

Peer-to-Peer Traffic over LTE:

Simulated Performance during Cell Crossover

ENSC 833: Network Protocols and Performance
Spring 2016

Project Report

Presented by :Shweta Mazumder, Brett Wiens, Katherine Manson

Project website: www.bwiens.sfu.ca

Project Member’s SFU Emails:

smazumde@sfu.ca, bwiens@sfu.ca, kamanson@sfu.ca

ENSC 833 Network Protocols and Performance, Spring 2016, Final Project Report

1

Abstract—A model was built using NS-3 to study

peer-to-peer traffic over LTE. The model was used

to investigate network performance for a VoIP call

between two mobile users as one of the users moved

between cellular regions. The scenario was such that

one user (node 1) sent the signal over LTE to the

nearest base station. This base station routed the data

packets to the nearest base station on the other user’s

cellular network. The second base station

broadcasted the signal to the second user (node 2).

The nearest base stations for user one changed over

the duration of their call. The network performance

indicator that was studied for this scenario was the

ratio of successful packets transmitted to packets

sent.

I. INTRODUCTION

The objective of our project was to demonstrate

the performance of the Long Term Evolution (LTE)

standard using an NS-3 model (version 3.24.) LTE

was developed to use digital signal processing

techniques and the Internet Protocol (IP) to increase

the speed and capacity of wireless data networks

[1].

The application that was used to demonstrate the

performance was “peer-to-peer traffic.” This is a

term used to describe communication between two

hosts at the application level of the protocol stack.

VoIP stands for voice over internet protocol and

is a term that represents using an unreliable

transport layer protocol such as UDP (User

Datagram Protocol) over the internet protocol to

establish a communication link. By using UDP, the

delay is reduced because there is no reliability

overhead.

Geographic cell regions are the base areas of

coverage of one cell tower (referred to as an eNB

which stands for “e-Node-B”). When hosts cross-

over from one cell region to another, a hand-over

occurs and performance may suffer. This is the

scenario we explored in our project.

II. OVERVIEW OF RELATED WORK:

[1] – Ernst, Kremer and Rodrigues: This paper

provided an overview of a Wifi simulation model

that was created by the authors using NS-3.

[2] – Piro, Baldo and Miozzo described a custom-

made NS-3 LTE model built to study SINR (Signal

to Interference and Noise Ratio) versus distance of

node from base station. Only one node was

modeled.

[3] - Ikuno, Wrulich and Rupp built a Matlab

simulator to study performance of LTE network (at

the system level). The results of the report

graphically show the macroscopic path loss

(attenuation.)

[4] - Baldo, Requena, Miozzo and Kwan built and

described the “Lena-X2” model of LTE in NS-3.

An example study was provided in the paper of a

single node (referred to as a UE which stands for

“User Equipment”) handover across several eNBs

for Received Signal Received Power/Quality.

III. SCOPE:

The scope of our project was to study nodes

creating peer-to-peer traffic during cell cross-over.

The scenario was such that two nodes began to

communicate and then moved to other cell regions.

Existing simulation code from the NS-3 library

Peer-to-Peer Traffic over LTE: Simulate

Performance during Cell Cross-over

Shweta Mazumder, Brett Wiens, Katherine Manson

ENSC 833 Network Protocols and Performance, Spring 2016, Final Project Report

2

(Lena-X2) was used as a starting point to create our

own NS-3 model. Using the model we created, we

ran simulations and created data traces. These

traces were examined for network performance.

The most important aspect of the project was

writing the code for the model which defined the

attributes of the cell crossover and monitoring the

effect on the network performance.

IV. IMPLEMENTATION

The NS-3 module we developed to use for our

experiments (p2p_lte_handover.cc, Appendix A)

described an LTE network topology consisting of

three base stations and two users arranged as shown

in Figure 1. In those simulations including a

handover, the first user crossed from the first to the

third station, while the second user stayed

connected to the second station at all times. Figure 2

shows the flow of the simulation program.

For this experiment, we measured the effect of the

handover at a variety of network loads; therefore,

the parameter swept for our simulations was the

interval between packet transmissions. To simulate

the effect of generic peer-to-peer network traffic,

we used constant-bit-rate UDP echo requests and

replies for our traffic. For each network load, the

simulation was run both with and without a

handover in order to compare the effects. A Perl

script was used to automate the data collection

(sweepInterval.pl, Appendix B). This script invoked

the NS-3 simulator for each test case, then called a

parsing Perl script used to extract the relevant data

from the flow monitor XML output

(parseFlowResults.pl, Appendix C). The parsing

script extracted the total number of bytes and

packets sent and received for each flow between the

users.

The set of result files was collated by a formatting

Perl script to generate spreadsheet data

(formatIntervalSweep.pl, Appendix D). This

spreadsheet data was used to generate the results

plots.

Figure 1 (Above): This figure shows the physical layout of

the network topology simulated in the project. There are two

users and three stations spaced according to the dimensions in

the figure.

Figure 2: (Above): This figure shows the simplified model of

the code created in NS-3 to simulate the handover. cases.

ENSC 833 Network Protocols and Performance, Spring 2016, Final Project Report

3

V. DISCUSSION AND CONCLUSIONS

The results of our simulation for UPD Echo

Requests are shown in figure 3; the Packet

Transmission Ratio for UDP Echo Requests. As

can be seen in the graph, for this particular

topology, LTE handover (the red trend line) during

constant-bit-rate peer-to-peer traffic increased

packet loss most of the time when compared to the

no handover case (blue trend line.) This effect is

mild enough that in many cases random network

effects are more significant.

 Fig. 3. Packet Transmission Ratio for UDP Echo Requests.

This trend shows that as the packet interval was increased

from 1 ms up to 10 ms, the ratio of successful-packets to

packets-sent increased. Also the “Handover” cases in general

had a lower ratio compared to the “No Handover” cases.

The server was less degraded by handover than

the client as can be seen in figure 4. The Packet

Transmission Ratio of UPD Echo Replies did not

show a significant difference between the red and

the blue trend lines. This effect is predictable;

packet loss depends on traffic type; replies are

significantly more likely to be successfully

transmitted than request.

The overall trend of both lines in figures 3 and 4

indicate that as interval time is increased the Packet

Transmission Ratio increased for both the client and

the server in both handover and no-handover cases.

This trend confirmed our general prediction of

performance; as the time between packets increased

the packet loss would decrease.

 Additional packet loss was seen across all tested

network traffic rates, and was not strongly

correlated with the network traffic.

The main difficulty with implementing this

project was in understanding the function and

operation of the existing handover simulation.

There were some comments in the simulation code,

but for the most part, trial and error were used to

determine how the code worked.

Fig. 4. Packet Transmission Ratio for UDP Echo Replies.

This trend again shows that as the packet interval is increased

from 1 ms up to 10 ms, the ratio of successful packets to

packets sent increases. The “Handover” ratio of successful

packets is closer to the “No Handover” cases.

Another difficulty with this project was avoiding

simulation artifacts like simultaneous packet

arrivals. This was dealt with again by trial and

error.

An alternative approach to implementing our

project would have been to use other network

modeling software tool such as Riverbed Modeler

or NS-2. The advantages of these other software

tools are the animation and trace tools. We decided

not to use Riverbed Modeler because it is not open

source and not to use NS-2 because it is no longer

being supported.

Another alternative we considered was to develop

a completely different NS-3 model of a LTE

handover instead of using the existing simulation

model as a basis. When we started the project we

felt that by using existing code we could save time

and also be using proven code which would

improve our results and so we decided to use the

existing model. As it turns out, it is debatable that

using the existing code saved time because of the

time spent decoding the previous work.

ENSC 833 Network Protocols and Performance, Spring 2016, Final Project Report

4

Our suggestion for improvement is to further test

the scalability of our model with additional UEs and

eNBs. We were only able to scale our model up to

two nodes.

Future work on this project could incorporate the

effect of mixed internet and LTE peer-to-peer

traffic on network performance.

REFERENCES

 [1] Jason B. Ernst, Stefan C. Kremer, Joel J. P. C.

Rodrigues, “A Wi-Fi simulation model which

supports channel scanning across multiple non-

overlapping channels in NS3,” 2014 IEEE 28th

International Conference on Advanced Information

Networking and Applications, Victoria, Canada,

May 2014.

[2] G. Piro, N. Baldo. M. Miozzo, “An LTE

module for the ns-3 network simulator”, in Proc. of

Wns3 2011 (in conjunction with SimuTOOLS

2011), March 2011, Barcelona (Spain)

[3] J.C. Ikuno, M. Wrulich, M. Rupp, “System

Level Simulation of LTE Networks,” Vehicular

Technology Conference (VTC 2010-Spring), 2010

IEEE 71st , vol., no., pp.1-5, 16-19 May 2010

[4] N. Baldo, M. Requena, M. Miozzo, R. Kwan,

"An open source model for the simulation of LTE

handover scenarios and algorithms in ns-3",

Proceedings of the 16th ACM International

Conference on Modeling, Analysis and Simulation

of Wireless and Mobile Systems, 3-8 November

2013.

[5] NS-3 Version 3.24. [Network Simulation

Software, Documentation and Lena-X2 Model].

(2016). Retrieved from www.nsnam.org.

[6] Ghassan A. Abed, M. Ismail, K. Jumari,

“Modeling and Performance Evaluation of LTE

Networks with Different TCP Variants,” World

Academy of Science, Engineering and Technology.

International Journal of Electrical, Computer,

Energetic, Electronic and Communication

Engineering Vol:5, No:3, 2011.

[7] Md. Ebna Masum, Md, Jewel Babu, “End-to-

End Delay Performance Evaluation for VoIP in the

LTE network,” Masters of Science Thesis. Dept of

Telecom, Blekinge Inst. of Tech, Karlskrona,

Sweden, June 2011.

http://www.nsnam.org/

ENSC 833 Network Protocols and Performance, Spring 2016, Final Project Report

5

APPENDIX A: p2p_lte_handover.cc:

#include "ns3/applications-module.h"

#include "ns3/config-store-module.h"

#include "ns3/core-module.h"

#include "ns3/flow-monitor.h"

#include "ns3/flow-monitor-helper.h"

#include "ns3/flow-monitor-module.h"

#include "ns3/internet-module.h"

#include "ns3/lte-module.h"

#include "ns3/mobility-module.h"

#include "ns3/network-module.h"

#include "ns3/point-to-point-module.h"

#define N_USERS 2

#define N_STATIONS 3

// Times are in microseconds

#define T_SIM 1500000

#define T_START 1000

#define T_STOP 600000

#define T_INTERVAL 1000

#define PSIZE 576

using namespace ns3;

NS_LOG_COMPONENT_DEFINE("PeerToPeerLt

eHandover");

int main(int argc, char *argv[]) {

 uint16_t port_dl = 10000;

 uint16_t port_ul = 11000;

 Ptr<Node> node_lte;

 NodeContainer nodes_users;

 NodeContainer nodes_stations;

 NetDeviceContainer devices_users;

 NetDeviceContainer devices_stations;

 Ipv4InterfaceContainer interfaces_users;

 // Read the command-line arguments (packet

interval and handover)..

 uint32_t interval = T_INTERVAL;

 uint32_t handover = 0;

 CommandLine cmd;

 cmd.AddValue("interval", "The interval between

packet transmissions", interval);

 cmd.AddValue("handover", "Set to 1 to enable

handover", handover);

 cmd.Parse (argc, argv);

 // Configure the random number generator to

avoid issues

 Ptr<UniformRandomVariable> dither =

CreateObject<UniformRandomVariable> ();

 dither->SetAttribute ("Min", DoubleValue (0));

 dither->SetAttribute ("Max", DoubleValue

(5000));

 // Set up the LTE helper with default attributes.

 Config::SetDefault

("ns3::LteHelper::UseIdealRrc", BooleanValue

(false));

 // Create the LTE network and entry/exit node.

 Ptr<LteHelper> helper_lte =

CreateObject<LteHelper>();

 Ptr<PointToPointEpcHelper> helper_epc =

CreateObject<PointToPointEpcHelper>();

 helper_lte->SetEpcHelper(helper_epc);

 helper_lte-

>SetSchedulerType("ns3::RrFfMacScheduler");

 helper_lte-

>SetHandoverAlgorithmType("ns3::NoOpHandove

rAlgorithm");

 MobilityHelper helper_mobility;

 Ptr<ListPositionAllocator> positions =

CreateObject<ListPositionAllocator> ();

 // Place the first eNodeB at (10,0,0)

 positions->Add (Vector (10, 0, 0));

 // Place the second eNodeB at (20,10,0)

 positions->Add (Vector (20,10,0));

 // Place the third eNodeB at (0,10,0)

 positions->Add (Vector (0, 10, 0));

 // Place the first user at (0,0,0)

 positions->Add (Vector (0, 0, 0));

 // Place the second user at (10,10,0)

 positions->Add (Vector (10, 10, 0));

 helper_mobility.SetMobilityModel

("ns3::ConstantPositionMobilityModel");

 helper_mobility.SetPositionAllocator (positions);

 node_lte = helper_epc->GetPgwNode();

 NodeContainer nodes_internet;

 nodes_internet.Create (1);

 Ptr<Node> node_internet = nodes_internet.Get

(0);

 InternetStackHelper helper_ip;

 helper_ip.Install(nodes_internet);

 // Create a remote internet host connected to the

LTE entry node.

 PointToPointHelper helper_pointToPoint;

ENSC 833 Network Protocols and Performance, Spring 2016, Final Project Report

6

 helper_pointToPoint.SetDeviceAttribute

("DataRate", DataRateValue (DataRate

("100Gb/s")));

 helper_pointToPoint.SetDeviceAttribute ("Mtu",

UintegerValue (1500));

 helper_pointToPoint.SetChannelAttribute

("Delay", TimeValue (Seconds (0.010)));

 NetDeviceContainer devices_internet =

helper_pointToPoint.Install(node_lte,

node_internet);

 Ipv4AddressHelper helper_ipv4;

 helper_ipv4.SetBase ("1.0.0.0", "255.0.0.0");

 Ipv4InterfaceContainer interfaces_internet =

helper_ipv4.Assign (devices_internet);

 // Configure the routing from the remote host to

the LTE network.

 Ipv4StaticRoutingHelper helper_routing;

 Ptr<Ipv4StaticRouting> internetStaticRouting =

helper_routing.GetStaticRouting (node_internet-

>GetObject<Ipv4> ());

 internetStaticRouting-

>AddNetworkRouteTo(Ipv4Address ("10.0.0.0"),

Ipv4Mask ("255.0.0.0"), 1);

 // Create the base stations and user nodes.

 nodes_stations.Create(N_STATIONS);

 nodes_users.Create(N_USERS);

 helper_mobility.Install(nodes_stations);

 helper_mobility.Install(nodes_users);

 devices_stations = helper_lte-

>InstallEnbDevice(nodes_stations);

 devices_users = helper_lte-

>InstallUeDevice(nodes_users);

 // Add the IP stack to the user nodes, assign IP

addresses, and attach them to the first station.

 helper_ip.Install(nodes_users);

 interfaces_users = helper_epc-

>AssignUeIpv4Address(NetDeviceContainer(devic

es_users));

 for(uint32_t i=0; i<N_USERS; i++) {

 Ptr<Ipv4StaticRouting> routing_staticUser =

helper_routing.GetStaticRouting(nodes_users.Get(i)

->GetObject<Ipv4> ());

 routing_staticUser->SetDefaultRoute(

 helper_epc-

>GetUeDefaultGatewayAddress(),1); }

 for(uint32_t i=0; i<N_USERS; i++) {

 helper_lte-

>Attach(devices_users.Get(i),devices_stations.Get(i

%N_STATIONS)); }

 // Install the UDP echo clients and servers.

 // Each user sends echo requests to each other

user.

 // Each user replies to echo requests from each

other users.

 for(uint32_t i=0; i<N_USERS; i++) {

 Ptr<Node> node_user0 = nodes_users.Get(i);

 for(uint32_t j=i+1; j<N_USERS; j++) {

 if(i==j) continue;

 Ptr<Node> node_user1 =

nodes_users.Get(j);

 ApplicationContainer apps_client0;

 ApplicationContainer apps_client1;

 ApplicationContainer apps_server;

 UdpEchoClientHelper helper_udpDlClient(

 interfaces_users.GetAddress (i),

 port_dl+i+N_USERS*j);

 helper_udpDlClient.SetAttribute ("Interval",

TimeValue (MicroSeconds(interval)));

 helper_udpDlClient.SetAttribute

("MaxPackets", UintegerValue ((T_STOP-

T_START)/interval));

 helper_udpDlClient.SetAttribute

("PacketSize", UintegerValue (PSIZE));

apps_client0.Add(helper_udpDlClient.Install(node_

user1));

 UdpEchoServerHelper

helper_udpDlServer(port_dl+i+N_USERS*j);

apps_server.Add(helper_udpDlServer.Install(node_

user0));

 UdpEchoClientHelper helper_udpUlClient(

 interfaces_users.GetAddress(j),

 port_ul+i+N_USERS*j);

 helper_udpUlClient.SetAttribute ("Interval",

TimeValue (MicroSeconds(interval)));

 helper_udpUlClient.SetAttribute

("MaxPackets", UintegerValue ((T_STOP-

T_START)/interval));

 helper_udpUlClient.SetAttribute

("PacketSize", UintegerValue (PSIZE));

ENSC 833 Network Protocols and Performance, Spring 2016, Final Project Report

7

apps_client1.Add(helper_udpUlClient.Install(node_

user0));

 UdpEchoServerHelper

helper_udpUlServer(port_ul+i+N_USERS*j);

apps_server.Add(helper_udpUlServer.Install(node_

user1));

 // Start the client applications with a random

offset to mitigate simulation artifacts.

 apps_server.Start(MicroSeconds(0));

apps_client0.Start(MicroSeconds(T_START+dither

->GetValue()));

apps_client1.Start(MicroSeconds(T_START+dither

->GetValue()));

 }}

 // Schedule the user handover.

 if(handover){

 NS_LOG_UNCOND("Setting up simulation

handovers...");

 helper_lte->AddX2Interface(nodes_stations);

 helper_lte->HandoverRequest(

 MicroSeconds((T_START+T_STOP)/2),

 devices_users.Get(0),

 devices_stations.Get(0),

 devices_stations.Get(2));

 }

 // Configure the flow monitor.

 NS_LOG_UNCOND("Setting up flow

monitor...");

 Ptr<FlowMonitor> flowMonitor;

 FlowMonitorHelper flowHelper;

 flowMonitor = flowHelper.InstallAll();

 NS_LOG_UNCOND("Running simulation...");

 Simulator::Stop(MicroSeconds(T_SIM));

 Simulator::Run();

 NS_LOG_UNCOND("Exporting flow monitor

report to XML...");

 flowMonitor-

>SerializeToXmlFile("p2p_lte_handover_flowmoni

tor.xml", true, true);

 Simulator::Destroy ();

 return 0;

}

APPENDIX B: sweepInterval.pl

#!/usr/bin/perl

Take baseline measurements without handover

for($int=1000;$int<=10000;$int+=1000) {

 print("SIMULATING NO-HANDOVER WITH

INTERVAL $int\n");

 system("./waf --run \"scratch/p2p_lte_handover --

interval=$int\"");

 system("perl parseFlowResults.pl <

p2p_lte_handover_flowmonitor.xml >

results/p2p_lte_nohandover_interval$int.out");

}

Take experiment measurements with handover

for($int=1000;$int<=10000;$int+=1000) {

 print("SIMULATING HANDOVER WITH

INTERVAL $int\n");

 system("./waf --run \"scratch/p2p_lte_handover --

interval=$int --handover=1\"");

 system("perl parseFlowResults.pl <

p2p_lte_handover_flowmonitor.xml >

results/p2p_lte_handover_interval$int.out");

}

APPENDIX C: parseFlowResults.pl

#!/usr/bin/perl

$a=<>;

The tags before the flow classifier contain the

results.

Store the transmitted and received bytes and

packets by flow ID number.

while($a!~/Ipv4FlowClassifier/){

if($a=~/flowId="(\d+).*txBytes="(\d+).*rxBytes="(

\d+).*txPackets="(\d+).*rxPackets="(\d+)/){

$flowid=$1;$txb=$2;$rxb=$3;$txp=$4;$rxp=$5;

 $flow{$flowid}=[$txb,$rxb,$txp,$rxp];}

 $a=<>;};

$a=<>;

The tags in the flow classifier contain the source

and destination information for each flow.

ENSC 833 Network Protocols and Performance, Spring 2016, Final Project Report

8

Print the source and destination IP addresses,

followed by the results for that flow.

while($a!~/Ipv4FlowClassifier/){

if($a=~/flowId="(\d+).*sourceAddress="([\.\d]+).*d

estinationAddress="([\.\d]+)/){

 $addr{$1}=[$2,$3];}

 ;$a=<>;};

printf("src,\tdest,\ttxBytes,\trxBytes,\ttxPackets,\trx

Packets\n");

for($i=1;$i<=12;$i++){

printf("$addr{$i}[0],\t$addr{$i}[1],\t$flow{$i}[0],\t

$flow{$i}[1],\t$flow{$i}[2],\t$flow{$i}[3]\n");}

APPENDIX D: formatIntervalSweep.pl

#!/usr/bin/perl

for($i=1000;$i<=10000;$i+=1000){

 $nofile = `cat

results/p2p_lte_nohandover_interval$i.out`;

 $yesfile = `cat

results/p2p_lte_handover_interval$i.out`;

 @nolines = split(/\n/,$nofile);

 @yeslines = split(/\n/,$yesfile);

 print("$i\t");

 for($j=0;$j<scalar(@nolines);$j++) {

 if($nolines[$j] =~

/^7.0.0.2,\t7.0.0.3.*\t(\d+),\t(\d+)$/) {

 print("$1\t$2\t"); }}

 for($j=0;$j<scalar(@yeslines);$j++) {

 if($yeslines[$j] =~

/^7.0.0.2,\t7.0.0.3.*\t(\d+),\t(\d+)$/) {

 print("$1\t$2\t"); }}

 print("\n");

}

