
i

 ENSC 835: HIGH-PERFORMANCE NETWORKS

Simulating Various Search Strategies for Gnutella
FALL 2003

Final Project

Chan, Chun Wai (John)

Simon Fraser University

cchany@sfu.ca

http://www.sfu.ca/~cchany/ENSC835

ii

TABLE OF CONTENTS

 Page
Table of Contents ..ii

List of Tables..iii

List of Figures ..iv

Abstract ...v

I INTRODUCTION... 1

II CURRENT METHOD FOR SEARCHING - BFS... 2

III PROPOSED METHODS FOR SEARCHING... 3

A. The Randomized BFS..3

B. The k-Walker Random Walk...3

IV IMPLEMENTATION DETAILS .. 4

A. Simulation Core...4
1. Implementation of the Search Strategies in NS ..5
2. TCP Connection Management and Message Passing ...6
3. Data Collection ...7
4. Data Structures..7

B. Visualizing the Simulations...8

C. Topologies, Files and Search Requests Generations ...9

D. Simulation Scenarios and Helper bash Scripts ..10

E. Statistics Helpers ...11

V RESULTS AND DISCUSSION.. 12

VI CONCLUSIONS.. 21

VII FUTURE WORK .. 22

VIII REFERENCES .. 23

APPENDIX 1: CODE LISTING ... 24

iii

LIST OF TABLES

 Page

Table I. Search request packet makeup... 11

Table II. Simulation scenarios used for discussion... 12

Table III. Simulation results for scenario A.. 13

Table IV. Simulation results for scenario B.. 13

Table V. Simulation results for scenario C. .. 16

Table VI. Simulation results for scenario D. .. 16

Table VII. Simulation results for scenario E. ... 19

Table VIII. Simulation results for scenario F. .. 19

iv

LIST OF FIGURES

 Page

Figure 1. BFS. 2

Figure 2. Randomized BFS with preset percentage as 50%. .. 3

Figure 3. Randomized BFS with k set to 2. .. 4

Figure 4. Class hierarchy for the search classes. .. 5

Figure 5. Class relationships for TCP connection management. .. 6

Figure 6. Amount of network traffic over time for scenario A... 14

Figure 7. Amount of network traffic over time for scenario B. .. 15

Figure 8. Amount of network traffic over time for scenario C. .. 17

Figure 9. Amount of network traffic over time for scenario D... 18

Figure 10. Amount of network traffic over time for scenario E. 20

Figure 11. Amount of network traffic over time for scenario F. 21

v

ABSTRACT

 Gnutella is a decentralized data-sharing P2P network protocol. A host initiating a

search in the network will send its search request to all its neighbours. Upon receiving a

search request, a node will forward the request to all its neighbours. This process

continues until a pre-specified radius has been reached. This search method poses a heavy

burden on the network because the amount of network traffic grows exponentially.

Various studies have suggested alternative approaches for searching in the Gnutella

architecture. This paper will compare three different search techniques, including BFS,

Randomized BFS and k-Walker Random Walk, by capturing the amounts of network

traffic induced by simulating them in NS simulator.

1

I INTRODUCTION

 In a decentralized peer-to-peer (P2P) network, individual computers of “equal

roles and capabilities exchange information and services directly with each other” [5].

Due to the widespread of the Internet and increasing demand for limited computing

resources such as disk space and bandwidth, data-sharing P2P systems become a popular

way for people to share huge amount of data. Because of the large number of users in the

P2P network, simultaneous searches induce large amount of network traffic. Therefore,

the ability to search for the desired data without imposing a large burden on the network

bandwidth is one of the most wanted and important features in data-sharing P2P systems.

 Gnutella is one of the most well known decentralized P2P data-sharing protocols.

According to Gnutella Protocol Development [6], the current stable version of Gnutella is

Gnutella 0.4. The Gnutella Protocol Specification v0.4 [1] uses a broadcasting strategy to

perform searches. It has been shown that it is not scalable because of the large amount of

network traffic generated by the searches [4]. Therefore, many literatures have proposed

alternative search techniques to be deployed on the existing Gnutella architecture [2, 3].

Although the literatures have done performance analysis for their own search techniques,

the results cannot be compared because the experimental conditions varied wildly.

 The purpose of this project is to investigate and compare three different search

techniques including the Breadth First Search (BFS), the Randomized BFS, and the k-

Walker Random Walk, in the Gnutella network in a uniformed simulation environment.

NS version 2 simulator is used to perform the simulations. The different search strategies

will be compared in terms of the amount of network traffic generated and the success rate

of a search.

 The next section of this paper describes the current search technique, the BFS, of

the Gnutella network. The third section introduces other techniques including the

Randomized BFS and k-Walker Random Walk, proposed by the literatures. Section four

outlines the design and implementation details for the simulation. Finally, section five

describes the simulation results, findings and gives future directions for the research.

2

II CURRENT METHOD FOR SEARCHING - BFS

 In Gnutella Protocol v0.4, each computer keeps an index of its own data. When a

computer starts a search, the request is sent to all computers that the requesting computer

has direct connection with, also known as neighbouring computers. Upon receiving a

search request, a computer will check if it has the data being requested and send a

response to the requesting computer if the data is available. After that the computer will

forward the request to all its neighbouring computers. The process continues until a

preset limit on the number of forwarding (also known as TTL) is reached. If a node has

received a duplicate search request, the computer will ignore that request. This search

technique is known as BFS. This mechanism eliminates single-point-of-failure

completely and guarantees to find the needed data in a preset area in the network if it is

present. However, the bandwidth requirement for this method is too high and thus it

cannot scale well [4].

Figure 1. BFS.

3

III PROPOSED METHODS FOR SEARCHING

 Recent literatures have suggested various improvements to the existing Gnutella

search mechanism. Kalogeraki, et al. [2] has suggested the Modified Random BFS. Lv, et

al. [3] has suggested the k-Walker Random Walk.

A. The Randomized BFS

 The Randomized BFS (known as Modified Random BFS [2]) is similar to

Gnutella’s BFS. The only difference is that instead of forwarding the request to all

neighbouring computers, the request is only forwarded to a preset percentage of

neighbouring computers chosen randomly. Laboratory experiments show that this method

reduce the bandwidth cost by almost 80% at the expense of retrieving half of the data

available as compared to BFS [2]. The experiment is based on a computer simulation of a

network of 100 computers having a fixed network organization.

Figure 2. Randomized BFS with preset percentage as 50%.

B. The k-Walker Random Walk

 Lv, et al. [3] introduces the k-Walker Random Walk technique. A requesting

computer sends search requests to k neighbouring computers chosen randomly where k is

a preset constant value. Upon receiving a search request, the computer checks if it has the

4

data that is being requested for. If the data exists, a response is sent to the requesting

computer and the search ends. If not, the request is being forwarded to only one of its

neighbouring computers. The process continues until the data is found or the terminating

conditions are met. The terminating conditions are met when the request has been

forwarded for a preset number (TTL) of times or when the request originator has got a

response from another node. As the request is being forward for a certain number of

times (another preset number), the computer receiving the request contacts the request

originator to see if it has received a response from another node. Therefore, instead of

trying to find all copies of the same data in the P2P network, k-Walker Random Walk

aims to find a single copy of the data needed. Another important difference between the

k-Walker Random Walk and the BFS variants is that duplicate requests will not be

ignored. Lv, et al.’s [3] experiment shows that the k-Walker Random Walk poses a 99%

decrease in bandwidth requirement compared to BFS while posing only a slight increase

(2% to 11%) in response time to that of BFS in all random network topologies.

Figure 3. Randomized BFS with k set to 2.

 Due to the varying conditions the experiments are conducted for the different

search techniques, the experimental results cannot be compared. This paper tries to

overcome this variation by simulating these search techniques in the same setting.

IV IMPLEMENTATION DETAILS

A. Simulation Core

5

1. Implementation of the Search Strategies in NS

 I have implemented the application logics for the different search strategies as

individual C++ classes. Only a few functionalities that are not known until run time are

exposed to the OTcl side. By decreasing the amount of OTcl calls and leaving the core of

the implementation in C++, the performance of the simulations will be maximized.

Performance is an important issue because a maximum of 500 nodes with around 7500

links performing 1000 searches will be simulated. The following diagram shows the class

hierarchy for the different search classes.

Figure 4. Class hierarchy for the search classes.

 The BFSGnutella, RandBFSGnutella and KWalkerGnutella implements BFS,

Randomized BFS and k-Walker Random Walk respectively. All of them need to

implement two virtual methods inherited from GnutellaApp: search() and

process_data(). The search() method instructs the Gnutella application to initiate a new

search. It creates a unique id for the search request, initiates the TTL and other

parameters for the search request and sends the request to its neighbours. The neighbours

selected are depended on the class of the GnutellaApp (e.g. BFSGnutella selects all

neighbours while KWalkerGnutella randomly selects k neighbours for a pre-specified k.).

The process_data() method is a callback procedure when network messages (in this case

search requests) are received. The method gets the search request, performs duplicate

processing, checks if the file requested is present, decrement TTL and forwards the

request to its neighbours. The three classes vary in the way they perform in the above

processing. In the k-Walker Random Walk implementation, the periodic check to see if

the originator has got a response from another node is not implemented. The feature can

6

be implemented easily but the omission is discovered too late that it is impossible to

rerun all the simulation scenarios in time (takes about 2 days). Therefore, I decided to

drop the feature for this project. For details, please refer to the source code.

 The base class GnutellaApp is inherited from the NS class Process that provides

functionalities for applications to receive and process network messages. GnutellaApp

provides an interface for and implements the common functionalities shared by its

derived classes. Files located in the current node are represented as integers stored in a

data list. Each search request has a unique id that is stored in a received list to detect

duplicate search requests. All lists used in my implementation belong to the class MyList

which is a list class I implemented to customize for the specific needs for the simulation.

The TTL and message size for a search request can also be specified in GnutellaApp.

Utility methods like randomly choosing a preset number of neighbours for use in

searches are also implemented.

2. TCP Connection Management and Message Passing

 NS only allows a single TCP connection between two applications normally.

However, in our simulation, each Gnutella application needs to maintain multiple

connections to its neighbours. To overcome this limitation, a modified version of the

approach in the webcache example provided by NS is adopted. The following diagram

depicts the class structure for the connection management.

Figure 5. Class relationships for TCP connection management.

7

 Each GnutellaApp has one or more GnutTcpApp objects stored in a list. Each of

them is responsible for a single two-way TCP connection with one of the neighbours of

the current GnutellaApp object. This overcomes the single connection limitation imposed

by NS Application objects. GnutTcpApp acts as the middle man between GnutellaApp

and TcpAgent.

 Each search request is an instance of the struct gnut_data that contains all the

control information for the search. In order for applications to exchange search requests,

a wrapper class, GnutTcpAppData derived from AppData that fits the interface provided

by Process (GnutellaApp’s superclass) is needed. GnutTcpApp is responsible for

embedding gnut_data inside a GnutTcpAppData and send the request out to another

node. It is also responsible for keeping track of the amount of network traffic (in number

of bytes) received from the neighbour node and passes the data to GnutellaApp when a

complete message has been received. Therefore, GnutTcpApp is the class who performs

the real job of sending and receiving search requests.

3. Data Collection

 I have implemented the StatTrace class for collecting simulation data for

statistical purposes. The StatTrace class is implemented as a singleton (a singleton is a

class where only a single instance will be created). Any object can access it by a call to

StatTrace::instance(). The class contains an instance of the struct stat_data that stores

various information (e.g. the amount of traffic at the moment) for the simulation.

StatTrace also contains an instance of the class StatTraceTimer derived from

TimerHandler which writes out stat_data to a csv file in a comma delimited file format

that can be read by Excel for analysis. A Tcl_Channel instance is used to perform the file

write.

4. Data Structures

 There are a number of data structures implemented to facilitate our simulations.

stat_data

It records the following information:

search_count – total number of search requests originated

8

srch_msg_count – amount of network traffic (in number of messages) in the network

at an instance

total_srch_msg_count – accumulated amount of network traffic (in number search

messages) since the beginning

success_count – total number of files found by the searches

dupl_count – total number of duplicated search requests received by all nodes

gnut_data

It contains the following information:

id – unique id for this search request

file – the file this search is aiming for (as an integer)

ttl – TTL for this search request (decremented each hop)

from – the GnutTcpApp that this search request is received from

origin – the GnutellaApp that originates this search

Basically, files are integers in the range from 1 to the number of nodes to reduce

processing time, simplify implementation and simplify file generation that will be

discussed in section C.

B. Visualizing the Simulations

 Nam [8] is used to visualize the simulation. It is useful for small node counts. For

large node counts (> 100 nodes), the nodes and links are so packed that it becomes

useless. Therefore, nam files, which are read by Nam, are only generated for simulations

with small node counts. For the ease of viewing, packets are color coded as red while

nodes are colored as green when a node originates a search, blue when a node has the file

a search request is looking for, and black whenever a search request’s ttl becomes 0 or

whenever it does not have a file a search request is looking for.

 In visualizing the Gnutella simulations, three problems are encountered: (i) TCP

handshake packets obscure the visualization of search requests propagations; (ii) packets

become too small to see in links with large delays; (iii) changing colors for the packets

and nodes requires a large number of OTcl calls that affects performance and stableness

of the simulations.

9

 To solve the first problem, I have modified main.cc and packet.cc under nam-1.9

to allow Nam to accept an argument “-w” that suppresses it to animate packets that are

smaller than or equal to 40 bytes in size. Those packets are TCP handshake packets

containing no data other than the TCP and IP headers. For the second problem, I

modified packet.cc again to set the minimum length of a packet to be equal to its width.

The third problem requires code modifications in both Nam and NS. Under Nam, I have

hardcoded the packet’s color to red. This eliminates the need for having an OTcl call for

each link in order to change the packets’ colors to red. To change the color of a node, a

node trace is needed to be written to a nam file. However, a node cannot write to the nam

file unless the OTcl command namattach is called for that node object to instantiate its

Tcl_Channel. To eliminate a namattach call for each node object, I have modified

node.cc under NS’s common directory to change its Tcl_Channel to static variable. In

this way, only a single namattach call is needed.

C. Topologies, Files and Search Requests Generations

 Topologies for the simulations are generated by Georgia Tech Internetwork

Topology Models (GT-ITM) generator [6] that comes with the NS-2.26 all-in-one

package. GT-ITM generator reads from a parameter file for the generation algorithm and

parameters that affect the average out-degree of the nodes and other characteristics of the

network to generate the topology. In my simulations, Waxman 1 is the selected algorithm

being used. I have chosen Waxman because according to Zegura, et al. [7], Waxman is

“perhaps the most common generation method”. The topology generated is in sgb file

format. The utility program, sgb2ns, provided by the NS package will read the sgb file

and convert it to OTcl script format. In our simulation, each node will have a

GnutellaApp associated with it and each duplex link will have two FullTcpAgents that

are connected and in listen state and two GnutTcpApps associate with them. Also, the

GnutTcpApp on each side has to be added to a GnutellaApp associated with the node on

that side of the connection. Therefore, I have modified the source file sgb2ns.c to add the

above operations automatically and in OTcl script format. Another useful utility provided

by GT-ITM is the edriver program. It reads the sgb file generated and reports the average

10

out-degree for the nodes in the network. I have been using this program to tweak the

parameters in the parameter file to suit my simulation needs.

 Besides the topology, the files located in each node in the simulation needs to be

generated automatically. Therefore, I have written a C++ utility program named filegen

that accepts the maximum number of files (maxFiles) a GnutellaApp can contain as an

argument and randomly generates the files for each GnutellaApp object. For each

GnutellaApp object, filegen will first generate the number of files this object will contain

(between 1 and maxFiles). Then it generates the random files for that GnutellaApp object

and makes sure that the same file will not appear twice in a single application object. The

output file is in OTcl script format.

 I have also written a C++ utility program, searchgen, to generate search requests

for the simulation. Given the number of nodes, the number of search requests needed and

the duration of the simulation, search requests (as triplets of time, originator and file to

look for) will be randomly generated. searchgen will make sure the same node will not

make the same search request twice in a simulation unless it is unavoidable. The

unavoidable condition happens when the number of search requests exceeds the square of

the number of nodes. In this case, it is impossible to not have duplicate search request as

the number of unique pairs, originator and file to look for, run out. The output file is in

OTcl script format.

D. Simulation Scenarios and Helper bash Scripts

 Simulations for low and medium networks are run for all combinations of the

number of nodes (in 50 and 100), the number of searches (in 50, 100 and 500) and the

durations (in 10 and 100 seconds) with a TTL of 4. For high node counts, simulations for

500 nodes performing 500 and 1000 searches in 10 and 50 second respectively with a

TTL of 7 are executed. Each simulation scenario are run for 5 times both on dense

network (with high average out-degree) and on sparse network (with low average out-

degree). The output files are named in the form “<search method><number of nodes>-

<number of searches>-<duration><d for dense and s for sparse><trial count>.csv”

without the “<” and “>”. For Randomized BFS, 50% is used as the percentage of

neighbours a search request will be forwarded to. The percentage is the same as the one

11

chosen by Kalogeraki, et al. [2]. For k-Walker Random Walk, I arbitrarily pick 3 for k. I

have also chosen the search request packet size (including the TCP/IP headers) to be 85

bytes that can be broken down as follows (slightly modified from the example in [4]):

IP header 20 bytes
TCP header 20 bytes

Gnutella header 23 bytes
Minimum Speed 1 byte

Search string 20 bytes + 1 byte
(trailing null)

Total: 85 bytes

Table I. Search request packet makeup.

To ensure fairness for the simulations, the network topologies, the files contained in each

GnutellaApp and the search requests will be generated once and used across all search

strategies and trials.

 I have written an OTcl script, gnut-sim.tcl that can take arguments to perform

simulations on different scenarios. The usage of it is as follows:

Usage: ns gnut-sim.tcl [-method search_method] [-grid] [-node count] [-
dense] [-sparse] [-searches count] [-duration t] [-ttl ttl] [-fraction f]
[-k k] [-req-size s] [-trial tr]

Please refer to the source code for details.

 I have also written a number of bash scripts to help in automating the simulation

process. The genall script calls the topogen, filegen and searchgen scripts to generate all

the topologies, files locations and search requests for our simulations needs. The batch-

sim script calls the batch-sim-low and batch-sim-high to perform the actual simulations

for low node counts and high node counts. To start the simulations, first run genall

followed by batch-sim.

E. Statistics Helpers

 I have implemented the C++ program combinecsv to combine the csv files

generated by the same simulation scenario for the 5 trials. The bash script, batch-combine,

will automate the process for all scenarios. After the combination, the csv files will be

opened in Microsoft Excel to calculate the average values for the five trials.

12

 I have written another C++ program furthercombine to further combine the csv

files that have been processed by Excel for the three different strategies. After that, the

further combined files can be opened in Excel again to generate graphs and statistics data

for analysis and interpretation.

V RESULTS AND DISCUSSION

 After studying the simulation results, I have discovered that the values of k and ttl

used for the k-Walker Random Walk are too low for all the simulation scenarios. The

results, which will be listed later in this section, suggest that while the k-Walker Random

Walk generates very small amount of network traffic, its success rate is way too low for

comparison with other search techniques. Therefore, extra simulation scenarios are

performed to test the appropriate values of k and ttl used for the simulations. Since the

scripts I have written to do the extra tests are used in disposable manner, they will not be

included in the code listings.

 Because of the large number of simulations results generated, I have selected the

following ones for discussion purposes:

Simulation

Scenario

Nodes

Count

Average

out-degree

Number of

searches

Duration TTL

A 50 2.44 100 10 4

B 50 3.24 100 10 4

C 100 4.46 500 100 4

D 100 4.48 500 100 4

E 500 5.036 1000 50 7

F 500 14.92 1000 50 7

Table II. Simulation scenarios used for discussion.

Scenarios A and B are categorized as small networks; C and D are categorized as

medium networks; and E and F are categorized as large networks.

13

 The results for the small network simulations are listed as follows:

 BFS Rand BFS k-Walker k(3) k-Walker k(4) ttl(6)

Success Rate 0.91 0.46 0.266 0.484

Messages/Search 30.54 13.946 11.5 22.62

Duplications/Search 6.01 1.224 5.756 13.912

Max messages at an

instance

38 11.8 11 20.8

Table III. Simulation results for scenario A.

 BFS Rand BFS k-Walker k(3) k-Walker k(4) ttl(6)

Success Rate 1.26 0.734 0.322 0.624

Messages/Search 55.45 27.064 11.436 22.268

Duplications/Search 19.06 5.384 4.466 10.934

Max messages at an

instance

90 31.8 13.8 23.2

Table IV. Simulation results for scenario B.

14

Amount of network traffic over time
for scenario A

-5

0

5

10

15

20

25

30

35

40

0.05 1.05 2.05 3.05 4.05 5.05 6.05 7.05 8.05 9.05 10.05

time (s)

m
es

sa
ge

 c
ou

nt

BFS
Rand BFS
k-Walker k(3)
k-Walker k(4) ttl(6)

Figure 6. Amount of network traffic over time for scenario A.

15

Amount of network traffic over time
for scenario B

-10

0

10

20

30

40

50

60

70

80

90

100

0.05 1.05 2.05 3.05 4.05 5.05 6.05 7.05 8.05 9.05 10.05

time (s)

m
es

sa
ge

 c
ou

nt

BFS
Rand BFS
k-Walker k(3)
k-Walker k(4) ttl(6)

Figure 7. Amount of network traffic over time for scenario B.

For the small network scenarios, we can see that while the Randomized BFS and k-

Walker Random Walk generates less amount of network traffic, their success rates for

searches also decrease. The amount of traffic generated seems to be proportional to the

success rate in these scenarios. Therefore, we do not see any advantages of using one

search strategy to another in terms of success rate with respect to the amount of traffic

generated. However, the k-Walker Random Walk with a higher k and TTL values results

in more than double the amount of duplicate messages than the BFS in sparse network. In

a small and sparse network, the k-Walkers have no choice but to repeat the steps and

back track often when it reaches the network edge before the TTL expires. Therefore, we

can conclude that a k-Walker Random Walk with a high k and TTL is not preferred in a

small and sparse network.

16

 The following are the results for the medium network scenarios:

 BFS Rand BFS k-Walker k(3) k-Walker k(6) ttl(8)
Success Rate 1.486 0.858 0.228 0.7076
Messages/Search 147.122 59.5724 11.6032 45.1228
Duplications/Search 67.616 13.4368 2.9688 19.1028
Max messages at an
instance

271 88.2 15.4 47.6

Table V. Simulation results for scenario C.

 BFS Rand BFS k-Walker k(3) k-Walker k(6) ttl(8)
Success Rate 1.488 0.8624 0.1928 0.6828
Messages/Search 153.924 60.784 11.672 45.3772
Duplications/Search 71.876 13.1204 2.8588 18.3892
Max messages at
an instance

332 90.8 15.6 42

Table VI. Simulation results for scenario D.

17

Amount of network traffic over time
for scenario C

-50

0

50

100

150

200

250

300

0.05 10.05 20.05 30.05 40.05 50.05 60.05 70.05 80.05 90.05 100.05

time (s)

m
es

sa
ge

 c
ou

nt

BFS
Rand BFS
k-Walker k(3)
k-Walker k(6) ttl(8)

Figure 8. Amount of network traffic over time for scenario C.

18

Amount of network traffic over time
for scenario D

-50

0

50

100

150

200

250

300

350

0.05 10.05 20.05 30.05 40.05 50.05 60.05 70.05 80.05 90.05 100.05

time (s)

m
es

sa
ge

 c
ou

nt

BFS
Rand BFS
k-Walker k(3)
k-Walker k(6) ttl(8)

Figure 9. Amount of network traffic over time for scenario D.

19

The medium network scenarios are where the alternative search strategies show their

advantages over BFS. In BFS, the success to the amount of traffic per search ratio is

around 0.01 in both dense and sparse network. However, the same ratio for Randomized

BFS and k-Walker Random Walk are around 0.014 and 0.015 respectively in both dense

and sparse network. We can see that the Randomized BFS and k-Walker Random Walk

pose a 40% and 50% improvements compared to BFS in terms of success rate to the

amount of traffic ratio. Similarly, the improvement of Randomized BFS to BFS is even

more in terms of success rate over maximum amount of traffic at an instance. However,

k-Walker Random Walk is the king here since its maximum amount of traffic at an

instance is only half of that of Randomized BFS. Therefore, we can say that the k-Walker

Random Walk is slightly better than Randomized BFS and that BFS is the worst strategy

in medium sized networks.

 For large networks, the results are as follows:

 BFS Rand BFS k-Walker k(3) k-Walker k(15) ttl(13)
Success Rate 3 2.3488 0.1048 0.929
Messages/Search 1431.759 669.1938 20.6566 189.12
Duplications/Search 945.618 284.0446 4.841 79.1965
Max messages at
an instance

9344 2967 73.4 511

Table VII. Simulation results for scenario E.

 BFS Rand BFS k-Walker k(3) k-Walker k(15) ttl(13)
Success Rate 3.081 3.073 0.129 1.0825
Messages/Search 5433.324 2777.311 20.572 188.384
Duplications/Search 4934.326 2279.636 1.485 42.7065
Max messages at
an instance

41844 16380 97 536.5

Table VIII. Simulation results for scenario F.

20

Among of network traffic over time
for scenario E

-2000

0

2000

4000

6000

8000

10000

0.05 5.05 10.05 15.05 20.05 25.05 30.05 35.05 40.05 45.05 50.05

time (s)

m
es

sa
ge

 c
ou

nt

BFS
Rand BFS
k-Walker k(3)
k-Walker k(15) ttl(13)

Figure 10. Amount of network traffic over time for scenario E.

Among of network traffic over time
for scenario F

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0.05 5.05 10.05 15.05 20.05 25.05 30.05 35.05 40.05 45.05 50.05

time (s)

m
es

sa
ge

 c
ou

nt

BFS
Rand BFS
k-Walker k(3)
k-Walker k(15) ttl(13)

21

Figure 11. Amount of network traffic over time for scenario F.

The large network scenarios are where the k-Walker Random Walk obviously works

better. From the above network traffic over time graphs, we can easily see that while the

Randomized BFS generates about half of the traffic with to that of BFS, the k-Walker

Random Walk only generates around 10% and 3% to that of BFS in sparse an dense

network configuration respectively. Looking at the success rate of the searches,

Randomized BFS has a success rate that is 78% to that of BFS in sparse network and has

almost the same success rate as the BFS in dense network generating only half the

amount of network traffic as the BFS. Although k-Walker Random Walk has a lower

success rate when compared to the other search techniques, it still has the best success

rate to amount of network traffic ratio. Not only that, it has achieved 0.93 and 1.08

success rate for the sparse and dense network configurations respectively. This means

that the k-Walker Random Walk almost guarantees to find a single copy of a data needed

and that is the goal of the k-Walker Random Walk. With a satisfactory success rate and

the extremely little amount of traffic generated as compared to other strategies, k-Walker

Random Walk is the best search technique while Randomized BFS sits in the middle and

BFS, the worst, in large scaled networks.

VI CONCLUSIONS

 In this project, three search strategies for Gnutella have been successfully

implemented in NS. Nam has been used to visualize and verify the implementation. GT-

ITM topology generator has been utilized to generate random topologies that more

closely mimic a real internetwork. I have also used OTcl scripts and bash scripts to

automate the simulations for many different configurations.

 Simulation results have shown that the performances of the three different search

techniques do not vary much in small networks. However, the k-Walker Random Walk

stands out as the best technique in large networks. The Randomized BFS sits in the

middle ground. And the BFS is the worst in large networks. We can, therefore, conclude

that the search techniques suggested by the literatures are valid and will improve the

search experience as the network gets larger.

22

VII FUTURE WORK

 The first attempt in future work would be to implement the periodic check with

the originator node whether a search response has been received from another node in k-

Walker Random Walk. This feature is missing in the current implementation. The next

step could be to implement extra search strategies for comparison. Another possible

research direction would be to implement Gnutella 0.6’s Ultrapeer into the network

topologies.

 If time permits, it would be interesting to look at GnutellaSim by He, et al. [9].

GnutellaSim is an NS-2 packet-level Gnutella simulator built as part of the work of the

COMPASS group in the College of Computing at Georgia Tech, the institute that creates

GT-ITM.

23

VIII REFERENCES

[1] Protocol Specification: Clip2 (n.d.). The Gnutella Protocol Specification v0.4.
Retrieved January 1, 2003, from
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf

[2] Series Proceeding Section Article: Kalogeraki, V., Gunopulos, D., & Zeinalipour-
Yazti, D. (2002, November). A Local Search Mechanism for Peer-to-Peer
Networks [Electronic version]. Series-Proceeding-Section-Article, 300-307.

[3] Conference Paper: Lv, Q., et al. (2002, June). Search and Replication in
Unstructured Peer-to-Peer Networks. Paper presented at the 16th International
Conference on Supercomputing. New York City, NY.

[4] Online Article: Ritter, J. (2001, February). Why Gnutella Can’t Scale. No, Really.
Retrieved January 1, 2003, from http://www.darkridge.com/~jpr5/doc/gnutella.html

[5] Web Page: Gnutella Protocol Development (n.d). Retrieved October 30, 2003, from
http://rfc-gnutella.sourceforge.net/index.html

[6] Web Page: Modelling Topology of Large Internetworks (n.d.). Retrieved December
1, 2003, from http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html

[7] Journal Article: Zegura, E. W., Calvert, K., & Donahoo, M. J. (1997). A
Quantitative Comparison of Graph-based Models for Internet Topology [Electronic
version]. IEEE/ACM Transactions on Networking. Retrieved November 1, 2003,
from http://citeseer.nj.nec.com/zegura97quantitative.html

[8] Web Page: Nam: Network Animator (n.d.). Retrieved November 1, 2003, from
http://www.isi.edu/nsnam/nam/

[9] Web Page: He, Q., et al. (2003, September). Packet-level Peer-to-Peer Simulation
Framework and GnutellaSim. Retrieved December 4, 2003, from
http://www.cc.gatech.edu/computing/compass/gnutella/

24

APPENDIX 1: CODE LISTING

The following code listing contains the files:

• OTcl Files

o under ~/gnutella

� gnut-sim.tcl – the main entry points for the simulations

o under ~/gnutella/autogen/grid

� grid16.tcl – a topology of a 4x4 grid used for verification of the

Gnutella simulation

• C++ Files

o under ns-allinone2.26/ns-2.26/gnutella

� gnutellaapp.h – the interface for all GnutellaApps

� gnutellaapp.cc – implements the common functionalities of all

GnutellaApps

� gnutella-bfs.cc – implements BFS GnutellaApp

� gnutella-randbfs.cc – implements Randomized BFS GnutellaApp

� gnutella-kwalker.cc – implements k-Walker Random Walk

GnutellaApp

� gnuttcpapp.h – header for GnutTcpApp

� gnuttcpapp.cc – implementation for GnutTcpApp

� mylist.h – header for MyList data structure

� mylist.cc – implementation of MyList data structure

� stattrace.h – header for the data collecting class

� stattrace.cc – implementation of data collecting class

o under ns-allinone-2.26/ns-2.26/common

� node.cc – slightly modified to reduce the number of OTcl calls

o under ns-allinone-2.26/nam-1.9

� packet.cc – slightly modified to change the default packet color,

change the size of packets and suppress handshake packets

animation

25

� packet.h – header slightly modified for color change

� main.cc – modified to allow suppressing handshake packets

animation

o under ns-allinone-2.26/gt-itm/sgb2ns

� sgb2ns – heavily modified to including various initializations for

Gnutella simulations

o under ~/gnutella/autogen/filegen/src

� filegen.cc – generates files located in the nodes automatically

o under ~/gnutella/autogen/search/src

� searchgen.cc – generates search requests automatically

o under ~/gnutella/combinecsv/src

� combinecsv.cc – combines the results for different trials

� furthercombine.cc – combines the results for different search

techniques

• bash Scripts

o under ~/gnutella

� batch-sim – do batch simulations

� batch-sim-low – do batch simulations for small and medium

networks

� batch-sim-high – do batch simulations for large networks

o under ~/gnutella/autogen

� genall – generates topologies, files locations and search requests

used by all simulation runs

� topo/topgen – generates topologies and produce statistics for the

topologies used by all simulation runs

� filegen/filegen – generates file locations for all simulation runs

� search/searchgen – generates search requests for all simulation

runs

o under ~/gnutella/combinecsv

� batch-combine – combines the results for different trials for all

scenarios

26

� batch-further – combines the results for different search strategies

for all scenarios

