Comparison of VoIP and Video Content Performance over WiMAX and LTE

April 11, 2016 Group No. 1 Rufai, Syed Hamza Mehmood Qingye Ding Supervisor: Ljiljana Trajković

- Introduction
- Simulation Environment
- Simulation Scenarios
 - WiMAX
 - LTE
- Performance Comparison
- Conclusion
- References

Introduction of WiMAX

- Worldwide Interoperability for Microwave Access
- Provide broadband access to fixed and mobile users on a large-scale coverage
- Two layers: Medium Access Control and Port Physical Layer
- Speed: downlink 128 Mbps, uplink 56 Mbps
- Base station signal strength: 30 miles

Introduction of LTE

• Based on Orthogonal frequency-division multiplexing (OFDM) technique

- Support different carrier frequency bandwidths
- Provide IP backbone services, flexible spectrum, and lower power consumption
- Speed: downlink 100 Mbps, uplink 50 Mbps
- Runs on mobile radio similar to 3G

Aspects of Comparison

- VoIP traffic sent and received
- Throughput
- Jitter in VoIP : undesired factor in design of communications links
- End-to-End delay: time for a packet to be transmitted across a network from source to destination
- Mean Opinion Score (MOS) value: measurement for voice quality

Introduction

Simulation Environment

- Simulation Scenarios
 - WiMAX
 - LTE
- Performance Comparison
- Conclusion
- References

Simulation Environment

WiMAX

- OPNET 16.0 A
- 1 server: Ethernet_server
- 1 mobile node: wimax_ss_wkstn_adv
- 2 base stations: wimax_bs_router_adv
- 1000 BaseX line

LTE

- Riverbed 18.5
- 1 server: ehternet_server
- 1 mobile node: lte_wkstn_adv
- 2 base stations: lte_enodeb_atm4_ethernet4_slip4_adv
- 1000 BaseX line

- Introduction
- Simulation Environment
- Simulation Scenarios
 WiMAX
 - LTE
- Performance Comparison
- Conclusion
- References

Simulation Scenario for WiMAX

- Introduction
- Simulation Environment

Simulation Scenarios

- WiMAX
- LTE
- Performance Comparison
- Conclusion
- References

Simulation Scenario for LTE

- Introduction
- Simulation Environment
- Simulation Scenarios
 - WiMAX
 - LTE
- Performance Comparison
- Conclusion
- References

VoIP Traffic Sent and Received Comparison

WiMAX traffic sent and received (packets/sec)

LTE traffic sent and received (packets/sec)

Throughput Comparison

WiMAX traffic throughput: Maximum 80 packets/second

LTE traffic throughput: Maximum 200 packets/sec

VoIP Jitter Comparison

WiMAX Jitter in VoIP (Sec)

LTE Jitter in VoIP (sec)

End-to-End Delay Comparison

WiMAX VoIP Packet End-to-End Delay: 0.061 – 0.065 seconds

LTE VoIP Packet End-to-End Delay: 0.150 – 0.116 seconds

MOS Value Comparison

WiMAX MOS value for VoIP:

1.210 - 1.070

Video Content Packet Loss

WiMAX packet loss for video content

LTE packet loss for video content

- Introduction
- Simulation Environment
- Simulation Scenarios
 - WiMAX
 - LTE
- Performance Comparison

Conclusion

• References

Conclusion

- Compared WiMAX and LTE performance using OPNET and Riverbed simulators..
- Average throughput is lower in WiMAX than LTE.
- The range of the jitter is bigger in WiMAX than LTE, however, maximum jitter < 3ms is negligible.
- The average End-to-End delay in WiMAX is less than LTE.
- MOS value in WiMAX is much lower than LTE.
- WiMAX exhibits more packet loss than LTE over video content.
- LTE outperforms WiMAX in the simulated network.

- Introduction
- Simulation Environment
- Simulation Scenarios
 - WiMAX
 - LTE
- Performance Comparison
- Conclusion
- References

References

• K. Alutaibi and Lj. Trajkovic, "Performance analysis of VoIP codecs over Wi-Fi and WiMAX networks," *OPNETWORK 2012*, Washington, DC, Aug. 2012.

• W. Hrudey and Lj. Trajkovic, "Streaming video content over IEEE 802.16/WiMAX broadband access," *OPNETWORK 2008*, Washington, DC, Aug. 2008.

• R. G. Cole and J. H. Rosenbluth, "Voice over IP performance monitoring", *SIGCOMM Comput. Commun. Rev.*, vol. 31, no. 2, pp. 9—24, Apr. 2001.

• Irma Syarlina Hj Che Ilias and Mohamad Sahimi Ibrahim, "Performance analysis of audio video codecs over Wi-Fi/WiMAX network," in *Proc. 8th ICUIMC 2014*, New York, NY, USA, 2014.

• M. LaBrecque, WiMAX introduction [Online]. Available: http://www.wimaxforum. org/echnology/downloads (Feb. 2008).

Thank you!