• Balanced Schedule tries to spread the SPU resources on different General
Incoming Packets.

• Earliest Deadline tries to schedule the SPU to the General Incoming Packet
which comes into the system earlier than the others.

Following Table shows the Simulation Setting, all configurations tested using above 2
algorithms.

DSP Number Packet interval
(time units)

Simulation Duration
(time units)

1 21 180
2 10.5 180
3 7 180
4 5.25 900

Table 4-1-1 Simulation Settings

In Simulation, 1 time unit is set to 1 second in Opnet.

Figure 4-1 Service Time on One DSP configuration.

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 18 - April 22, 2001

In the Graph, we use 1 DSP, Balanced Scheduling method, the Service Time are straight
21 time units, this is the same as if we use Static Scheduling Algorithm in SS1. Actually
in 1 DSP environment, no matter we can use either Earliest Deadline or Balanced
Scheduling, they have the same result as the Static Scheduling. When we continue to look
at the result of 2 DSP, 3 DSP, 4 DSP environment, we can get the following interesting
results:

• Certain Algorithm can be chosen in Dynamic Scheduling to approach the best
result. In Figure 4-2, we use Balanced Schedule in a 2 DSP configuration, we can
see that the performance matches the Static Scheduling SS2, which is optimized.
This is great since we not only use Dynamic Scheduling to get as good a
performance as Static Scheduling again, but also, the same Dynamic Scheduling
Algorithm could be used in both 1 and 2 DSP environment. This is the objective
we want at the very beginning. It also means that, we have found out a way to use
Dynamic Scheduling to implement the SDF.

Figure 4-2 Service Time With Two DSP

Balanced Schedule.
Figure 4-3 Service Time With Two DSP

Earliest Deadline.

• The algorithm need to be simulated to get the result, not from the name

The figure 4-3 is the result when we use the Earliest Deadline Scheduling
Algorithm. We can see that the simulation result shows the Dynamic Algorithm is
at 21 time units or 22.5 time units Service Time at the end, rather than 15 and 16.5
time units delay in the previous Algorithm. The result is far from what the name
suggests.

• The Dynamic Algorithm need some time to converge to the best performance,
while the static algorithm has no such time, The time to converge could differ for
different algorithms
From Figure 4-2 and 4-3, we can see that rather than achieve the Static
Scheduling Performance immediately, the Dynamic Scheduling may need some
time to converge to the same result. This seems unavoidable in Dynamic
Scheduling Algorithm, since at the time of scheduling, we have no knowledge of

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 19 - April 22, 2001

time of the next coming packet. The scheduling is based on only the current
status. Although some of the SDF may result in immediate match.

Figure 4-4 Service Time With Three DSP

Balanced Schedule.
Figure 4-5 Service Time With Three DSP

Earliest Deadline.

• Different Configuration may result in different Dynamic Scheduling Algorithm
performance. Figure 4-4 and Figure 4-5 are Service Time results for 3 DSP
configuration using Balanced Schedule and Earliest Deadline Algorithm
separately. At this time, Earliest Deadline out performs the Balanced Schedule.
Because Balanced Schedule tries to spread the SPU resource over different
packets, thus enlarge the Service Time.

Figure 4-6 Service Time With Four DSP

Balanced Schedule.
Figure 4-7 Service Time With Four DSP

Earliest Deadline.

• It could also happen that none Dynamic Scheduling Algorithm can match the

Static Scheduling performance. We can see in a 4 DSP environment, both
scheduling algorithm results in a bad performance. We have known that for a 2
DSP configuration, the Service Time could be 15 – 16.5 time units, so for a 4
DSP configuration, it can NOT be worse than 2 DSP configuration, otherwise we
can simply set the DSP into clusters and 2 DSP in one cluster, then we do the
Scheduling according to the cluster.

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 20 - April 22, 2001

• The size of the DSP code is almost fixed, with little change in different DSP
configuration or SDF modification. Once we allocate the memory for the
matrixes, the Dynamic Scheduling is done based on those matrixes, no change
should be done on Scheduling Algorithm. Only the matrixes inputs should be
modified to reflect the change in SDF graph. This also means that the code can be
largely reused and shorten the delivery time, which is of great importance.

5. Conclusions

5.1 Conclusions
From the discussion and simulation, here are the conclusions from this project:

We proposed a Dynamic Scheduling Implementation to SDF in the DSP network,
simulation shows that the proposal could be achieved. The proposal is based on the most
recent DSP architecture and new application environment.

A generic Opnet model is created, the same model is valid for real DSP programming.

A way to map the SDF into software is used and proved to be successful.

Dynamic Scheduling Implementation has certain advantages such as code size,
maintenance, scalability over Static Scheduling Algorithm.

Finally, Dynamic Scheduling Algorithm is a way to implement in software, while it meets
the performance goal got from Static Scheduling Algorithm.

5.2 Difficulties In The Project and What Was Learned
The difficulties of this project lie in the creating of the model in Opnet. All the modules
and model are written from scratch. The debugging in Opnet is not as easy as in MSC.
There are lot of low level data manipulation in the model, such as matrix traverse, queue
traverse, queue insert and delete. All these add to the difficulties of the project.

However, from this project, I become familiar with the Opnet, the simulation, event
driven concept, model creation, and various programming kernel functions. These
knowledge will definitely have strong effect on the future work.

5.3 Future Work
In the simulation, we showed that the Dynamic Scheduling Implementation to SDF could
be done. But there are several uncertainties need to be addressed.

The first one is whether we could always find a Dynamic Scheduling Implementation
given a “Static Scheduled” Goal. Suppose the answer is positive, whether the Dynamic
Scheduling Algorithm Library is of finite size or could be infinite size? This question
may only be of theoretical importance, since we can simply try and exploit. But if this is

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 21 - April 22, 2001

the case, we can implement such a library, which means the library can fit for big number
of SDF applications (not all). This could be a great news for software people in DSP
company.

Another topic is regarding the convergence time. Since the Dynamic Scheduling
Algorithm need some time to converge, it may or may not become a draw back of such
an implementation. But this is a potential issue.

In this project, we omit the transportation overhead raised from the Dynamic Scheduling
Algorithm. But we want to know the impact on the algorithm. Even though the channel
speed is very high, it could also be a bottleneck.

6. References

[1] E.A.Lee and D.G.Messerschmitt, “Static scheduling of synchronous data flow
programs for digital signal processing,” IEEE Transactions on Computers, vol. 36, no. 1,
pp. 24-35, Jan, 1987.

[2] E. A. Lee and D. G. Messerschmitt, “Pipeline interleaved programmable DSPs:
Synchronous Data Flow Programming,” IEEE Transactions on Acoustics, Speech and
Signal Processing, 1987, ASSP-35:1334-1345

[3] G.Liao, G.R.Gao, V. K. Agarwal, “A Dynamically Scheduled Parallel DSP
Architecture for Stream Flow Programing,” ACAPS Technical Memo 45, June 4, 1993

[4] E. A. Lee and T. M. Parks, “Dataflow Process Networks,” Proceedings of the IEEE,
vol. 83, no. 5, pp. 773-801, May, 1995.

[5] T. W. O'Neil, E.H.-M. Sha, S. Tongsima, “Parallelizing Synchronous Data-Flow
Graphs via Retiming,” IEEE 4th International Conference on Algorithms and
Architectures for Parallel Processing, Hongkong, December 2000.

[6] P. K. Murthy, “Scheduling Techniques for Synchronous and Multidimensional
Synchronous Dataflow,” Technical Report UCB/ERL M96/79, Ph.D. Dissertation, EECS
Department, University of California, Berkeley, CA 94720, December 1996.

 [7] S. Bhattacharyya, P. K. Murthy, and E. A. Lee, "Synthesis of Embedded Software
from Synchronous Dataflow Specifications," Journal of VLSI Signal Processing Systems,
Vol. 21, No. 2, June 1999.

[8] T. M. Parks, “Bounded Scheduling of Process Networks,” Technical Report
UCB/ERL-95-105. Ph.D. Dissertation. EECS Department, University of California.
Berkeley, CA 94720, December 1995.

School of Engineering Science, Simon Fraser University Dynamic Scheduling Implementation to SDF in DSP network

Zhenhua Xiao (Max) - 22 - April 22, 2001

[9] J. L. Pino, S. S. Bhattacharyya and E. A. Lee, “A Hierarchical Multiprocessor
Scheduling Framework for Synchronous Dataflow Graphs,” UCB/ERL M95/36, May 30,
1995

Appendix:

A-1 Descriptions of Algorithms Used in Simulation

A-1-1 Earliest Deadline
In this algorithm, the DSP is always trying to finish all the tasks for the packet that comes
into the system earliest. The Algorithm will consider tasks of other packets when the task
of the earliest packet can not full fill the SPU usage.

 The Main Body:

Set pointer to the top of packet queue;

While pointer is valid {
 For each SPU in the list {
 If SPU is available {

 Assign a task belongs to the packet;
Break;

 }
 }
 set pointer to the next packet in the queue;
}

A-1-2 Balanced Schedule

Set pointer to the top of packet queue;

While pointer is valid {
 Find the first packet not served now;
 For each SPU in the list {
 If SPU is available {

 Assign a task belongs to the packet;
 }
 }

}

A-2 Selected Code List

