

ENSC 835: HIGH-PERFORMANCE NETWORKS

Peer-to-Peer Networks as Content Distribution Networks

Fall 2003

FINAL PROJECT REPORT

André Dufour
www.sfu.ca/~adufour/ensc835/

adufour@sfu.ca

Peer-to-Peer Networks as Content Distribution Networks

2

Abstract

This project examines the feasibility of using a peer-to-peer (P2P) network as a

specialized form of content distribution network (CDN). In it, we consider a particular

application of this: using the Gnutella protocol to distribute versioned content throughout

the network. Since prompt delivery of updates to all hosts is the critical performance

metric in this connection, we simulate several situations and observe the propagation of

the content through the network, with special attention to the time it takes for all hosts to

be updated.

Peer-to-Peer Networks as Content Distribution Networks

3

Table of Contents

Abstract ... 2
Table of Contents.. 3
Introduction... 4
1. Technology Survey ... 6
1.1. Peer-to-Peer Networks .. 6
1.2. Content Distribution Networks ... 7
1.3. Peer-to-Peer Networks as Content Distribution Networks: a Natural Progression 8
1.4. The Gnutella Network... 9
2. Implementation ... 11
2.1. Objective ... 11
2.2. Simplifications and Scope... 13
2.3. Working Principle... 15
2.4. Object Implementation Details ... 16
3. Simulation Results .. 20
3.1. Analysis Framework ... 20
3.2. Results... 21
4. Discussion and Conclusions ... 26
5. References... 28
Appendix 1: Code Listing... 29

Peer-to-Peer Networks as Content Distribution Networks

4

Introduction

Peer-to-peer (P2P) communication is emerging as one of the most potentially disruptive

technologies in the networking sector[1]. If the degree to which users have adopted

pioneering P2P applications such as Napster, ICQ and the host of available Gnutella

clients is any indication, the importance of this new paradigm is not to be discounted. We

have observed, for instance, that the FastTrack P2P network, which is used by the Kazaa

file sharing application, regularly has more than 3,000,000 simultaneous users – a

number far too large to be ignored.

For the most part, P2P networks have been used for file sharing, instant messaging and,

less visibly, the aggregation of processing resources, as with SETI@Home. Few

applications diverge from these apparent niches. Conversely, [2] proposes the use of P2P

networks as an alternative to the client-server model for online gaming and shows that it

is indeed feasible to use the technology in non-traditional ways. Further to that work, it

occurred to us that it might be possible to use a peer-to-peer protocol to solve another

problem where the client-server paradigm has traditionally dominated: content

distribution.

Content distribution networks (CDNs) typically require large numbers of geographically

dispersed servers in order to distribute the processing and bandwidth load and to shorten

the distance between users and servers, thus reducing delays. The leading CDN operator,

Akamai, operates 12,600 servers worldwide [3]. Clearly there is a large cost associated

with deploying and maintaining such an infrastructure, not to mention the network

provisioning costs. The $15,000/month/Mbps [3] cost for customers is also quite

significant. Thus, there may be some cases where it would be appropriate to replace this

type of expensive CDN with a P2P network and handoff the processing and bandwidth

demands to the end hosts.

Peer-to-Peer Networks as Content Distribution Networks

5

In this project, we evaluate the feasibility of distributing versioned content through the

Gnutella P2P network. One particular example of versioned content is an anti-virus

signature file. Typically, anti-virus vendors such as Symantec (Norton Antivirus) and

Network Associates (McAfee Antivirus) operate CDNs of some sort in order to distribute

updates for their customers’ virus signature databases. Given their large install base, these

CDNs must be fairly substantial and therefore expensive to maintain. It therefore seems

relevant to examine the possibility of replacing them with a P2P network where the end

hosts query each other for the latest version of content.

We have two primary objectives in this project. Firstly, we wish to determine if it is

possible to use the Gnutella P2P network as a CDN for versioned content. If content is

introduced into the network and manages to propagate to all hosts that are interested in it,

we deem the CDN operation to be successful. If some hosts are not able to download the

content, we consider the operation a failure. We examine several different network

topologies with this question in mind. Our second objective is to quantify how well

successful topologies act as CDNs. Our metric for this evaluation is a function of the time

required for all interested hosts to obtain a new version of the content. We used Network

Simulator, version 2 (ns-2) to implement our simulation.

In the first part of this report, we provide a brief introduction to peer-to-peer networks

and content distribution networks. We then discuss how P2P networks could be used to

replace CDNs in our particular scenario. Next, we provide details about our

implementation. Finally, we provide results and conclusions.

Peer-to-Peer Networks as Content Distribution Networks

6

1. Technology Survey

1.1. Peer-to-Peer Networks

Before discussing the particulars of P2P networks as they relate to this project, it seems

appropriate to define more rigorously what we mean by peer-to-peer. The following

definition, proposed on OpenP2P.com, accurately captures the idea:

P2P is a class of applications that takes advantage of resources -- storage, cycles,
content, human presence -- available at the edges of the Internet
[…]
If you're looking for a litmus test for P2P, this is it:
1) Does it treat variable connectivity and temporary network addresses as the
norm, and
2) does it give the nodes at the edges of the network significant autonomy?[4]

In short, we believe that the essence of P2P networking is to aggregate the resources

(services, processing power, files) of nodes at the edge of the network. This is in sharp

contrast to the classical client-server paradigm where edge nodes have a much more

limited participation in network activities than servers do.

P2P networks offer many advantages over the client-server paradigm. Owing to their

distributed nature, P2P networks are naturally more fault tolerant than a central server-

based approach. Indeed, if a server (or server farm, for that matter) becomes unavailable

due to network congestion or equipment failure, the resources it is providing will be

unavailable for the duration of the outage. Because resources – files for instance – in P2P

networks are distributed on multiple geographically dispersed hosts, localized network

and equipment failures cannot easily prevent access to a resource. Also, since P2P

technology leverages existing network resources to create an overlay network, it doesn’t

require additional capital expenditures or maintenance. One can easily see why this

would be an attractive alternative to maintaining costly servers.

Peer-to-Peer Networks as Content Distribution Networks

7

One issue with P2P networks is that, once again, because of their decentralized

architecture, they are difficult for a single authority to control. We have seen that it is

very challenging to prevent piracy on P2P networks such as Gnutella and FastTrack,

where terabytes1 of copyrighted music are routinely available for illegal download.

Conversely, some P2P technologies such as Freenet leverage this “feature” to enable free

speech without fear of censorship:

 “To achieve this freedom, the network is entirely decentralized and publishers
and consumers of information are anonymous. Without anonymity there can never
be true freedom of speech, and without decentralization the network will be
vulnerable to attack[5].”

P2P networking technology has been used extensively for file sharing applications.

BearShare, LimeWire, Napster, Morpheus and Kazaa are just a few examples. Indeed, the

popularity of Napster, as well as its infamous and ultimately unsuccessful legal battle

with the Recording Industry Association of America (RIAA), were clearly instrumental

in fueling interest in peer-to-peer networks. P2P is also a popular paradigm for instant

messaging clients such as ICQ or MSN Messenger. [6] lists dozens of projects and

companies that are related to P2P in one way or another. Evidently P2P technologies are

gaining popularity and are finding applications in new domains.

1.2. Content Distribution Networks

Because the concept of content distribution networks is well known and well understood,

we will not describe it in great detail here. Nevertheless, we highlight a few key

characteristics that are relevant to our project.

CDNs are essentially distributed servers, placed throughout the lower-tier internet service

providers’ networks [7]. They each host a copy of the CDN’s customers’ content,

effectively replicating it in geographically dispersed locations. The intent is to distribute

the processing and bandwidth load to multiple locations. This reduces the chance of

1 Number obtained through personal observation

Peer-to-Peer Networks as Content Distribution Networks

8

network bottlenecks forming about a single location and also prevents a single equipment

failure from blocking access to the distributed content. CDNs typically also improve

performance by directing users to a server located close to their geographical area.

1.3. Peer-to-Peer Networks as Content Distribution
Networks: a Natural Progression

As we can see, P2P networks and CDNs are naturally similar. Both attempt to mitigate

potential equipment failures by relying on the distribution of resources. They also rely on

decentralization to share the processing and network load amongst many hosts or servers.

P2P networks are not directly suitable for use as CDNs because of their loose control

structure. Indeed, because no central authority can control the dissemination of content

through the network, there must be a built-in mechanism to ensure that the content is

genuine and authentic (i.e. that it came from the expected provider). This could easily be

achieved by embedding a secret encrypted key into the packages and having the clients

verify its presence before deeming the content to be authentic. Such considerations,

however, are beyond the scope of this project.

In summary, it seems that P2P networks, with slight modifications, may be suitable as

CDNs. Given all the advantages of P2P technologies over the server-based approach

employed by CDNs, this is a highly encouraging finding.

It is also worth clarifying what we mean by the distribution of versioned content in the

CDN. Versioned content is any type of resource where it is possible to ask: “Does any

host in the network have a version of this resource that is higher than mine?” Some

examples of versioned content are anti-virus updates, operating system patches and

online journals (versioned by date of publication, for instance).

Peer-to-Peer Networks as Content Distribution Networks

9

1.4. The Gnutella Network

Gnutella is a P2P protocol used for distributed file sharing. This project simulates a

Gnutella network based on version 0.4 of the protocol.

Hosts participating in the Gnutella network are termed servents (server + client). Servents

wishing to connect to the Gnutella network must obtain the IP address and Gnutella port

number of at least one other servent. This is generally done by querying a well known

host cache server, although this is not mandated by the protocol [9]. Once the servent is

connected to the network, it will try to establish Gnutella connections with other peers

until it has filled all its available connections slots, as configured by the Gnutella client. It

learns the addresses of servents through interaction with the servents it is already

connected to. All the connection messages are in ASCII text format, following syntactical

and semantic rules similar to HTTP [9]. Servents also send so-called ping messages to

probe the network for additional servents to connect to. Pong messages are sent in

response to pings and contain addresses of additional peers in the network. This

connection establishment phase can take several minutes. [8] suggests a possible

improvement to the protocol aimed at reducing this connection delay. The network

formed by Gnutella 0.4 has a flat hierarchy of peers, unlike the two-tiered network

developed by Gnutella 0.6 and subsequent versions.

Once two servents are connected, they exchange binary messages carried over TCP links

[9]. These messages are known as descriptors. Each one carries a 16-byte globally unique

id as well as a number of other fields that help manage descriptor propagation in the

network. The following table, adapted from [9] describes the key fields in Gnutella

descriptors.

Peer-to-Peer Networks as Content Distribution Networks

10

Field Byte

Offset
Description

Descriptor ID 0..15 Globally unique identifier for this descriptor. Servents need to
know if they are dealing with duplicate messages in some
circumstances and this field is used for that purpose.

Payload
Descriptor

16 Identifies the type of message this descriptor is carrying:
0x00 = Ping
0x01 = Pong
0x80 = Query
0x81 = QueryHit
0x40 = Push

Time to live
(TTL)

17 Number of hops left before this message expires. TTL is
decremented each time a servent forwards the descriptor. When
TTL = 0, the message is dropped.

Hops 18 Number of servents this message has crossed. This is
incremented each time a servent forwards the descriptor.

Payload
Length

19..22 Number of bytes in the message payload

As mentioned before, ping and pong messages are used during the connection phase, to

locate and report servents available for connection. Query descriptors are used to seek out

content in the network using keyword searches. QueryHit descriptors are sent in response

to queries in order to report the availability of the requested content at a given servent.

Push messages are used to circumvent firewalls that don’t allow incoming connections.

When a servent receives a query hit in response to a query it sent, it initiates a direct

download from the responding servent. This is done by sending an HTTP GET request

similar to the following:

GET /get/<File Index>/<File Name>/ HTTP/1.0\r\n
User-Agent: Gnutella/0.4\r\n (3)
Range: bytes=<Start Offset>-\r\n
Connection: Keep-Alive\r\n
\r\n [9]

Only the Query and QueryHit messages are of interest in this project.

Peer-to-Peer Networks as Content Distribution Networks

11

Query messages have the following format [9]:

Field Byte
Offset

Description

Minimum
Speed

0..1 Minimum speed in kb/s of servents that should respond to this
message.

Search
Criteria
String

2..N A space separated list of keywords being searched for.

Nul
Terminator

N + 1 The byte 0x00. Nul termination for the search string.

Optional
Query Data

N + 2..
L – 1

Reserved for future protocol extentions.

QueryHit descriptors have the following format [9]:

Field Byte
Offset

Description

Number of
Hits

0 The number of matches returned in this message

Port 1..2 The TCP port on which the responding servent is willing to
accept incoming connections (i.e. the expected HTTP GET).

Speed 7..10 The maximum upload speed in kb/s of the responding servent.
Result Set 11..10+N Contains Number of Hits successful search results

corresponding to the queried data.
Servent
Identifier

L – 16..
L – 1

Identifier unique to the responding servent. Required for push
operations.

2. Implementation

2.1. Objective

In order to facilitate the discussion, we introduce some terminology. Recalling that all

nodes in the Gnutella network are servents, we coin the term relevent to designate

servents that are interested in the versioned content we are considering. This does not

necessarily imply that they have the latest version, but they are interested in acquiring it.

By extension, irrelevents are hosts that don’t have an interest in our versioned content.

These are just regular Gnutella servents that could be sharing MP3 files, for example.

While they don’t want to download the content we are considering, the Gnutella protocol

Peer-to-Peer Networks as Content Distribution Networks

12

requires them to perform Query/QueryHit forwarding. Thus, they will facilitate the

propagation of our versioned content even though they don’t wish to acquire it for

themselves.

Essentially we wish to simulate the situation depicted in the following figure:

 As we can see, in this figure, four relevents are connected to the Gnutella network and an

unknown number of irrelevents are also connected. This number is assumed to be much

higher than the number of relevents. Two of the relevents have version 1.0 of the content,

one of them has version 1.2 and one of them has version 2.0. This project aims to

examine the propagation behaviour of the content through the network. In particular, we

would like to know how long it takes for all relevents to be updated to version 2.0 (the

highest version in the network) of the versioned resource.

Gnutella P2P
Network of

 Irrelevents

Relevent
(v1.0)

Relevent
(v1.0)

Relevent
(v2.0)

Relevent
(v1.2)

Peer-to-Peer Networks as Content Distribution Networks

13

2.2. Simplifications and Scope

Given the timeframe for this project, it was necessary to make some simplifying

assumptions. One of the most important simplifications is that we do not consider how

the overlay (i.e. P2P) network is established. Indeed, this rather complex process was the

focus of another project in a previous iteration of this course [8]. We ask the question:

“Given that the network has converged to some configuration, what is the behaviour

now?”, rather than actually simulating the connection phase, which is of little interest to

us in this investigation. We do, however ensure that the network we create conforms to

the Gnutella specification in terms of the maximum number of connections a host is

allowed to have. Like in the previous project, we neglect physical network topology, as it

is inconsequential to our analysis; for simplicity’s sake, chose to mirror Gnutella

connections with direct physical connections between the peers. The physical topology of

the network is fairly inconsequential to our analysis, but having the links mirror the

Gnutella connections makes it easier to visualize the network’s behaviour in ns-2’s

network animator (NAM).

In addition to neglecting the connection phase, we also chose not to implement the HTTP

download mechanism used for the actual transfer of content between peers. This would

have been a fairly trivial addition to the project, but it would not add much value to our

analysis. Indeed, this simple download can be considered a fixed-cost in acquiring

updates and is therefore not helpful in comparing the relative performance of different

network topologies. We therefore consider that once a relevent receives a QueryHit

indicating that a higher version is available, it has acquired that version.

We chose to limit our implementation to include only the fields of interest in the Query

and QueryHit descriptors. Essentially, this is the search string and the result set.

Furthermore, since the servents are only searching for version numbers, we chose to store

the search string and result set as integers in the descriptor objects. Also, since each

relevent only has one version of the content (the latest one it downloaded), each

QueryHit’s result set will only contain that one version.

Peer-to-Peer Networks as Content Distribution Networks

14

The Gnutella specification [9] states that if a node receives a message containing an

identifier it has seen before, it must drop that message and not propagate it further. This

requires nodes to keep track of all the identifiers of messages that pass through them,

leading to an ever increasing list of IDs. One approach to keep this list manageable is to

periodically flush it. Doing this in our simulation would have required the use of timers

and introduced a fair amount of complexity and computational overhead. We chose to

store path information in the descriptors instead of message IDs in the servents: the

descriptors keep a record of all nodes they passed through. Servents inspect this path and

don’t forward Queries to nodes that have already been visited. This is a slight deviation

from the protocol, but it made the implementation far simpler because descriptors have a

finite lifetime (their TTL) and therefore disappear naturally, unlike ID lists in servents.

As an additional simplification, we chose to use the Gnutella 0.4 network model [9],

which describes a flat network hierarchy. A more scalable two-tiered model is advocated

in Gnutella 0.6 [10], but implementing it would have diverted too much time from our

principal focus. Furthermore, we were not interested in studying Gnutella for its own

sake, but rather as an example of a P2P network. The simple, flat topology was therefore

more amenable to our application.

One more important simplification is that we don’t consider the connection state of the

P2P network to be transient. We act as if the topology that it converged to is the steady

state topology. We know this to be untrue because nodes enter and leave the network

frequently. However, between the time a relevent to enters the network and the time it

gets updated to the latest version, it is reasonable to assume that the connections are fairly

stable.

Finally, we wish to underscore that fact that since we cannot simulate realistic network

topologies with thousands of hosts, it may not be appropriate to generalize our results and

infer the behaviour of the real Gnutella network as a CDN[11]. Nevertheless, we can get

an idea of the performance on a smaller scale.

Peer-to-Peer Networks as Content Distribution Networks

15

2.3. Working Principle

This section describes the flow of our simulation. The details about the various

components interaction are presented in the following sections.

The characteristics of the simulation are entirely specified by the parameters in a global

configuration TCL file. These parameters are:

• Number of nodes: the total number of servents in the simulation (relevents +

irrelevents).

• Average number of links per servent: the average number of peers each servent is

exchanging Gnutella messages with.

• Maximum number of links per servent: the upper bound to the number of directly

connected peers. Required in order to ensure that our simulation respects the

Gnutella protocol, which does constrain this number [9].

• Probability that a servent is a relevent: controls the density of relevents in the

network.

• Time between queries: both minimum and maximum values between successive

queries sent out by relevents. The time is uniformly distributed between these two

values.

• Version update intervals: how often new versions of the content are introduced

into the network.

• Topology: speed and type links.

• RNG seed: specified in order to make simulations reproducible.

Our implementation essentially functions as follows:

1. We create a ring topology, ensuring we have a connected graph such that

all nodes are reachable.

2. Given the average number of links per servent and the number of nodes,

the total number of Gnutella connections is calculated.

Peer-to-Peer Networks as Content Distribution Networks

16

3. For each bidirectional connection, two nodes with available connection

slots (as determined by the specified maximum number of connections)

are selected at random and connected (both physically and with

TCP/Gnutella links).

4. One relevent in the network is seeded with the initial content version.

5. Relevents periodically (but not all at the same time) send out Gnutella

queries, searching for content with a version number greater than theirs.

Irrelevents don’t query, but they do forward queries, since they are

Gnutella servents. Relevents reply to Queries with QueryHit messages if

they can offer a higher version of the content. They also forward Queries

and QueryHits if their TTL is not elapsed.

6. From time to time, the network is seeded with a newer version of the

content.

7. We then observe the propagation behaviour of the update and see how

long it takes for it to reach all relevents. This is done by using a statistics

object, which monitors how many relevents have received the latest

version of the content at each second.

2.4. Object Implementation Details

This section presents the components involved in the simulation and describes their

functionality as well as their relationship with one another. The code for each of these

classes is presented in Appendix 1.

Peer-to-Peer Networks as Content Distribution Networks

17

GnutDescriptor

Class type: C++, Abstract Base Class

Description: This is the base class for all Gnutella application layer messages exchanged

in the simulation. It is derived from ns-2’s AppData class, which allows the transfer of

objects through the TcpApp’s send() method. This class encapsulates the functionality

common to all Gnutella descriptors and stores the message ID, hops, TTL and the list of

nodes traversed.

GnutQueryData

Class type: C++, Concrete

Description: This is a subclass of GnutDescriptor. It specializes by keeping information

related to the query string (just an integer version number) as well as the size in bytes of

the message. This size is used by ns-2 to calculate the time required to transmit the

message over a given link.

GnutQueryHitData

Class type: C++, Concrete

Description: This is a subclass of GnutDescriptor. It specializes by keeping information

related to the result set (simply an integer version number) as well as the size in bytes of

the message.

GnutPathList

Class type: C++, Concrete

Description: This class contains a list of all the node numbers traversed by a message.

Each GnutDescriptor object contains one instance of this class. As a query is forwarded,

each node it traverses adds its number to this list. When servents receive a Query, they

search its GnutPathList and only forward it to nodes that are not in the list. This path list

is also essential to the proper routing of QueryHit messages. The Gnutella protocol

specification [9] requires that QueryHits be back propagated along the path taken by the

Query that triggered them. Thus, the GnutPathList is used as a stack: the nodes are

Peer-to-Peer Networks as Content Distribution Networks

18

pushed onto the stack as a Query traverses them and popped (in the reverse order) as a

QueryHit makes it way back to the originating servent.

GnutAgent

Class type: C++/oTcl split object, Concrete Base Class

Description: This is a subclass of ns-2’s Process class. It represents irrelevents in our

simulation, i.e. regular Gnutella servents. It implements all the Query and QueryHit

forwarding logic, but does not itself generate Queries. It contains an associative map of

node numbers and ns-2 TcpApps. Given a servent ID (equivalent to a node number in our

simulation), the map will return the TcpApp object that is handling the connection to that

servent. It was necessary to use Process as the base class rather than Application because

Applications can only support a single connection.

GnutAgents register a callback method with each of their TcpApps in order to receive

any data coming in on their links. Once they get the data, they apply Gnutella’s protocol

logic to take the appropriate action. If the descriptor’s TTL is not zero, the GnutAgent

will examine the object’s GnutPathList. After incrementing the hop count and

decrementing the TTL, the GnutAgent will forward the message to all its peers that don’t

appear in the GnutPathList. If the TTL is zero, the message is effectively consumed and

not propagated any further.

The GnutAgent is also responsible for updating the NAM display to indicate the last

action it took. This part of the implementation is done in oTcl because of that language’s

natural affinity with NAM.

ReleventAgent

Class type: C++/oTcl split object, Concrete

Description: This is a subclass of GnutAgent. In addition to inheriting all of the

forwarding logic provided by its superclass, ReleventAgent implements the functionality

for sending Queries and QueryHits, as well as the capability to update the version of the

content it has.

Peer-to-Peer Networks as Content Distribution Networks

19

Like GnutAgents, ReleventAgents register a callback method with all their TcpApps.

When they receive data, they determine if the message is a Query or a QueryHit. If it is a

Query, they examine the query string and check if their version of the content is higher

than the one in the Query. If it is, they will construct a new GnutQueryHitData object

based on the GnutQueryData object received and send it back through the same link it

was received from. The ReleventAgent will then delegate to its superclass to make Query

forwarding decisions. If the received message is a QueryHit, the ReleventAgent will

examine the GnutPathList object it contains to see if it is the intended recipient of the hit.

If it is, it will check the version in the result set and update to that version if it is higher

than its own. It will also consume the QueryHit and not propagate it further. At that point,

the ReleventAgent will inform the Stats object that it has updated to a new version so that

the simulation can keep track of how many nodes have been updated. If, on the other

hand, the QueryHit was intended for another relevent, the ReleventAgent will invoke the

base class, GnutAgent, to apply QueryHit forwarding logic.

ReleventAgents periodically flood all their links with Queries, searching for content with

a version higher than their own. To do this, they construct a GnutQueryData object with

their version as a query string. They then send that object to all their peers using the

TcpApps’ send() method.

Some of the ReleventAgent’s functionality is implemented in oTcl. In particular, the

functions that relate to updating the NAM display to reflect the last action taken by the

servent are written in oTcl. Also, the timer which triggers the periodic queries is armed in

Tcl as this is the only way to interact with the NS simulator.

Stats

Class type: oTcl, Concrete Singleton

Description: This object is responsible for recording the results of the simulation. The

test harness notifies it when it introduces a new version of the content into the network.

When relevents update to that version, they also inform the Stats object. Every second,

Peer-to-Peer Networks as Content Distribution Networks

20

the Stats object tallies how many relevents have not been updated to the latest version

and records this to a log file. This file is the result set we will analyze.

3. Simulation Results

3.1. Analysis Framework

Before presenting our simulation results, it seems appropriate to introduce a framework

for analyzing them. We simulated a number of different topologies, differing only by

their connectivity parameters (average and maximum number of links per node) and the

prevalence of relevents in the network. We call the prevalence of relevents the density of

the network. A dense network has a high proportion of relevents and sparse networks

have relatively few relevents with respect to the total number of servents.

In order to answer the first important question we set out to examine – can P2P networks

be used as CDNs? – we look at the number of unupdated relevents as a function of time.

Each time a new version of the content is introduced into the network, that is to say that

one relevent is seeded with it, the number of relevents not updated should be the total

number of relevents less one. If the network is acting successfully as a CDN, this number

should drop to zero over time. If the steady state result is non-zero, some relevents were

not able to get the latest version and the scenario is a failure.

The second issue we wished to investigate was how well the different topologies

functioned as CDNs. We hoped to infer some relationship between the varying

parameters – connectivity and density – and the performance of the network. This

performance is a function of the time elapsed from the moment an update is introduced

into the network until the last relevent is updated (propagation time). Furthermore, the

value of our metric should be inversely proportional to the number of relevents. This

arises from the fact that if one scenario has a large number of relevents and another has a

smaller number of relevents, but they both require the same propagation time, the

network with fewer nodes is exhibiting poorer relative performance. The last point to

Peer-to-Peer Networks as Content Distribution Networks

21

consider in the derivation of our objective function is the fact that it should be an average

over several trials within each scenario. A trial is the measurement of the propagation

time after each introduction of a new version. Thus, our metric, the normalized update

time, is defined as follows:

∑
=

=
T

j

p

n
t

T
U j

1

1 ,

where T is the number of trials,
jpt is the propagation time at the jth trial and n is the

number of relevents in the network. We plot U as a function of the connectivity and

density parameters in order to examine their effect on network performance.

3.2. Results

Figure 3.2-1: Weakly Connected, Sparse Network
avg conns = 2, max cons = 2, 5% Relevents

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200

t [s]

Re
le

ve
nt

s
no

t U
pd

at
ed

As we can see in figure 3.2-1, for a weekly connected, sparse network, the steady state

value is 2, revealing that two relevents are never able to update to the latest version over

time. Thus, this is a scenario where P2P networks don’t work as CDNs.

Peer-to-Peer Networks as Content Distribution Networks

22

The figure 3.2-2 shows another failure scenario with the same connectivity parameters,

but a larger proportion of relevents. We can see that 11 relevents are never able to update

to the latest version of the content.

Figure 3.2-2: Weakly Connected, Medium Sparse Network
avg conns = 2, max cons = 2, 25% Relevents

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200

t [s]

Re
le

ve
nt

s
no

t U
pd

at
ed

If the density of the network is further increased to 50% relevents, thus forming a very

dense network, we observe that all relevents are eventually able to obtain the latest

version of the content. This situation is depicted in figure 3.2-3. The width of the spikes

correspond to the
jpt values in the formula for U.

Peer-to-Peer Networks as Content Distribution Networks

23

Figure 3.2-3: Weakly Connected, Medium Sparse Network
avg conns = 2, max cons = 2, 50% Relevents

-1
0

1
2

3
4

5
6

7
8

0 200 400 600 800 1000 1200

t [s]

Re
le

ve
nt

s
no

t U
pd

at
ed

While this type of graph is convenient for visually seeing the number of relevents not

updated dropping to zero, it does not lend itself well to quantifying the performance of

the various network topologies we examined. The previous figures were provided only to

illustrate the difference between the failure cases and an example of success. The

following figures in this section show the normalized update time U as a function of the

connectivity and density parameters for all cases where ∞<U , that is to say all

successful cases.

Figure 3.2-4 shows that U seems to decrease quasi-linearly as the average connectivity of

the relevents is increased. We indeed expected to see that U would decrease as relevents

were in contact with more and more peers, thus increasing their chances of being close to

a relevent with the desired content. This experiment was carried out using a network

where 40% of the nodes were relevents and the maximum number of connections for any

given node was 8.

Peer-to-Peer Networks as Content Distribution Networks

24

Figure 3.2-4: Normalized Update Time vs Average Number of
Connections

0

0.5

1

1.5

2

2.5

3

2 2.5 3 3.5 4 4.5 5 5.5 6

Average Number of Connections

U
 [s

ec
/re

le
ve

nt
]

Figure 3.2-5 shows the dependency of U on the density of the network. We can see that

as the proportion of relevents increases, the normalized update time decreases sharply.

We note, however, that once the density reaches a certain threshold, just below 70%, we

observe little improvement in U as the density increases further. Presumably all relevents

are close enough to each other that adding further ones does not significantly improve the

situation. Nevertheless, the decreasing trend is as expected. This experiment was carried

out by holding the average number of connections of each servent fixed at 3 and the

maximum number of connections at 8.

Peer-to-Peer Networks as Content Distribution Networks

25

Figure 3.2-5: Normalized Update Time vs Network Density

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

20 30 40 50 60 70 80

Density (Relevents/Servents)%

U
[s

ec
/re

le
ve

nt
]

It is very important to note that the simulations carried out in order to obtain the results

presented here were very CPU and memory intensive. Thus, it was necessary to restrict

them to a small number of nodes. In all cases, 50 nodes were used. Even with that small

number, the simulations required several hours to run, no doubt due to the large number

of connections involved and the complex message processing. As a result, the number of

sample points on the graphs presented here is small and we may therefore be mislead as

to the real trend. Furthermore, because of the small number of nodes, it is difficult to

make claims as to the performance of real-sized networks. Indeed, the Gnutella network

is larger than our simulation by a factor of 1000 and it is doubtful that our

implementation accurately captures the complex behaviour involved in the real network.

Nevertheless, our results are pleasing in that they agree with the intuitive notions that the

update time should decrease as connectivity and network density increase.

Peer-to-Peer Networks as Content Distribution Networks

26

4. Discussion and Conclusions

In this project, we set out to examine the possibility of using P2P networks as content

delivery networks for versioned content. We wished to determine if the idea was feasible

as well as obtain a rough idea of how certain network parameters influence performance.

We conducted simulations using a 50-node Gnutella network with different connectivity

and density values and observed that the normalized update time decreased as the

connectivity and density of the network increased. We also noted that once connectivity

reached a certain threshold, performance stopped improving as the average number of

connections per servent increased.

Gnutella is a fairly complex protocol and one of the major challenges in this project was

to make coherent simplifications that facilitated the implementation yet still captured the

essence of the protocol. Another important challenge was designing a suitable metric for

evaluating the performance of the various network topologies. Furthermore, it was a non-

trivial task to capture all the network parameters we wished to vary in our test harness.

All these issues notwithstanding, the most difficult part of the project was simply

implementing the Gnutella protocol in ns-2.

There are many opportunities for further work and improvement to this project. Its most

significant shortcoming is the small scale simulation upon which we based our analysis.

Although we will most likely never be able to simulate Internet-sized networks [11], we

can still hope to simulate networks with a few hundred or perhaps a few thousand nodes.

It is likely that our code can be optimized and be run on a more powerful computer in

order to make such simulations realistic. Also, assuming simulations can be run faster, it

would be desirable to sample a broader range within our chosen parameters – and indeed

additional parameters as well – and observe their effect on the propagation behaviour of

versioned content. Also, for the sake of completeness, it would be appropriate to integrate

this project with past work related to the Gnutella P2P network, such as [8], as well as to

Peer-to-Peer Networks as Content Distribution Networks

27

implement the HTTP download phase. Our project gives a glimpse of the behaviour of

P2P networks as CDNs, but to get a more complete picture, further work is in order.

Peer-to-Peer Networks as Content Distribution Networks

28

5. References

[1] A. El Saddik, and A. Dufour, "Peer-to-Peer Suitability for Collaborative Multiplayer
Games," In Proceedings of the Seventh IEEE International Symposium on Distributed
Simulation and Real Time Applications, Delft, Netherland 25th - 28th Oct. 2003.

[2] A. El Saddik, and A. Dufour, "Peer-to-Peer Communication through the Design and
Implementation of Xiangqi," In Proceedings of the International Conference on Parallel
and Distributed Computing, Klagenfurt, Austria 26th - 29th August 2003.

[3] CDN shortlist (printable version):
http://www.hostingtech.com/connectivity/02_06_cdn_print.html,
(accessed October 28, 2003).

[4] What is P2P… and What Isn’t [Nov. 24, 2000]:
http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html?page=2,
(accessed October 27, 2003).

[5] The Freenet Project:
http://www.freenetproject.org/,
(accessed October 27, 2003).

[6] OpenP2P.com P2P Directory Listings by Category [Jun. 09, 2003]:
http://www.openp2p.com/pub/q/p2p_category,
(accessed October 28, 2003).

 [7] J. Kurose, and K. Ross, “Computer Networking: A Top Down Approach Featuring
the Internet”, 2nd edition. Addison-Wesley, July 2002.

[8] A. Fouron, and B. Fraser, “Dynamic Connection Creation in the Gnutella Network,”
Graduate Work, Simon Fraser University, 2003.

[9] Gnutella – Stable – 0.4:
http://rfc-gnutella.sourceforge.net/developer/stable/index.html,
(accessed October 10, 2003).

[10] Gnutella Protocol Development:
http://rfc-gnutella.sourceforge.net/developer/testing/index.html,
(accessed October 10, 2003).

[11] S. Floyd and V. Paxson, ``Difficulties in simulating the Internet,'' IEEE/ACM
Transactions on Networking, vol. 9, no. 4, pp. 392 - 403, August 2001.

Peer-to-Peer Networks as Content Distribution Networks

29

Appendix 1: Code Listing

File: gnut_globals.tcl
Author: Andre Dufour

Contains configuration options for the simulation. This is the only file
That should be changed in order to modify the parameters of the simulation.

Maximum number of connections any node can have
set max_conns 10

Average number of connections a node has
set avg_conns 8

Number of nodes in the simulation
set nnodes 10

Seed for the random number generator. Specifying this
ensures that is it possible to reproduce simulations.
set seed 26
set rng [new RNG]
$rng seed $seed

Percentage probability that a node is a "relevent"
set relprob 40

Minimum and maximum delay in seconds between queries for a given node.
set min_query_delay 1
set max_query_delay 20

Physical link characteristics
set link_speed "100Mb"
set link_delay "10ms"
set link_queue "DropTail"

Validation of options
if {$avg_conns > $max_conns} {
 error "avg_conns must be smaller than or equal to max_conns"
}

if {$min_query_delay > $max_query_delay} {
 error "min_query_delay must be smaller than or equal to max_query_delay"
}

Calculated globals
set nconns [expr ($avg_conns * $nnodes / 2) - $nnodes]

Peer-to-Peer Networks as Content Distribution Networks

30

File: real_topology.tcl
Author: Andre Dufour

Core of the simulation.

#import Global constants
source gnut_globals.tcl

#Misc globals
set agentnum 0
set cur_flow_id 0

#Only keep the headers we need; conserve memory
remove-all-packet-headers
add-packet-header ARP IP TCP

#Create a simulator object
set ns [new Simulator]

Setup routing - distance vector
$ns rtproto DV

#Open the nam trace file
#set nf [open real.nam w]
#$ns namtrace-all $nf

#Clear out the old stats file
file delete "stats.out"

#Define a 'finish' procedure
proc finish {} {
global ns nf
$ns flush-trace
 #Close the trace file
close $nf
 #Execute nam on the trace file
exec nam real.nam &
 exit 0
}

#Get a random node
proc getRndNodeIdx { maxIdx } {
 global rng
 return [expr round(floor([$rng uniform 0 $maxIdx]))]
}

proc startqueries {} {
 global rellist gnut_apps
 for {set i 0} {$i < [llength $rellist]} {incr i} {
 $gnut_apps([lindex $rellist $i]) startQueries
 }
}

proc stopqueries {} {
 global rellist gnut_apps
 for {set i 0} {$i < [llength $rellist]} {incr i} {
 $gnut_apps([lindex $rellist $i]) stopQueries
 }
}

proc connectNodes { n1 n2 } {
 global n ns agentnum agent conns cur_flow_id conn_list tcp_apps gnut_apps
 global link_speed link_delay link_queue

 #Physically connect the two nodes
 $ns duplex-link $n($n1) $n($n2) $link_speed $link_delay $link_queue

 #Create a TCP agent for each of the nodes participating in the connection
 set agent_1 $agentnum
 set agent_2 [expr $agentnum + 1]
 set agent($agent_1) [new Agent/TCP/FullTcp]
 $ns attach-agent $n($n1) $agent($agent_1)
 incr agentnum
 set agent($agent_2) [new Agent/TCP/FullTcp]
 $ns attach-agent $n($n2) $agent($agent_2)
 incr agentnum
 $agent($agent_1) set fid_ $cur_flow_id

Peer-to-Peer Networks as Content Distribution Networks

31

 $agent($agent_2) set fid_ $cur_flow_id
 $ns color $cur_flow_id red
 incr cur_flow_id
 $ns connect $agent($agent_1) $agent($agent_2)
 $agent($agent_1) listen
 $agent($agent_2) listen

 #Create some TCP apps and connect them too
 set tcp_apps($agent_1) [new Application/TcpApp $agent($agent_1)]
 set tcp_apps($agent_2) [new Application/TcpApp $agent($agent_2)]

 $tcp_apps($agent_1) connect $tcp_apps($agent_2)

 #Now, tell the gnut apps about which TcpApps are theirs and which node
 #they are connected to.
 $gnut_apps($n1) gnutconnect $n2 $tcp_apps($agent_1)
 $gnut_apps($n2) gnutconnect $n1 $tcp_apps($agent_2)

 incr conns($n1)
 incr conns($n2)
 lappend conn_list($n1) $n2
 lappend conn_list($n2) $n1
}

Main

set conns_avail [list]

Create the nodes and GnutApps
for {set i 0} {$i < $nnodes} {incr i} {
 set n($i) [$ns node]

 #Create the gnut app. Can be either a relevent or an irrelevent
 if {[expr round(floor([$rng uniform 0 100]))] <= $relprob} {
 # it's a relevent
 set gnut_apps($i) [new Relevent $ns $n($i)]
 lappend rellist $i
 } else {
 # it's an irrelevent
 set gnut_apps($i) [new Gnut $ns $n($i)]
 }

 $gnut_apps($i) setnodenumber $i
 set conns($i) 0
 set conn_list($i) $i
 $n($i) label "[$gnut_apps($i) getversion]"
 lappend conns_avail $i
}

First, create a ring topology to ensure that we have a single connected
graph.
for {set i 0} {$i < [expr $nnodes - 1]} {incr i} {
 connectNodes $i [expr $i + 1]
}
connectNodes 0 [expr $nnodes - 1]

Now, while there are still connections available, select two nodes
that have room for new connections at random and connect them.
for {set i 0} {($i < $nconns) && ([llength $conns_avail] > 1)} {incr i} {
 set valid_conn 0
 while {$valid_conn == 0} {
 set n1 [lindex $conns_avail [getRndNodeIdx [llength $conns_avail]]]
 set n2 [lindex $conns_avail [getRndNodeIdx [llength $conns_avail]]]

 if {($n1 != $n2) && ([lsearch $conn_list($n1) $n2] == -1)} {
 connectNodes $n1 $n2
 set valid_conn 1
 }
 }

 if {$conns($n1) == $max_conns} {
 # n1 has reached its max number of conns. Remove it from the
 # available list
 set delidx [lsearch $conns_avail $n1]
 set conns_avail [lreplace $conns_avail $delidx $delidx]
 }

 if {$conns($n2) == $max_conns} {
 # n2 has reached its max number of conns. Remove it from the

Peer-to-Peer Networks as Content Distribution Networks

32

 # available list
 set delidx [lsearch $conns_avail $n2]
 set conns_avail [lreplace $conns_avail $delidx $delidx]
 }
}

set stats [new Stats $ns [llength $rellist]]
for {set i 0} {$i < [llength $rellist]} {incr i} {
 $gnut_apps([lindex $rellist $i]) setStats $stats
}

Kick off the simulation
$ns at 1.0 "$stats timerTick"
$ns at 1.0 "startqueries"
$ns at 2.0 "$stats newVersion 18"
$ns at 2.0 "$gnut_apps([lindex $rellist 0]) setversion 18"
$ns at 50.0 "$stats newVersion 19"
$ns at 50.0 "$gnut_apps([lindex $rellist 0]) setversion 19"
$ns at 150.0 "$stats newVersion 20"
$ns at 150.0 "$gnut_apps([lindex $rellist 0]) setversion 20"
$ns at 250.0 "$stats newVersion 21"
$ns at 250.0 "$gnut_apps([lindex $rellist 0]) setversion 21"
$ns at 350.0 "$stats newVersion 22"
$ns at 350.0 "$gnut_apps([lindex $rellist 0]) setversion 22"
$ns at 450.0 "$stats newVersion 23"
$ns at 450.0 "$gnut_apps([lindex $rellist 0]) setversion 23"
$ns at 550.0 "stopqueries"
$ns at 650.0 "finish"

#Run the simulation
$ns run

Peer-to-Peer Networks as Content Distribution Networks

33

/*
 * File: gnutagent.h
 * Author: Andre Dufour
 *
 * Description: Header file for the Gnutella servents that participate in
 * the CDN simply by forwarding queries and query hits.
 *
 */

#ifndef __GNUT_AGENT_H__
#define __GNUT_AGENT_H__

#include <map>
#include "ns-process.h"
#include "tclcl.h"

// Forward declarations
class AppData;
class TcpApp;
class GnutDescriptor;

class GnutAgent : public Process {
public:
 // = Foundation

 GnutAgent(void);

 virtual ~GnutAgent(void);

 // = Action

 // Process commands from TCL
 virtual int command(int argc, const char*const* argv);

 // Process recv'd packets
 void process_data(int, AppData* data);

protected:
 virtual void processQuery(GnutDescriptor* aData);

 // Return true if the hit was for this node, false otherwise.
 virtual bool processQueryResponse(GnutDescriptor* aData);

 // Establish a Gnutella application level connection between
 // this node and the specified node/app.
 int gnutConnect(unsigned int aNodeNumber, TcpApp* aApp);

 // Flood a descriptor out on all connections except the one
 // it came from.
 void floodMsg(GnutDescriptor* aDescr) const;

 // = Access

 // For some reason, the implementors of the name() method neglected to make
 // it a const method even though it doesn't change instance variables.
 // This is inconvenient when we want to call name() from within a const
 // method - we can't. So, the following method plays a dirty little trick
 // to make the call possible :(
 const char* getName() const;

 // = Types

 typedef std::map<unsigned int, TcpApp*> ConnMap;

 // = Constants
 // These constants are the strings that will be displayed in
 // NAM. They describe the action last taken by a GnutAgent.

 // Initiated a query
 static const char* const INIT_QUERY;

 // Forwarded a query
 static const char* const FW_QUERY;

 // Dropped a query with expired TTL
 static const char* const DR_QUERY;

 // Generated a query hit

Peer-to-Peer Networks as Content Distribution Networks

34

 static const char* const INIT_QUERY_HIT;

 // Forwarded a query hit
 static const char* const FW_QUERY_HIT;

 // Updated version
 static const char* const UPDATED;

 // = Data

 unsigned int mNodeNumber;

 // Map associating node numbers and the TCP connections
 // to reach those nodes.
 ConnMap mConns;

private:
 // = Action

 // Return true if the message should be processed further.
 // On false, the message should be ignored.
 bool preProcessQuery(GnutDescriptor* aData) const;
 bool preProcessQueryResponse(GnutDescriptor* aData) const;

 // Propagate message as appropriate
 void postProcessQuery(GnutDescriptor* aData) const;
 void postProcessQueryResponse(GnutDescriptor* aData) const;

 // Disable copy constructor and assignment operator for safety.
 GnutAgent(const GnutAgent&);
 GnutAgent& operator=(const GnutAgent&);
};

#endif /* __GNUT_AGENT_H__ */

Peer-to-Peer Networks as Content Distribution Networks

35

/*
 * File: gnutagent.cc
 * Author: Andre Dufour
 *
 * Description: Implementation for the GnutAgent agent type in ns-2.
 *
 */

#include <assert.h>
#include <stdio.h>

#include "gnututil.h"
#include "gnutagent.h"
#include "gnutdescriptor.h"
#include "gnutquerydata.h"
#include "gnutqueryhitdata.h"
#include "../webcache/tcpapp.h"

// Definition of static class members
const char* const GnutAgent::INIT_QUERY = "IQ";
const char* const GnutAgent::FW_QUERY = "FQ";
const char* const GnutAgent::DR_QUERY = "DQ";
const char* const GnutAgent::INIT_QUERY_HIT = "IQH";
const char* const GnutAgent::FW_QUERY_HIT = "FQH";
const char* const GnutAgent::UPDATED = "UPD";

//===
GnutAgent::
GnutAgent(void)
: mNodeNumber(0)
{ }
//===
GnutAgent::
~GnutAgent(void)
{
 // Something went really wrong!
 assert(false);
}
//===
int
GnutAgent::
command(int argc, const char*const* argv)
{
 if (argc >= 2)
 {
 // "gnutconnect"
 if (strncmp(argv[1], "gnutconnect", strlen("gnutconnect")) == 0)
 {
 if (argc == 4)
 {
 // Connect to new sevent
 TcpApp* app = (TcpApp*)TclObject::lookup(argv[3]);
 return gnutConnect(atoi(argv[2]), app);
 }
 else
 {
 GNUT_DBG_PRINT("Wrong number of args for gnutconnect\n");
 return TCL_ERROR;
 }
 }
 // "getversion"
 else if (strncmp(argv[1], "getversion", strlen("getversion")) == 0)
 {
 Tcl::instance().resultf(" "); // No label for IRs
 return TCL_OK;
 }
 // "setnodenumber"
 else if (strncmp(argv[1], "setnodenumber", strlen("setnodenumber")) == 0)
 {
 if (argc == 3)
 {
 mNodeNumber = atoi(argv[2]);
 return TCL_OK;
 }
 else
 {
 GNUT_DBG_PRINT("Didn't specify node number\n");
 return TCL_ERROR;
 }

Peer-to-Peer Networks as Content Distribution Networks

36

 }
 }
 GNUT_DBG_PRINT("Got some weird command .%s.\n", argv[1]);
 return TCL_ERROR;
}
//===
// Private
int
GnutAgent::
gnutConnect(unsigned int aNodeNumber, TcpApp* aApp)
{
 if (aApp != 0)
 {
 // Don't want duplicate connections
 assert(mConns.find(aNodeNumber) == mConns.end());
 mConns[aNodeNumber] = aApp;
 aApp->target() = this;
 return TCL_OK;
 }
 return TCL_ERROR;
}
//===
void
GnutAgent::
process_data(int, AppData* aData)
{
 GnutDescriptor* descr = static_cast<GnutDescriptor*>(aData);
 switch (descr->type())
 {
 case GNUT_QUERY:
 if (preProcessQuery(descr))
 {
 processQuery(descr);
 postProcessQuery(descr);
 }
 break;
 case GNUT_QUERY_RESPONSE:
 if (preProcessQueryResponse(descr))
 {
 if (processQueryResponse(descr) == false)
 {
 // Only consider forwarwind response if it was not
 // for this servent.
 postProcessQueryResponse(descr);
 }
 }
 break;
 default:
 GNUT_DBG_PRINT("%u got an unknown AL message\n", mNodeNumber);
 abort();
 break;
 }
}
//===
void
GnutAgent::
processQuery(GnutDescriptor* aData)
{
 // TODO: update display to reflect last action.
 GNUT_DBG_PRINT("IR %u not doing anything w/ query\n", mNodeNumber);
}
//===
bool
GnutAgent::
preProcessQuery(GnutDescriptor*) const
{
 // Queries are always processed.
 return true;
}
//===
bool
GnutAgent::
preProcessQueryResponse(GnutDescriptor* aData) const
{
 assert(aData->getPath().isNodeNextInPath(mNodeNumber));
 // If this isn't for us, return false?
 return true;
}
//===

Peer-to-Peer Networks as Content Distribution Networks

37

void
GnutAgent::
postProcessQuery(GnutDescriptor* aData) const
{
 if (aData->getTtl() > 1)
 {
 GnutQueryData* query = static_cast<GnutQueryData*>(aData);
 GnutQueryData* newQuery = new GnutQueryData(*query);

 newQuery->addNodeToPath(mNodeNumber);

 floodMsg(newQuery);
 Tcl::instance().evalf("%s updateLabel %s", getName(), FW_QUERY);
 }
 else
 {
 GNUT_DBG_PRINT("%u dropping query with expired ttl\n", mNodeNumber);
 Tcl::instance().evalf("%s updateLabel %s", getName(), DR_QUERY);
 }
}
//===
bool
GnutAgent::
processQueryResponse(GnutDescriptor* aData)
{
 GNUT_DBG_PRINT("IR %u processing query response\n", mNodeNumber);

 // IR's should never be the ultimate destination for a hit.
 assert(!(aData->getPath().isHitForNode(mNodeNumber)));
 assert(aData->getTtl() > 1);
 return false;
}
//===
void
GnutAgent::
postProcessQueryResponse(GnutDescriptor* aData) const
{
 if (aData->getTtl() > 1 && (!(aData->getPath().isHitForNode(mNodeNumber))))
 {
 // Take ourselves out of the path and forward it on.
 GnutQueryHitData* hit = static_cast<GnutQueryHitData*>(aData);
 GnutQueryHitData* newHit = new GnutQueryHitData(*hit);
 newHit->removeNodeFromPath();
 newHit->nextHop();
 GNUT_DBG_PRINT("new path = ");
 newHit->getPath().printPath();

 ConnMap::const_iterator out_conn = mConns.find(newHit->getPath().getNextNode());
 assert(out_conn != mConns.end());

 GNUT_DBG_PRINT("%u forwarding query hit to %u\n", mNodeNumber, out_conn->first);
 out_conn->second->send(newHit->getSize(), newHit);
 Tcl::instance().evalf("%s updateLabel %s", getName(), FW_QUERY_HIT);
 GNUT_DBG_PRINT("Query hit forwarded\n");
 }
 else
 {
 GNUT_DBG_PRINT("%u dropped hit with expired ttl or because it was the dest\n");
 }
}
//===
void
GnutAgent::
floodMsg(GnutDescriptor* aDescr) const
{
 for (ConnMap::const_iterator iter = mConns.begin();
 iter != mConns.end();
 iter++)
 {
 if (aDescr->getPath().isNodeInPath(iter->first))
 {
 // Don't send back where it has already been.
 GNUT_DBG_PRINT("%u not sending msg to %u - already in path.\n",
 mNodeNumber, iter->first);
 continue;
 }
 GnutDescriptor* msg = static_cast<GnutDescriptor*>(aDescr->copy());
 msg->nextHop(); // important: decrement ttl and increment hop cnt
 iter->second->send(msg->getSize(), msg);

Peer-to-Peer Networks as Content Distribution Networks

38

 GNUT_DBG_PRINT("%u sent msg to %u with ttl = %u\n", mNodeNumber, iter->first,
msg->getTtl());
 }

 GNUT_DBG_PRINT("Done flooding method\n");
}
//===
const char*
GnutAgent::
getName() const
{
 GnutAgent* this_agent = const_cast<GnutAgent*>(this);
 return this_agent->name();
}
//===
// TCL Binding
static class GnutAppClass : public TclClass
{
public:
 GnutAppClass() : TclClass("Gnut") {}
 TclObject* create(int, const char*const* argv)
 { return (new GnutAgent()); }
} class_gnut_app;
//===

Peer-to-Peer Networks as Content Distribution Networks

39

Constructor
Gnut instproc init { aNs aNode } {
 $self next

 $self instvar mNs mNode
 set mNs $aNs
 set mNode $aNode
 $mNode color black
}

Gnut instproc updateLabel { aLastAction } {
 $self instvar mNode

 $mNode label "$aLastAction"
}

Peer-to-Peer Networks as Content Distribution Networks

40

/*
 * File: gnutdescriptor.h
 * Author: Andre Dufour
 *
 * Description: Abstract base class for Gnutella messages
 *
 */

#ifndef __GNUTDESCRIPTOR_H__
#define __GNUTDESCRIPTOR_H__

#include <tcl.h>
#include "gnutpathlist.h"
#include "ns-process.h"
#include "app.h"

class GnutDescriptor : public AppData
{
public:
 // = Foundation

 // Create a descriptor with a new GUID and the default TTL value
 GnutDescriptor(AppDataType aType);

 // Create a descriptor based on the provided one.
 GnutDescriptor(AppDataType aType, const GnutDescriptor& aDescr);

 virtual ~GnutDescriptor(void);

 // = Access

 // Get the size of this message in bytes.
 virtual unsigned long getSize(void) const = 0;

 // Get message id
 inline unsigned long getId(void) const { return mId; }

 // Get the number of hops traversed by this message
 inline unsigned char getHops(void) const { return mHops; }

 // Get the ttl of this message
 inline unsigned char getTtl(void) const { return mTtl; }

 // Access to the path list
 inline const GnutPathList& getPath(void) const { return mPathList; }

 // = Action

 // Add specified node as the most recent in the path
 void addNodeToPath(unsigned int aNodeNumber);

 // Remove the most recent node in path
 void removeNodeFromPath(void);

 // Adjust hops and ttl ctrs
 void nextHop(void);

 // Reset hop and ttl ctrs to initial values
 void resetCounters(void);

 // Number of hops message can traverse before expiring
 enum {GNUT_DEFAULT_TTL = 16};

private:
 // = Data

 GnutPathList mPathList;
 unsigned long mId;
 unsigned char mHops;
 unsigned char mTtl;

 static unsigned long theNextId;

 // Disable copy constructor and assignment operator for safety.
 GnutDescriptor(const GnutDescriptor&);
 GnutDescriptor& operator=(const GnutDescriptor);
};
#endif /* __GNUTDESCRIPTOR_H__ */

Peer-to-Peer Networks as Content Distribution Networks

41

/*
 * File: gnutdescriptor.cc
 * Author: Andre Dufour
 *
 * Description: Abstract base class for Gnutella messages
 *
 */

#include <tcl.h>
#include "gnutdescriptor.h"
#include "ns-process.h"
#include "app.h"

// Init static variable
unsigned long GnutDescriptor::theNextId = 0;

//===
GnutDescriptor::
GnutDescriptor(AppDataType aType)
: AppData(aType),
 mId(theNextId++),
 mHops(0),
 mTtl(GNUT_DEFAULT_TTL)
{ }
//===
GnutDescriptor::
GnutDescriptor(AppDataType aType, const GnutDescriptor& aDescr)
: AppData(aType),
 mPathList(aDescr.mPathList),
 mId(aDescr.mId),
 mHops(aDescr.mHops),
 mTtl(aDescr.mTtl)
{
 assert(aDescr.mTtl > 0);
}
//===
GnutDescriptor::
~GnutDescriptor(void)
{ }
//===
void
GnutDescriptor::
addNodeToPath(unsigned int aNodeNumber)
{
 mPathList.printPath();
 mPathList+=aNodeNumber;
}
//===
void
GnutDescriptor::
removeNodeFromPath(void)
{
 mPathList--;
}
//===
void
GnutDescriptor::
nextHop(void)
{
 assert(mTtl > 1);
 mTtl--;
 mHops++;
}
//===
void
GnutDescriptor::
resetCounters(void)
{
 mHops = 0;
 mTtl = GNUT_DEFAULT_TTL;
}
//===

Peer-to-Peer Networks as Content Distribution Networks

42

/*
 * File: gnutpathlist.h
 * Author: Andre Dufour
 *
 * Description: Encapsulates a list of nodes traversed by a query
 * so that the corresponding query hit can be back
 * propagated properly.
 *
 */

#ifndef __GNUTPATHLIST_H__
#define __GNUTPATHLIST_H__

#include <list>

class GnutPathList
{
public:
 // = Foundation

 GnutPathList(void);

 virtual ~GnutPathList(void);

 // = Access

 // Checks whether the specified node is the next one on the path.
 // If it is not, a Gnutella having that node number and receiving
 // a query hit message with this path must ignore the query hit
 // and must not propagate it.
 bool isNodeNextInPath(unsigned int aNodeNumber) const;

 // Checks whether the specified node is anywhere on the path. If it is,
 // agents must not send queries there again.
 bool isNodeInPath(unsigned int aNodeNumber) const;

 // Checks whether the query hit message is in response to a query
 // that originated at the specified node.
 bool isHitForNode(unsigned int aNodeNumber) const;

 // Return the first node on the reverse path (i.e. the last node
 // visited). Needed to route query hit messages on reverse path.
 unsigned int getNextNode(void) const;

 // = Action

 // Adds the specified node to the path. Every node on the
 // query's path must do this.
 GnutPathList& operator+=(unsigned int aNodeNumber);

 // Removes an element from the path. Every node on the
 // query hit's path (the reverse path) must do this.
 GnutPathList& operator--(int);

 // TODO: debug
 void printPath(void) const;

private:
 // = Types
 typedef std::list<unsigned int> PathList;

 // = Data

 // List of nodes traversed
 PathList mList;

 // Disable assignment operator for safety
 GnutPathList& operator=(const GnutPathList&);
};

#endif /* __GNUTPATHLIST_H__ */

Peer-to-Peer Networks as Content Distribution Networks

43

/*
 * File: gnutpathlist.cc
 * Author: Andre Dufour
 *
 * Description: Implementation for a list of nodes traversed by a query
 * so that the corresponding query hit can be back
 * propagated properly.
 *
 */

#include <algorithm>
#include "gnututil.h"
#include "gnutpathlist.h"

//===
GnutPathList::
GnutPathList(void)
{ }
//===
GnutPathList::
~GnutPathList(void)
{ }
//===
bool
GnutPathList::
isNodeNextInPath(unsigned int aNodeNumber) const
{
 return aNodeNumber == mList.back();
}
//===
bool
GnutPathList::
isHitForNode(unsigned int aNodeNumber) const
{
 GNUT_DBG_PRINT("Is hit for node? Next node = %u. Size = %u\n", mList.back(),
mList.size());
 return isNodeNextInPath(aNodeNumber) && (mList.size() == 1);
}
//===
bool
GnutPathList::
isNodeInPath(unsigned int aNodeNumber) const
{
 return std::find(mList.begin(), mList.end(), aNodeNumber) != mList.end();
}
//===
unsigned int
GnutPathList::
getNextNode(void) const
{
 assert(mList.size() >= 1);
 return mList.back();
}
//===
GnutPathList&
GnutPathList::
operator+=(unsigned int aNodeNumber)
{
 assert(mList.max_size() > (mList.size() + 1));
 mList.push_back(aNodeNumber);
 return *this;
}
//===
GnutPathList&
GnutPathList::
operator--(int)
{
 assert(mList.size() > 0);
 mList.pop_back();
 return *this;
}
//===
// TODO: debug remove!!!
#include <stdio.h>
void
GnutPathList::
printPath(void) const
{
 GNUT_DBG_PRINT("Path size = %u\n", mList.size());

Peer-to-Peer Networks as Content Distribution Networks

44

 for (PathList::const_iterator it = mList.begin();
 it != mList.end();
 it++)
 {
 GNUT_DBG_PRINT(", %u", *it);
 }

 GNUT_DBG_PRINT("\n");
}
//===

Peer-to-Peer Networks as Content Distribution Networks

45

/*
 * File: gnutquerydata.h
 * Author: Andre Dufour
 *
 * Description: Header file for gnutella query data object
 *
 */

#ifndef __GNUTQUERYDATA_H__
#define __GNUTQUERYDATA_H__

#include "gnutdescriptor.h"

class GnutQueryData : public GnutDescriptor
{
public:
 // = Foundation

 // Create new query
 explicit GnutQueryData(unsigned int aSearchString);

 // Copy constructor
 // Create object based on existing query.
 // NB: the ttl and hop count should normally be adjusted by
 // calling the appropriate method in the base class.
 explicit GnutQueryData(const GnutQueryData& aQuery);

 virtual ~GnutQueryData();

 // = Access

 // Get the value of the search string
 unsigned int getSearchString(void) const;

 // Get size of message in bytes
 unsigned long getSize(void) const;

 // = Interface AppData

 AppData* copy(void);

private:
 // = Data

 // Simplification: string is only the version number.
 unsigned int mSearchString;

 // Disable assignment operator for safety
 GnutQueryData& operator=(const GnutQueryData&);
};

#endif /* __GNUTQUERYDATA_H__ */

Peer-to-Peer Networks as Content Distribution Networks

46

/*
 * File: gnutquerydata.cc
 * Author: Andre Dufour
 *
 * Description: Implementation for gnutella query data object
 *
 */

#include <stdio.h>
#include "gnutquerydata.h"
#include "ns-process.h"

//===
GnutQueryData::
GnutQueryData(unsigned int aSearchString)
: GnutDescriptor(GNUT_QUERY),
 mSearchString(aSearchString)
{ }
//===
GnutQueryData::
GnutQueryData(const GnutQueryData& aQuery)
: GnutDescriptor(GNUT_QUERY, aQuery),
 mSearchString(aQuery.mSearchString)
{ }
//===
GnutQueryData::
~GnutQueryData(void)
{ }
//===
unsigned int
GnutQueryData::
getSearchString(void) const
{
 return mSearchString;
}
//===
unsigned long
GnutQueryData::
getSize(void) const
{
 // 23 bytes for Gnut descriptor header
 // 1 byte for min speed
 // Some bytes for the search string
 // 1 byte for null termination
 return 23 + 1 + 1 + 1;
}
//===
AppData*
GnutQueryData::
copy(void)
{
 return new GnutQueryData(*this);
}
//===

Peer-to-Peer Networks as Content Distribution Networks

47

/*
 * File: gnutqueryhitdata.h
 * Author: Andre Dufour
 *
 * Description: Header file for gnutella query hit data object
 *
 */

#ifndef __GNUTQUERYHITDATA_H__
#define __GNUTQUERYHITDATA_H__

#include <tcl.h>
#include "gnutdescriptor.h"

class GnutQueryData;

class GnutQueryHitData : public GnutDescriptor
{
public:
 enum { MAX_HIT_STRING_LEN = 200 };

 // = Foundation

 // Construct a query hit message as a response to the specified
 // query
 GnutQueryHitData(const GnutQueryData& aQuery,
 unsigned int aHitString);

 // Create object based on existing query; can adjust hops and TTL.
 // NB: ttl and hop counts should normally be adjusted by the caller
 // on the new object.
 explicit GnutQueryHitData(const GnutQueryHitData& aQuery);

 virtual ~GnutQueryHitData(void);

 // = Access

 unsigned int getHitString(void) const;

 // Get size of message in bytes
 unsigned long getSize(void) const;

 // = Interface AppData

 AppData* copy(void);

private:
 // = Data

 // Simplification: hit string is just a version number.
 unsigned int mHitString;

 // Disable assignment operator for safety
 GnutQueryHitData& operator=(const GnutQueryHitData&);
};

#endif /* __GNUTQUERYHITDATA_H__ */

Peer-to-Peer Networks as Content Distribution Networks

48

/*
 * File: gnutqueryhitdata.cc
 * Author: Andre Dufour
 *
 * Description: Implementation for gnutella query hit data object
 *
 */

#include <tcl.h>
#include "gnutqueryhitdata.h"
#include "gnutquerydata.h"
#include "gnutdescriptor.h"

//===
GnutQueryHitData::
GnutQueryHitData(
 const GnutQueryData& aQuery,
 unsigned int aHitString)
: GnutDescriptor(GNUT_QUERY_RESPONSE, aQuery),
 mHitString(aHitString)
{ }
//===
GnutQueryHitData::
GnutQueryHitData(const GnutQueryHitData& aQuery)
: GnutDescriptor(GNUT_QUERY_RESPONSE, aQuery),
 mHitString(aQuery.mHitString)
{ }
//===
GnutQueryHitData::
~GnutQueryHitData(void)
{ }
//===
unsigned int
GnutQueryHitData::
getHitString(void) const
{
 return mHitString;
}
//===
unsigned long
GnutQueryHitData::
getSize(void) const
{
 // 23 bytes for Gnut descriptor header
 // 1 byte for min speed
 // Some bytes for the search string
 // 1 byte for null termination
 return 23 + 1 + 1 + 1;
}
//===
AppData*
GnutQueryHitData::
copy(void)
{
 return new GnutQueryHitData(*this);
}
//===

Peer-to-Peer Networks as Content Distribution Networks

49

/*
 * File: gnututil.h
 * Author: Andre Dufour
 *
 * Description: utility functions/macros for ns-2 Gnutella implementation
 *
 */

#ifndef __GNUTUTIL_H__
#define __GNUTUTIL_H__

#include <stdio.h>

//#define GNUT_DEBUG

#ifdef GNUT_DEBUG
#define GNUT_DBG_PRINT(args...) printf(args)
#else
#define GNUT_DBG_PRINT(args...)
#endif

#endif /* __GNUTUTIL_H__ */

Peer-to-Peer Networks as Content Distribution Networks

50

/*
 * File: releventagent.h
 * Author: Andre Dufour
 *
 * Description: Header file for Gnutella servents participating in the CDN
 * as active content seekers.
 *
 */

#ifndef __RELEVENTAGENT_H__
#define __RELEVENTAGENT_H__

#include "gnutagent.h"
#include "ns-process.h"
#include "tclcl.h"

// Forward declarations
class AppData;
class TcpApp;

class ReleventAgent : public GnutAgent {
public:
 // = Foundation

 ReleventAgent(void);

 virtual ~ReleventAgent(void);

 // = Action

 void processQuery(GnutDescriptor* aData);

 bool processQueryResponse(GnutDescriptor* aData);

 // Parse command from TCL
 int command(int argc, const char*const* argv);

protected:
 // = Data
 unsigned int mVersion;

private:
 // = Action
 void initiateQuery(void) const;
 void setVersion(unsigned int aVersion);

 // Disable copy constructor and assignment operator for safety.
 ReleventAgent(const ReleventAgent&);
 ReleventAgent& operator=(const ReleventAgent&);
};

#endif /* __RELEVENTAGENT_H__ */

Peer-to-Peer Networks as Content Distribution Networks

51

/*
 * File: releventagent.cc
 * Author: Andre Dufour
 *
 * Description: Implementation for the ReleventAgent agent type in ns-2.
 *
 */

#include <assert.h>
#include <stdio.h>

#include "gnututil.h"
#include "releventagent.h"
#include "gnutquerydata.h"
#include "gnutqueryhitdata.h"
#include "../webcache/tcpapp.h"

//===
ReleventAgent::
ReleventAgent(void)
: mVersion(0)
{
 GNUT_DBG_PRINT("Relevent created\n");
}
//===
ReleventAgent::
~ReleventAgent(void)
{
 // Something went really wrong!
 assert(false);
}
//===
int
ReleventAgent::
command(int argc, const char*const* argv)
{
 if (argc >= 2)
 {
 // "gnutconnect"
 if (strncmp(argv[1], "gnutconnect", strlen("gnutconnect")) == 0)
 {
 if (argc == 4)
 {
 // Connect to new sevent
 GNUT_DBG_PRINT("About to perform connection (gnutconnect)\n");
 TcpApp* app = (TcpApp*)TclObject::lookup(argv[3]);
 return gnutConnect(atoi(argv[2]), app);
 }
 else
 {
 GNUT_DBG_PRINT("Wrong number of args for gnutconnect\n");
 return TCL_ERROR;
 }
 }
 // "sendquery"
 else if (strncmp(argv[1], "sendquery", strlen("sendquery")) == 0)
 {
 initiateQuery();
 return TCL_OK;
 }
 // "setversion"
 else if (strncmp(argv[1], "setversion", strlen("setversion")) == 0)
 {
 if (argc == 3)
 {
 GNUT_DBG_PRINT("Setting version\n");
 setVersion(atoi(argv[2]));
 return TCL_OK;
 }
 else
 {
 GNUT_DBG_PRINT("Didn't specify what version to set to.\n");
 return TCL_ERROR;
 }
 }
 // "getversion"
 else if (strncmp(argv[1], "getversion", strlen("getversion")) == 0)
 {
 GNUT_DBG_PRINT("Getting version\n");

Peer-to-Peer Networks as Content Distribution Networks

52

 Tcl::instance().resultf("%d", mVersion);
 return TCL_OK;
 }
 // "setnodenumber"
 else if (strncmp(argv[1], "setnodenumber", strlen("setnodenumber")) == 0)
 {
 if (argc == 3)
 {
 GNUT_DBG_PRINT("Setting node number\n");
 mNodeNumber = atoi(argv[2]);
 return TCL_OK;
 }
 else
 {
 GNUT_DBG_PRINT("Didn't specify node number\n");
 return TCL_ERROR;
 }
 }
 }
 GNUT_DBG_PRINT("Got some weird command .%s.\n", argv[1]);
 return TCL_ERROR;
}
//===
void
ReleventAgent::
initiateQuery(void) const
{
 Tcl& tcl = Tcl::instance();

 GNUT_DBG_PRINT("About to initiate query\n");
 GnutQueryData* query = new GnutQueryData(mVersion);
 query->addNodeToPath(mNodeNumber);
 floodMsg(query);
 GNUT_DBG_PRINT("Relevent %d about to reset timer\n", mNodeNumber);
 tcl.evalf("%s reloadQueryTimer", getName());
 tcl.evalf("%s updateLabel %s", getName(), GnutAgent::INIT_QUERY);
}
//===
void
ReleventAgent::
setVersion(unsigned int aVersion)
{
 Tcl& tcl = Tcl::instance();
 mVersion = aVersion;
 tcl.evalf("%s updateLabel %s", getName(), GnutAgent::UPDATED);
 tcl.evalf("%s declareUpdate %u", getName(), aVersion);
}
//===
void
ReleventAgent::
processQuery(GnutDescriptor* aData)
{
 Tcl& tcl = Tcl::instance();
 GnutQueryData* query = static_cast<GnutQueryData*>(aData);
 GNUT_DBG_PRINT("Relevent %u processing query\n", mNodeNumber);

 if (query->getSearchString() < mVersion)
 {
 // We can offer them a higher version. Send a query hit message.
 GnutQueryHitData* hit = new GnutQueryHitData(*query, mVersion);
 hit->resetCounters();

 ConnMap::const_iterator out_conn = mConns.find(hit->getPath().getNextNode());
 assert(out_conn != mConns.end());

 GNUT_DBG_PRINT("%u sending query hit to %u\n", mNodeNumber, out_conn->first);
 out_conn->second->send(hit->getSize(), hit);
 hit->getPath().printPath();
 GNUT_DBG_PRINT("Query hit sent\n");
 tcl.evalf("%s updateLabel %s", getName(), GnutAgent::INIT_QUERY_HIT);
 }
 else
 {
 GNUT_DBG_PRINT("%u's version isn't larger than the requested one\n");
 //tcl.evalf("%s updateLabel", getName());
 }
}
//===
bool

Peer-to-Peer Networks as Content Distribution Networks

53

ReleventAgent::
processQueryResponse(GnutDescriptor* aData)
{
 GNUT_DBG_PRINT("Relevent %u processing query response\n", mNodeNumber);
 GNUT_DBG_PRINT("Path=");
 aData->getPath().printPath();
 bool retval = false;

 if (aData->getPath().isHitForNode(mNodeNumber))
 {
 retval = true;
 GnutQueryHitData* hit = static_cast<GnutQueryHitData*>(aData);
 unsigned int hitVer = hit->getHitString();

 if (hitVer > mVersion)
 {
 GNUT_DBG_PRINT("%u got hit with higher version - changing ver.\n",
mNodeNumber);
 setVersion(hitVer);
 }
 }

 return retval;
}
//===
// TCL Binding
static class ReleventAppClass : public TclClass
{
public:
 ReleventAppClass() : TclClass("Relevent") {}
 TclObject* create(int, const char*const* argv)
 { return (new ReleventAgent()); }
} class_relevent_app;
//===

Peer-to-Peer Networks as Content Distribution Networks

54

File: releventagent.tcl
Author: Andre Dufour

TCL portion of the implementation for a relevent agent.

source gnut_globals.tcl

Constructor
Relevent instproc init { aNs aNode } {
 $self next

 $self instvar mNs mNode mStopQueries
 set mNs $aNs
 set mNode $aNode
 set mStopQueries 0
 $mNode color blue
}

Relevent instproc updateLabel { aLastAction } {
 $self instvar mNode

 $mNode label "[$self getversion] $aLastAction"
}

Relevent instproc startQueries {} {
 global rng min_query_delay max_query_delay
 $self instvar mNs

 set update_delay [expr [$rng uniform $min_query_delay $max_query_delay]]

 $mNs after $update_delay "$self sendquery"
}

This stops the scheduling of further queries. It won't cancel already
scheduled ones.
Relevent instproc stopQueries {} {
 $self instvar mStopQueries
 set mStopQueries 1
}

Relevent instproc reloadQueryTimer {} {
 $self instvar mNs mStopQueries
 global rng min_query_delay max_query_delay

 if {$mStopQueries == 0} {
 set update_delay [expr [$rng uniform $min_query_delay $max_query_delay]]
 $mNs after $update_delay "$self sendquery"
 }
}

Relevent instproc setStats { aStats } {
 $self instvar mStats

 set mStats $aStats
}

Relevent instproc declareUpdate { aVersion } {
 $self instvar mStats

 $mStats declareUpdate $aVersion
}

Peer-to-Peer Networks as Content Distribution Networks

55

File: stats.tcl
Author: Andre Dufour

Handles statistic gathering during the simulation

source gnut_globals.tcl

Class Stats

Constructor
Stats instproc init { aNs aNumRelevents } {
 $self instvar mNs mNumRelevents mLatestVersion mNotUpdated mTime

 $self next

 set mNs $aNs
 set mNumRelevents $aNumRelevents
 set mLatestVersion 0
 set mNotUpdated 0
 set mTime 0
}

Called when a new version is introduced into the network
Stats instproc newVersion { aVersion } {
 $self instvar mLatestVersion mNotUpdated mNumRelevents

 if { $aVersion <= $mLatestVersion } {
 error "Invalid lower version number"
 }

 set mLatestVersion $aVersion
 set mNotUpdated $mNumRelevents
}

Relevents call this when they update their version
Stats instproc declareUpdate { aVersion } {
 $self instvar mLatestVersion mNotUpdated

 if { $aVersion == $mLatestVersion } {
 incr mNotUpdated -1
 }
}

Stats are logged every second
Stats instproc timerTick {} {
 $self instvar mTime mNotUpdated mNs

 set statsfile [open stats.out a]
 incr mTime

 puts "Simulating time = $mTime"
 puts $statsfile "$mTime $mNotUpdated"
 close $statsfile

 $mNs after 1.0 "$self timerTick"
}

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

