ENSC 835: HIGH-PERFORMANCE NETWORKS

FINAL PROJECT PRESENTATIONS Fall 2003

Simulating Search Strategies for Gnutella

Chun Wai Chan http://www.sfu.ca/~cchany/ENSC835 cchany@sfu.ca

Roadmap

- Introduction: Motivation & Overview
- Overview of Related Work
- Technical Details
 - BFS
 - Randomized BFS
 - k-Walker Random Walk
 - Iterative Deepening (if time permits)
- Implementation & Discussion
 - Topology
 - Architecture
 - Results
- Future Work
- References

Introduction: Motivation & Overview

This project is about simulating different search strategies in Gnutella.

- What is Gnutella?
 - An open source decentralized peer-to-peer (P2P) network

 Allows users to search and download data from one another

Introduction: Motivation & Overview

Why is it important?

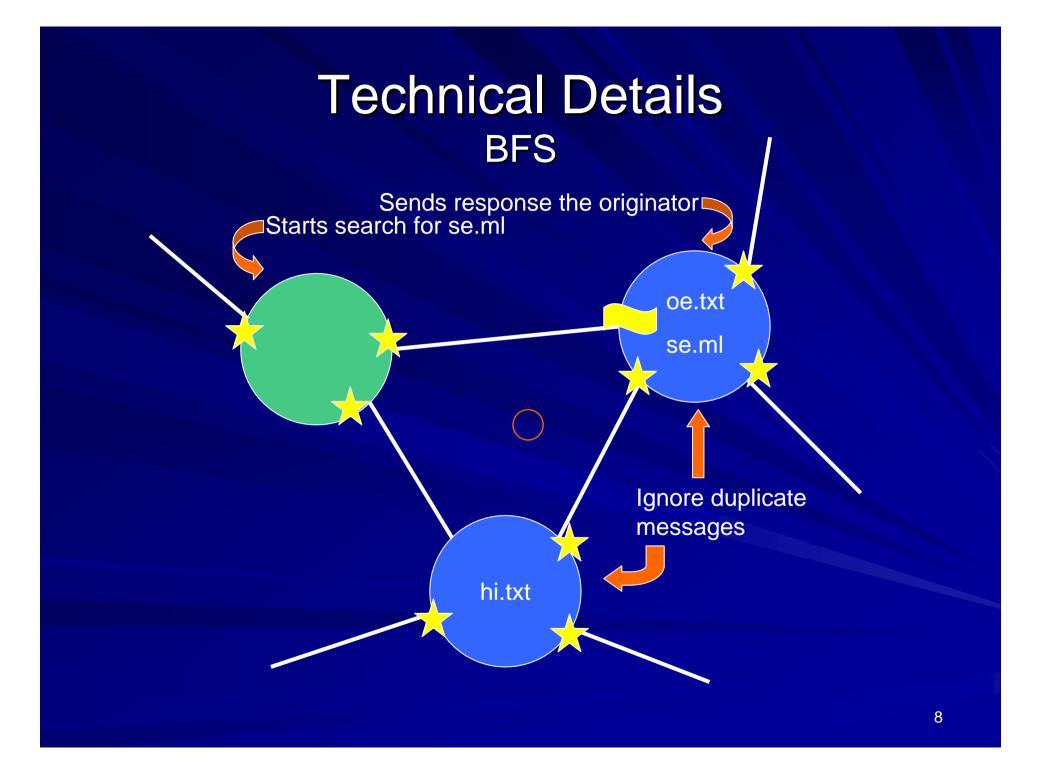
- Data-sharing P2P is popular

- Lime Wire reported total number of users exceeds 500,000 in March 2002
- Clip2 and Lime Wire have estimated with simultaneous users of about 40,000 (average) in 2001

- Searches impose huge burden to the network

Overview of Related Work

- There are many researches for searches in P2P systems going on in major universities including:
 - Infrastructure for Resilient Internet Systems (IRIS) by MIT, and Stanford Peers in Stanford University
- Gnutella Protocol Development is active in renewing the Gnutella protocol
 - The newest proposed version is 0.7 while the current stable version is 0.4


Overview of Related Work

Search techniques:

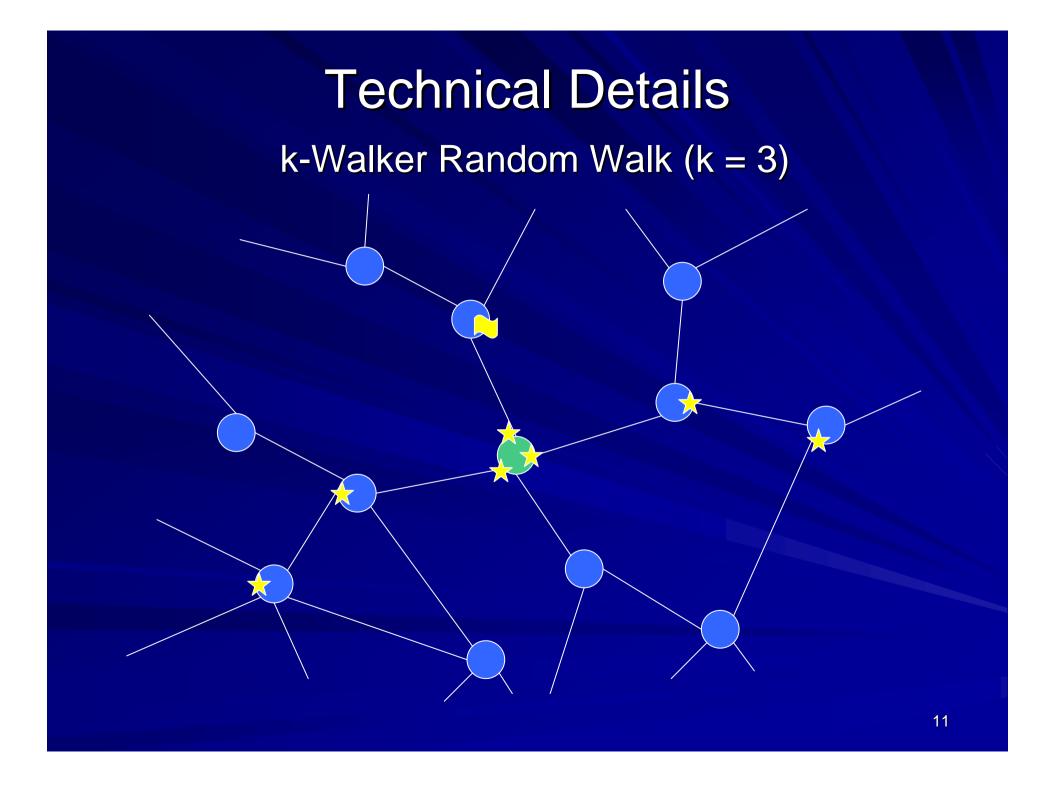
- Gnutella protocol 0.4 uses breadth first search (BFS) as its search technique
- Kalogeraki, et al. [2] has suggested the randomized BFS and the intelligent search
- Lv, et al. [3] has proposed the k-walker random walk technique
- Yang, et al. [5] has suggested iterative deepening search

Technical Details BFS

- Node sends a search request to all neighbouring nodes
- Upon receiving search request,
 - It sends a response to the querying node if it contains the data
 - Then, it forwards the request to all its neighbours
- For duplicate requests, the node will drop that request and will not forward it
- The process continues until the preset number of hops (call it TTL) becomes 0

Technical Details

Randomized BFS


Almost the same as BFS
 Except that instead of sending to all neighbours, send to a preset number of neighbours randomly

Reduces network traffic while decreasing the number of data found

Technical Details

k-Walker Random Walk

- Search originator sends request to k randomly selected neighbours
- If a neighbour has the data, it response to the originator and stop there
- If not, it forwards to one randomly chosen neighbour only
- Idea is like k walkers searching on the network

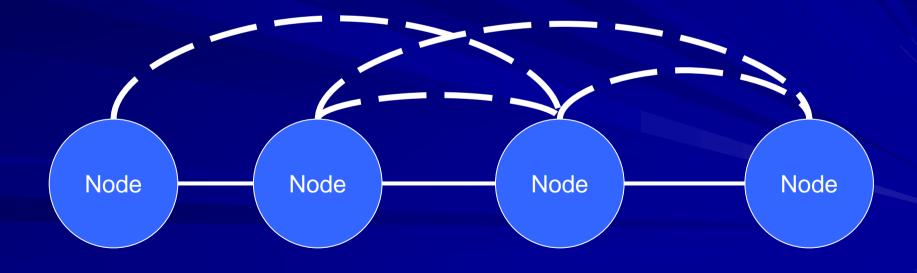
Technical Details Iterative Deepening

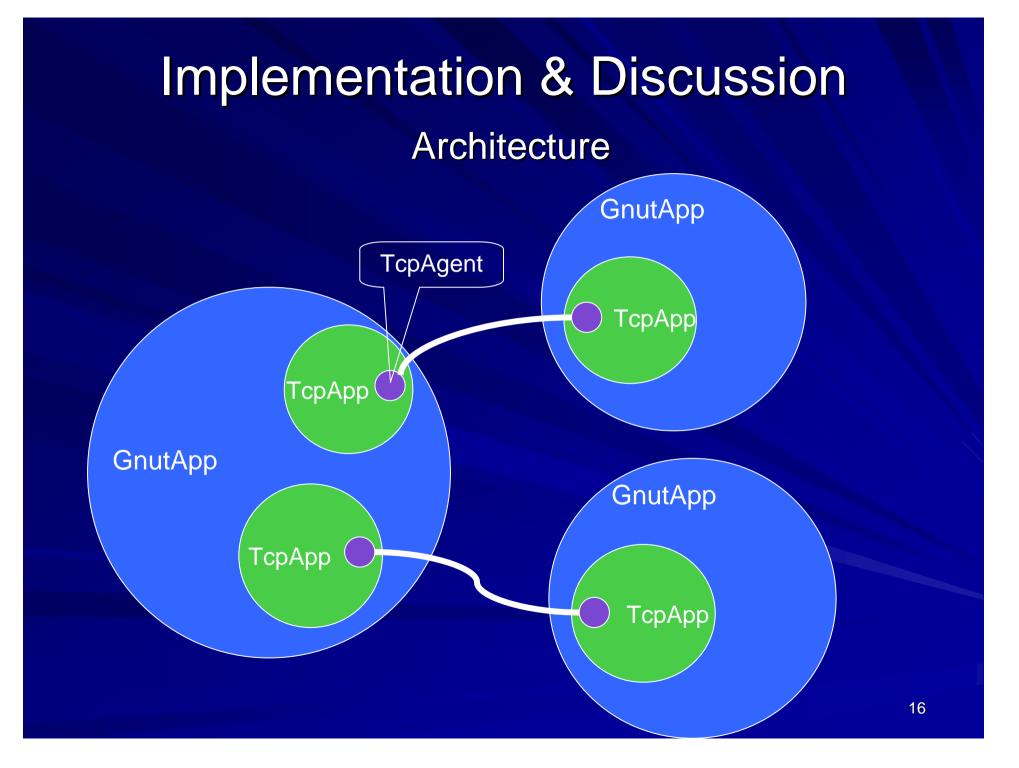
Perform BFS with TTL 1
If successful, respond and finish the search
If not, continue with TTL 2
Repeat and increase the TTL again until a preset limit is reached

Implementation & Discussion

 Ns 2.26 will be used as the simulation tool
 Detailed instructions on setting up ns under cygwin by Nicolas Christin can be found in

http://www.sims.berkeley.edu/~christin/ns-cygwin.shtml


Implementation & Discussion Simulation Scenario


- 1. Randomly generate the network topology, the data each node contains, and the search requests into a file
- 2. OTcl script reads the file and runs the simulation on a specific search strategy
- 3. Repeat step 2 for other search strategies
- 4. Collect and analyse the result

Implementation & Discussion

 Topology generation

 A C++ program will be written to do step 1
 A perl script will be used to translate the result to OTcl script

Implementation & Discussion Results

- We specify:
 - The number of nodes, the number of links, the max number of data a node contains, the number of search queries to be initiated, and the size of a search message
- We are interested in:
 - Average number of success per search request
 - Average number of duplicate messages received per search
 - Average number of search messages generated per search
 - A graph of number of search messages vs. time

Future Work

Run the simulation on different topologies

 Modify Inet Topology Generator which approximate Internet AS topology for smaller number of nodes (currently only > 3037)

http://topology.eecs.umich.edu/inet/

 Port Georgia Tech Internetwork Topology Models topology generator which generates different types of random graphs to Linux

http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html

 Run the simulation on more powerful machines
 Simulation Gnutella 0.6's search on its hierarchical topology (with UltraPeers)

References

- [1] Protocol Specification: Clip2 (n.d.). The Gnutella Protocol Specification v0.4. Retrieved January 1, 2003, from <u>http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf</u>
- [2] Series Proceeding Section Article: Kalogeraki, V., Gunopulos, D., & Zeinalipour-Yazti, D. (2002, November). A Local Search Mechanism for Peer-to-Peer Networks [Electronic version]. Series-Proceeding-Section-Article, 300-307.
- [3] Conference Paper: Lv, Q., et al. (2002, June). Search and Replication in Unstructured Peer-to-Peer Networks. Paper presented at the 16th International Conference on Supercomputing. New York City, NY.
- [4] Online Article: Ritter, J. (2001, February). Why Gnutella Can't Scale. No, Really. Retrieved January 1, 2003, from <u>http://www.darkridge.com/~jpr5/doc/gnutella.html</u>

References

- [5] Conference Paper: Yang, B., & Garcia-Molina H. (2002, July). Improving Search in Peer-to-Peer Networks. Paper presented at the 22nd International Conference on Distributed Computing Systems. Vienna, Austria.
- [6] Web Page: Gnutella Protocol Development (n.d). Retrieved October 30, 2003, from <u>http://rfc-gnutella.sourceforge.net/index.html</u>
- [7] Web Page: IRIS: Infrastructure for Resilient Internet Systems. (n.d.). Retrieved January 2, 2003, from <u>http://iris.lcs.mit.edu</u>
- [8] Web Page: Lime Wire (n.d). Retrieved November 11, 2003, from <u>http://www.limewire.com</u>
- [9] Web Page: Stanford Peers. (n.d.). Retrieved January 2, 2003, from <u>http://www-db.stanford.edu/peers</u>
- [10] Web Page: Clip2 (n.d). Retrieved January 1, 2003, from <u>http://www.clip2.com</u>