ENSC-835 (FALL- 2003) : HIGH-PERFORMANCE NETWORKS FINAL PROJECT PRESENTATION

SIMULATION OF HANDOFF PROCEDURE BASED ON SIP OVER WIRELESS LAN

Instructor: Ljiljana Trajkovic

Tao Jia (tjia@sfu.ca)
Qiang Hou (qhou@sfu.ca)
Wei (Eric) Peng (wep@sfu.ca)

Road Map

- Introduction
- Background Overview
 - Wireless LAN and SIP overview
 - SIP mobility support
- Implementation in OPNET
- Simulation & Performance Evaluation
- Conclusion
- ❖Future Work
- References

Introduction

Motivation and Project Goals:

- To set up an OPNET environment where it is possible for us to model, simulate and evaluate:
 - Wireless LAN mobility management in application layer.
 - Handoff procedure based on SIP over Wireless LAN

Introduction

Project Scope:

- Understanding Wireless LAN mobility and SIP protocol over WLAN
- Creating network models and setting up simulation environment via OPNET
- Analyzing and evaluating simulation results

Background Overview

Wireless LAN

- Wireless Local Area Network: implemented to extend or substitute for a wired LAN.
- IEEE 802.11: specifications on MAC and physical layer
- User mobility: between different Access Points within the same subnet

SIP: Session Initiation Protocol

- IETF, application-layer signaling protocol
- Message Type: Request, Response
- Methods: INVITE, ACK, BYE, OPTIONS, CANCEL, REGISTER
- Email-like address: user@userdomain
- SIP components:
 - User Agent Client (UAC): Initiates Request
 - User Agent Server (UAS): Returns Response

^{*} Internet Engineering Task Force (IETF)

SIP Mobility Support Over WLAN

Pre-session : REGISTER

Signaling ----

FP: Foreign Proxy

HP:Home Proxy

SIP Support Mobility Over WLAN

Network Topology

Subnet Topology

Subnet of Caller side

Subnet of Callee side

WLAN: Access Point & Workstation

Wireless LAN Access Point (Wireless Router)

Wireless LAN workstation

UAC PROCESS MODEL

UAS PROCESS MODEL

Simulation Results & Performance Evaluation

Result Evaluation & Conclusion

- We will evaluate if the delay introduce by handoff procedure is endurable for voice traffic.
- Give our conclusion whether SIP can be used as a mobility support method over wireless links for real-time traffic.

2004-4-27

Future Work

- Integrate Registration procedure into Handoff process
- Simulate the Handoff procedure under the reDirect Mode

References

- [1] E. Wedlund, H. Schulzrinne, "Mobility Support using SIP", ACM/IEEE International Conference on Wireless and Multimedia (WOWMOM), Aug. 1999, pp. 76-82. Mobility Support Using SIP.pdf
- [2] Banerjee N., Basu K., Das S.K., "Hand-off delay analysis in sip-based mobility management in wireless networks", Parallel and Distributed Processing Symposium, 2003. Proceedings. International, April 22-26, 2003. <u>Handoff Delay Analysis in SIP</u> Based Mobility Management in Wireless Networks.pdf
- [3] IEEE, "802.11 Wireless LAN Medium Access Control(MAC) and Physical Layer (PHY) specifications," approved 26 June 1997. <u>IEEE Std 802.11-1997-Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications.pdf</u>
- ❖ [4] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, "SIP: Session Initiation Protocol", RFC 2543, Internet Engineering Task Force, March 1999.,
 Session Initial Protocol
- ♦ [5] OPNET documentation: "Wireless LAN Model Description", MD-36-1 to MD-36-16, Release 9.1 OPNET Documentation: Description of Wireless LAN Models
- [6] Dorgham Sisalem, Jiri Kuthan, "Understanding SIP",