

Implementation, Simulation of Linux Virtual
Server in ns-2

CMPT 885 Special Topics:
High Performance Networks

Project Final Report

Yuzhuang Hu yhu1@cs.sfu.ca

ABSTRACT

LVS(Linux Virtual Server) provides a basic framework to build highly available and

highly scalable web services using a large cluster of commodity servers. It adopts

three techniques--NAT(network address translation), IP Tunneling, and Direct

Routing to achieve this goal.

This project is to investigate performance issues of LVS(Linux virtual server) under

ns-2. In this project, the author implements a framework of the virtual server in ns-2

with an modified NAT, IP Tunneling and Direct Routing. After the implementation

and simulations of the virtual server adopting different techniques under ns-2, the

author analyses the results and further uses a hierarchical structure to improve the

virtual server’s performance. Simulation results show that this structure is effective.

The simulations in this project mainly focuses on comparing the performance of

virtual server adopting the three techniques, and investigating what factor is the

whole system's bottleneck. Several different scheduling algorithms are also compared

in this project.

 2

Table of Contents

ABSTRACT...2

TABLE OF CONTENTS..3

LIST OF TABLES AND FIGURES..4

INTRODUCTION...6

 LVS via NAT...7

LVS via IP Tunneling..9

LVS via Direct Routing...10

Related Work...11

IMPLEMENTATION...13

 Modifications to LVS..13

Modifications in NS-2...14

 Agent IPVS..16

 Connection hash table..16

 Real servers..18

 Packet transmitting methods..19

 Scheduling algorithms...19

SIMULATION...20

Topology of Simulation Scenarios..20

Stressing the load balancer..21

 First topology...22

 Another topology...37

Scheduling algorithms...39

THROUGHPUT IMPROVEMENT..44

CONCLUSION AND FUTURE WORK...48

REFERENCES..49

APPENDIX A...50

APPENDIX B...52

 3

List of Tables and Figures

Figure 1 Structure of a Virtual Server..6

Figure 2 LVS via NAT...8

Figure 3 LVS via IP Tunneling..9

Figure 4 LVS via Direct Routing...10

Table 1 Comparison of LVS via NAT, IP Tunneling and Direct Routing.............11

Figure 5 Node structure in ns-2..14

Figure 6 Basic topology of simulation scenarios...21

Figure 7 structure of topology 1...22

Figure 8 throughput, topology 1, 100M LAN, 1 server...24

Figure 9 loss rate on the load balancer, topology 1, 100M LAN, 1 server..............25

Figure 10 receiving rate on the real server, topology 1, 100M LAN, 1 server..........26

Figure 11 loss rate on the real server, topology 1, 100M LAN, 1 server...................27

Figure 12 throughput, modified NAT, topology 1, 100M LAN…………………....28

Figure 13 loss rate on the load balancer, modified NAT, topology 1, 100M LAN...29

Figure 14 loss rate on the real servers, modified NAT, topology 1, 100M LAN......29

Figure 15 throughput, the IP Tunneling, topology 1, 100M LAN............................31

Figure 16 throughput, the Direct Routing, topology 1, 100M LAN.........................31

Figure 17 throughput, topology 1, 1000M LAN...34

Figure 18 loss rate on the load balancer, topology 1, 1000M LAN..........................35

Figure 19 loss rate on the real server, topology 1, 1000M LAN...............................36
Figure 20 throughput, the modified NAT, topology 1, 1000M LAN.......................37
Figure 21 topology 2...38

Figure 22 throughput, topology 2, 1000M LAN..39

Figure 23 throughput, RR vs. WRR, 1000M LAN..41

Figure 24 throughput, RR vs. WRR, 1000M LAN..42

Figure 25 throughput, RR vs. LC, 100M LAN..43

Figure 26 A hierarchical virtual server structure...44

 4

Figure 27 throughput, NAT, 8 servers, hierarchical structure...................................46

Figure 28 loss rate on the load balancer, NAT, 8 servers, hierarchical structure......47

Figure 29 loss rate on the real server, NAT, 8 servers, hierarchical structure….......47

Figure 30 loss rate on the load balancer, IP tunneling, topo1, 100M........................52

Figure 31 loss rate on the real server, IP tunneling, topo1, 100M.............................53

Figure 32 loss rate on the load balancer, Direct Routing, topo1, 100M....................53

Figure 33 loss rate on the real server, Direct Routing, topo1, 100M.........................54

Figure 34 loss rate on the load balancer, modified NAT, topo1, 1000M..................54

Figure 35 loss rate on the real server, modified NAT, topo1, 1000M.......................55

Figure 36 throughput, IP Tunneling, topo1, 1000M..55

Figure 37 loss rate on the load balancer, IP Tunneling, topo1, 1000M.....................56

Figure 38 loss rate on the real server, IP Tunneling, topo1, 1000M..........................56

Figure 39 loss rate on the load balancer, Direct Routing, topo1, 1000M..................57

Figure 40 loss rate on the real server, Direct Routing, topo1, 1000M.......................57

Figure 41 loss rate on the load balancer, topo2, 1000M..58

Figure 42 receiving rate on the real servers, RR vs. WRR, 1000M...........................58

Figure 43 loss rate on the real servers, RR vs. WRR, 1000M...................................59

Figure 44 receiving rate on the real servers, RR vs. LC, 1000M...............................59

Figure 45 loss rate on the real servers, RR vs. LC, 1000M.......................................60

 5

Introduction

With the explosive growth of the internet, internet servers must cope with greater

demands than ever. A single sever usually is not sufficient to handle the increasing

load. Clusters of commodity work stations emerged as a viable solution to build

highly scalable and highly available web services. The goal of a cluster is to make it

possible to share a computing load over several systems without either the users or

system administrators needing to know that more than one system is involved.

A Linux Virtual Server (LVS) cluster is a collection of servers that have been

specially configured to provide highly-available services. The diagram below

illustrates how an LVS cluster works.

Figure 1 Structure of a Virtual Server

An LVS cluster consists of a load balancer and a variable number of application
 6

servers. We will refer to the pool of application servers as real servers. Note that

these terms designate roles rather than machines.

Service requests arriving at an LVS cluster are addressed to a virtual server IP

address (sometimes referred to as a VIP address). This is a publicly-advertised

address that an administrator at the site associates with a fully-qualified domain name

(for example, www.sfu.ca). The role of the active router is to redirect service

requests from a virtual server address to the real servers.

In fact, there are many ways to dispatch client requests to real severs. LVS, which

uses three load balancing techniques---NAT(network address translation), IP

Tunneling and Direct Routing is an approach in the IP layer. In LVS, these

techniques are used by the load balancer to redirect IP packets to different real

servers.

LVS via NAT

Figure 2 illustrates how LVS via NAT works:

 7

Figure 2 LVS via NAT

In LVS NAT, only the load balancer has the virtual server's IP address, the real severs

can have private IP addresses. When a client sends a packet and the packet arrives at

the load balancer(step 1), the load balancer chooses a real server, and rewrites the

destination address of the packet to the real server's IP address(step 2), then forward

the packet to the correct server. When the corresponding server processes the request

and replies(step 3), the load balancer rewrite the destination address of the reply

packet to the IP address of the virtual server, and then returns the packet to the

client(step 4).

The advantage of this method is that the real server can run any operating system

supporting TCP/IP protocol, and only one IP address is needed by the whole system.

The disadvantage is that since the destination address of packets must be rewritten

 8

twice in the load balancer, the scalability of this method is limited.

LVS via IP Tunneling

Figure 3 illustrates how LVS via IP Tunneling works:

Figure 3 LVS via IP Tunneling

In figure 3, the virtual IP address is 192.163.1.1, and this address is configured on the

tunnel interfaces of the corresponding real servers. The scalability of LVS via IP

Tunneling is better than LVS via NAT, for when using IP Tunneling, packets only

need to be rewritten once. When a packet arrives at the load balancer, the load

balancer encapsulates the packet, then tunnels the packet to a chosen real server.

 9

After receiving the packet, the real server decapsulates it and gets the original packet.

Then the real server will reply directly to the client, needs not send the reply packet

back to the load balancer as in LVS via NAT.

The disadvantage of this method is that it needs IP Tunneling support both in the load

balancer and the real servers. Since the IP tunneling protocol is becoming a standard

for all operating systems, LVS/TUN should be applicable to other operating systems.

LVS via Direct Routing

Figure 4 LVS via Direct Routing

Under this method, the load balancer and the real servers must be in the same

 10

physical segment of a local-area network. The load balancer also processes only the

client to load balancer side traffic. When the load balancer receives a packet from the

client, it chooses a real server and changes the MAC address of the packet to that of

the real server, then forwards the packet to the real sever. The real server has a virtual

IP address configured in its loop back alias interface, and this interface must not do

ARP response. In this way, the real server can generate a packet whose source

address is the virtual IP address, and send the packet directly to the client.

The advantage of this method is that it does not have the IP tunneling overhead. The

disadvantage is that the real severs and the load balancer must be in the same

uninterruptible segment of a local-area network, and the real servers must have a loop

back alias interface which does not respond to ARP.

Below is a summary of the advantages and disadvantages of these three techniques:

LVS type NAT Tunneling Direct Routing

OS any must support IP

tunneling

any

Server config none tunnel interface, no

ARP

Loopback interface,

no ARP

Server network private internet local

Scalability not so good better than NAT better than NAT

Table 1 Comparison of LVS via NAT, IP Tunneling and Direct Routing

Related work

LVS is a server side IP level approach of dispatching client requests to different

servers. Besides this approach, existing dispatching techniques can be classified into

following categories:

 11

Client side approach

Berkley's Smart Client [] is an example of such an approach. It modifies client side

applications, and provides an applet to make requests to real severs in the cluster, and

collect load balancing information to choose the right server. The disadvantage of this

approach is that it needs to modify client side applications, and increases network

traffic by extra probing.

DNS redirection approach

Under this approach, the DNS server maps a single name to different IP

addresses(which are possessed by real servers) in a round-robin manner. So each time

when different clients make requests, they will get different IP addresses for the same

name and load will be distributed among the servers.

However, due to the caching nature of clients and hierarchical DNS system, this

approach can easily leads to dynamic load imbalancing among the severs. For the

name mapping, there's a corresponding TTL(time to live) value. During this period,

all the requests of the same client will be sent to the same server. The scheduling

granularity is per host. Moreover, if the chosen server fails, during TTL, the result of

client requests will remain “sever is down”, in spite of there exists other severs can

serve these requests in the cluster.

Server side application level approach

The system's structure is similar to that of IP level server side approach. The

difference is that in application level approach, the load balancer forwards http

requests to real severs, and after getting the results from the real servers, it returns

them to the clients. The disadvantage of this approach is that it needs two connections,

 12

one exists between the clients and the load balancer, the other one exists between the

load balancer and the real severs. In LVS, only one connection exists between the

real servers and the clients. The cost of maintaining two connections is high, and the

load balancer will become the whole system's bottleneck.

Implementation

Modifications to LVS

As mentioned above, LVS via NAT is not scalable well. In this project, a modified

NAT has been implemented. The modified NAT works the same on the client to load

balancer side processing. What’s different is that, packets will not go to the load

balancer again when the real server replies. Instead, the real server will set the correct

destination IP address and port(which are the client’s) itself, and forward the packets

to the client directly.

The advantage of making this change is that, since a packet will only arrive at the

load balancer once, the scalability will be better. And since the modified NAT only

changes the destination IP address of the packet, we can think that its overhead is low

and its performance is comparable to the other two techniques. In the later simulation,

we will give the corresponding results.

The modified NAT can also use private IP addresses. By making modifications to ns-

2, now agents can set a packet’s source address to the virtual IP address. Thus in spite

of the kind of address the real server uses, the packet can have the correct source IP

address.

The disadvantage of the modified NAT is that, we need to change the codes on the

real server side. Under LVS via NAT, the real server can run any operating system.

 13

But since the modified NAT can improve the virtual server’s performance and

scalability(as our simulation results indicate), and it can also use private IP addresses,

in some circumstances, it’s worthwhile to make such a change. Let us suppose that

when we try to construct a web server cluster, the real servers will all use Linux, and

it lacks public IP addresses, to provide powerful web services, a virtual server using

the modified NAT can be a very good choice.

Modifications in ns-2

Accept a packet destined to the VIP

In order to implement virtual server via tunneling and virtual server via direct routing,

real severs should have two IP address. One is its real IP address, and the other one is

the virtual server IP address. The real sever should accept packets whose destination

address is the IP address. In Linux, this is achieved by adding an alias interface which

is bound with the virtual IP address. How can we do this in ns? Below is a node’s

structure in ns-2:

Figure 5 Node structure in ns-2

 14

We can see a packet will arrive at the correct agent only after it can reach the

classifier DeMux which is used to choose the correct agent according to the packet's

destination port. And the node will forward the packet to other links or to the

classifier Demux by looking its destination address in the node entry(which is a

destination hash classifier). So this problem can be addressed by simply add a route

whose destination address is the virtual server ip address, and the target is the node's

classifier DeMux. In this way, packets destined for the VIP will be forwarded to the

node. That is to say, the node will accept packets destined for the VIP.

Send a packet destined to the client

Virtual sever via tunneling and direct routing need to directly send packets whose

source address is the VIP(different from its own IP address) to clients. In Linux, a

SKB buffer is transferred up each layer and down each layer. In relevant procedures,

SKB is one of their parameters. So when sending packets back to clients, Linux

knows the correct source and destination IP address. Unfortunately, procedures in ns2

do not have such kind of a parameter. In ns2, a packet's source address and

destination address are initialized in agents. There's a structure here_ in the class

agent records the node's IP address. Whenever a new packet is initialized, the packet's

source IP address is set to here_.addr_. That is to say, a node in ns2 can only have

one IP address.

To address this problem, a virtual IP address is added to the class agent. When we

create an agent, we can set the virtual IP address, and a route for this VIP will be

added automatically to the classifier DeMux. Now when sending a packet, the source

address will be initialized to the virtual IP address. By default, the VIP is the same as

the agent's real IP address.

Modify a packet's MAC address

 15

Normally MAC address is set by the link layer, but in order to implement LVS via

Direct Routing, we need to set a packet's MAC address in the agent IPVS, which is in

the IP layer. Linux uses a separate data structure passing routing information to the

lower layer to set the MAC address, but in ns-2, agent can only pass the packet as the

parameter to the lower layer. To simulate direct routing, we need to modify the link

layer and the hash classifier class in ns-2, add extra functions using the destination

address as one of its parameter. With these functions, now we can find the LL object

by looking up the hash classifier, and then use the LL object to set the packet's MAC

address.

Agent IPVS

Changes of the ns code in the real server side are only those mentioned above. The

implementation of this project focuses on the load balancer. In the implementation,

there's an agent(IPVS) in the load balancer, which is responsible to receive clients'

requests and redirect them to the real servers. In the IPVS agent, we implement a

hash table holding information about connections on the real servers, and a timer

related with each connection entry in the connection hash table. We also implement

three load balancing techniques----a modified NAT, IP Tunneling and Direct Routing,

together with four scheduling algorithms----round robin, weighted round robin, least

connection and weighted least connection. Below is the detailed description.

Connection hash table

The IPVS agent maintains a connection hash table for all the connections established

on the real severs. We need a connection hash table, because we can get information

useful for the purpose of load balancing, and more directly, for TCP connections, we

need forward following packets of the same connection to the correct real server.

Although this version of IPVS agent only supports UDP, the whole framework has

been implemented. In fact, this version can be also used to redirect TCP packets. But

 16

for finer control, we need to add different timeout values to different TCP states. And

for ftp protocol, since it uses two connections at the same time, the pattern of one

connection controls another connection needs to be included.

The connection hash table is an array of list heads pointing to connections with the

same hash value. The hash is calculated using parameters of IP address, port and

protocol. We use the JHASH function which is in the Linux kernel to calculate the

hash key.

The connections maintained in IPVS agent are very different from TCP connections.

The main purpose of this connection is to maintain a timeout value, after timeout, the

connection expires and when the same client send a packet to the same port to the

load balancer, the load balancer will create a new connection entry and may choose a

different real server.

It is weird that the timer in ns-2 does not work when trying to use it to implement the

timer for the connections. Instead we implement our own timer. First the connection

class is defined as a subclass of class Event, then a timer class is defined by using the

scheduler in ns-2. The timer class includes methods such as sched and resched which

is implemented by using the scheduler. A private variable of event_ exists in the

timer class. Each time when a new connection is created, event_ of its timer is set to

the connection itself. In this way, when the timer expires, the scheduler can find the

correct connection and execute the expire operation of the connection class.

Below is the main structure of the connection class:

class ip_vs_conn : public Event {

public:

 ip_vs_conn();

 struct list_head *c_list; /* hashed list heads */

 17

 __u32 caddr; /* client address */

 __u32 vaddr; /* virtual address */

 __u32 daddr; /* destination address */

 __u16 cport;

 __u16 vport;

 __u16 protocol; /* Which protocol*/

 unsigned long timeout; /* timeout */

 struct ip_vs_timeout_table *timeout_table;

 __u16 flags; /* status flags */

 __u16 state; /* state info */

 ip_vs_dest *dest; /* real server */

 int in_pkts; /* incoming packet counter */

 virtual void expire();

 ip_vs_timer *conn_timer; /* expiration timer */

};

Real servers

For our virtual service, there’s a class ip_vs_service describes it. This class mainly

has the information of the virtual IP address, the port, statistics for the service, data

needed by the scheduling algorithm, and a list of real servers. The real server class in

our implementation is ip_vs_dest, as we have seen in the connection class. All of the

real servers are linked together, a real server is added to the real server list when it is

first registered.

The real server data structure mainly holds a list of agents, the server’s IP address, the

server’s port, a weight, and connection numbers. The weight and connection numbers

are used in the scheduling algorithms.

The list of agents is for the virtual server via the modified NAT, IP Tunneling and

 18

Direct Routing. The reason we need a list of agents is that under these methods, the

packet is transmitted directly to the client. It needs to set the destination IP address

and port of the packet to those of the client. In ns-2, these fields are initialized by the

agent. Each agent has a dst structure which records its destination IP address and port.

In this version of n2-2, normally the destination address and port are statically set

before performing simulation. Thus on each real server, we need a list of agents, each

agent corresponds to one client and records the client’s IP address and agent port in

its dst structure.

Packet transmitting methods

As mentioned above, the modified NAT, IP Tunneling and Direct Routing have been

implemented in this project. All methods need to search the agent list and get correct

destination port. The modified NAT rewrites the packet’s destination IP address and

agent port, and recalculates both the IP header checksum and TCP/UDP pseudo

header checksum(using a fast incremental update method, since only the IP address

and port are modified). Virtual server via IP Tunneling needs to allocate a new packet,

set the port of this packet to the Decapsulator agent on the corresponding real server,

calculate the IP header checksum, and then encapsulate the original packet. Virtual

server via direct routing needs to get the correct link layer object through lookup the

node’s destination hash. After getting the MAC address of the chosen server, this

method sets the packet’s MAC address and send the packet out. It also updates the IP

header checksum.

Notice that the implementation of the HDR_ENCAP is not correct in ns-2. It may

cause segmentation fault under some circumstances. For tunneling, it’s better to use

the Encapsulator and Decapsulator implemented in the mobile IP in ns-2.

Scheduling algorithms

 19

We have implemented four scheduling algorithms for selecting a server from the

cluster: Round-Robin, Weighted Round-Robin, Least Connection, and weighted

Least Connection. The first two are self-explanatory, they don’t use any load

information to make the decision. For least connection scheduling algorithms, it

needs to record connection number on each real server.

The Round-Robin scheduling algorithm directs the network connections to different

servers in a Round-Robin manner. It treats all real servers equally, regardless of their

different response time. The scheduling granularity of virtual server is connection-

based, and is superior to the Round-Robin DNS approach.

The Weighted Round-Robin scheduling algorithm, however, gives each real server a

weight. The weight is an integer, indicates the server’s capability. During scheduling,

a scheduling sequence is generated according to the server weights.

The least connection scheduling algorithm is a dynamic load balancing algorithm, it

keeps the number of connections on each server, and chooses a server which has the

least number of connections. The weighted least connection scheduling algorithm

further assigns a weight to each server, and chooses a server according to both its

weight and connection number.

Simulation

Topology of simulation scenarios

Below is the basic topology of all simulation scenarios in this project:

 20

agent agent agent
agent

Figure 6 Basic topology of simulation scenarios

The left side represents client machines, the right four machines represents load

balancer and servers connected by a local area network. Each client node has one

UDP agent and a CBR traffic generator, the load balancer has one IPVS agent, and

the real server has a list of agents which point to the clients. In virtual server via IP

Tunneling, there’s a Decapsulator agent on each server node, which is responsible for

Decapsulating the packet and re-sending the Decapsulated packet to the correct agent

on the same node. Notice that above is the basic structure of the simulation topology,

the number of client and real server nodes, and other parameters vary in different

simulations.

Stressing the load balancer

Since each client request will first be processed by the load balancer, the design of

the load balancer is crucial to the virtual server’s performance. How about the LVS

load balancer? Simulations below will stress the load balancer, and investigate

whether the load balancer via the modified NAT, IP Tunneling and Direct Routing

will become the bottleneck of the whole system. Meanwhile performances of virtual

 21

server via different techniques will be compared and analyzed.

First Topology

In this topology, the load balancer also is the default gateway to connect clients and

servers. Figure shows the structure of the topology, node 0 is the load balancer and

also the default gateway. Node 1, 2 are real servers, and node 3 is the VLAN node in

ns-2. The IPVS sink agent on the servers accepts packets and send back the replying

packets immediately. Node 4 to 13 are client nodes, these clients send request to the

virtual server at an interval of 1ms, it is to say 1000 packets per client arrives at the

load balancer per second. The load balancer uses Round-Robin scheduling algorithm.

Other parameters are: the bandwidth of link between the clients and load balancer is

10M, delay is 1ms. The local area network bandwidth is 100M, and delay is 1ms. The

queue size of all links is 100. And in all simulations, the packet only includes

necessary packet headers to reduce the memory consumption. These packet headers

are IP, UDP, RTP, IPVS, LL, MAC, Flags, ARP and IPinIP(for tunneling).

4 0

2
3

5

1

13

Figure 7 structure of topology 1

We stresses the load balancer by setting the sending interval of CBR to 1ms, and

gradually increasing the number of requests by adding more client nodes to the

topology. The reason to do so is that, since each client node is connected to the load

balancer by a separate link, the load balancer can have enough capability to

 22

communicate with the clients. If instead we use a smaller CBR sending interval and

smaller number of client nodes, the packets may be dropped before they are

processed by the IPVS agent. Simulations below just ensure that each packet sending

by the client nodes will reach the IPVS agent, thus stresses the processing ability of

the load balancer.

Metrics used in the simulations are throughput(replying rate), receiving rate and loss

rate. Throughput here means the number of packets replied by the load balancer per

second to the clients. Receiving rate means the number of packets received by the

real severs per second, and loss rate means the number of packets dropped by

the load balancer and the real servers every second. The round trip time is not an

accurate reflex of the virtual server’s processing capability, for the number of

requests fully processed by the virtual server with different load balancing techniques

may vary.

First we choose only one real sever. Below is the result:

 23

Figure 8 throughput, topology 1, 100M LAN, 1 server

Figure 8 is the throughput of the virtual server via three techniques. The horizontal

axis is the connection rate on the load balancer, the vertical axis is the throughput per

second. We can see from the figure above that when the connection rate is 9000/s, the

throughput of the virtual server under all three techniques reaches its peak, and

gradually goes down with the increasing of the connection rate. When the connection

rate is larger than 22,000/s, the throughput is rather steady, for the modified NAT, it’s

only 5,000/s, for the other two techniques, it’s only 4,000/s.

Figures below is helpful to see what happens:

 24

Figure 9 loss rate on the load balancer, topology 1, 100M LAN, 1 server

Figure 9 shows the loss rate on the load balancer, the horizontal axis represents the

connection rate, the vertical axis represents the loss rate. From this figure, we know

that when the connection rate is lower than 6,000/s, no packet loss occurs. The loss

rate increases drastically, especially when the connection rate is higher than 22,000/s.

This greatly affects the number of packets received on the real server. Figure 10

shows the receiving rate on the server:

 25

Figure 10 receiving rate on the real server, topology 1, 100M LAN, 1 server

In figure 10, the real server can not receive more packets when the connection rate is

higher than 22,000/s, this is mainly caused by the sharply increasing loss rate on the

load balancer.

Besides the packet loss on the load balancer, there’s still a gap between the

throughput and the connection rate. For example, when the connection rate is

22,000/s, the throughput of virtual server via the modified NAT is only about 5,000/s.

And the load balancer only drops about 5,000 packets, the gap is about 17,000/s. In a

100M LAN, most of these packets are lost on the real server, very few of them are

lost due to collision. Following figure describes the loss rate on the real server in this

simulation.

 26

Figure 11 loss rate on the real server, topology 1, 100M LAN, 1 server

We can see from figure 11 that the packet loss on the real server also increases

drastically, but after the connection rate exceeds 22,000/s, the loss rate is steady. This

is because of the real sever can not receive more packets, the extra packets are

dropped on the load balancer(in figure 9).

So the packet loss on the load balancer, the real server and caused by collision is the

main factor affects the throughput. This illustrates that a 100M LAN is not capable of

dealing with the increasing traffic. It’s clearer when adding more real servers to the

virtual server. Below are the throughputs of the virtual server with 1, 4, 8, and 12 real

servers:

 27

Figure 12 throughput of the VS via the modified NAT, topology 1, 100M LAN

We can see from the figure that the throughputs of the virtual server having 4, 8 and

12 real servers are higher than that of having 1 real server. But the throughput of

having 8 servers is lower than that of having 4 servers, and the throughput of having

12 servers is further lower than 8 servers. Below gives the loss rate on the load

balancer and real servers to have a further look on this phenomenon:

 28

Figure 13 loss rate on the load balancer, the modified NAT, topology 1, 100M LAN

Figure 14 loss rate on the real servers, the modified NAT, topology 1, 100M LAN

 29

We can see from figure 14 that packet loss on the real servers decreases very sharply

when adding more real servers. Very few packets are dropped in the virtual server

with 8 and 12 real servers. Most of the un-replied packets are lost on the load

balancer. For example, when the connection rate is 30,000/s, the replying rate of the

virtual server with 12 servers is about 8,500/s, there’re 21,500 un-replied packets per

second. Only about 160 packets are dropped on the real server per second, meanwhile

the loss rate on the load balancer is about 21,100/s. The high packet loss rate on the

load balancer decides the low throughput of the virtual server.

The load balancer seems to be the bottleneck of the virtual server. Is this caused by

the implementation of the IPVS agent? Through further analysis, we can see that this

bottleneck is due to the local area network transmitting capability, not the

implementation of IPVS agent. Since it is guaranteed that no packet will be dropped

on the links between the load balancer and the clients, if the transmitting speed of the

local area network can catch up with that of the IPVS agent and therefore is capable

of transmitting packets modified by the IPVS agent in time, no packet will be lost on

the load balancer. Instead the throughput of the load balancer will be a rather constant

number which is decided by the corresponding processing speed of the virtual server

using different transmitting techniques. However, as above figure shows, packet loss

rate on the load balancer is high, and this loss severely affects the throughput of the

virtual server. The reason of the throughput of the virtual server via the modified

NAT decreases when having more real servers is that, the local area network is busier

due to its broadcasting nature, and this causes the higher loss rate on the load

balancer. Under above simulation configurations, the local area network becomes the

system’s bottleneck.

The lower loss rate on the real servers when having more real servers is due to the

traffic are distributed among the real servers, each real server receives less number of

packets if having more real servers. And under the same connection rate, more

packets are dropped on the load balancer as the number of real servers increases, the

 30

real servers also receives less number of packets as a whole.

The situation when using the other two transmitting methods are almost the same.

Below are their results:

Figure 15 throughput, the IP Tunneling, topology 1, 100M LAN

Figure 16 throughput, the Direct Routing, topology 1, 100M LAN

 31

It’s slightly different when using transmitting methods of the IP Tunneling and Direct

Routing. The throughputs of having 12 real servers are still lower than that of having

8 real servers. But the throughputs of the virtual server via these two techniques when

having 8 real servers are the highest.

This difference between the modified NAT and IP Tunneling, Direct Routing is due

to their different processing speed. The Direct Routing runs the fastest, and the speed

of the IP Tunneling and Direct Routing is closer than that between the modified NAT

and Direct Routing. Since the modified NAT is the slowest, it gives the LAN more

time to transmit the packets, thus the LAN under the modified NAT is relatively

busier than under the other two methods. When using the modified NAT under 8 real

servers, the increasing traffic counteracts the benefit of adding 4 more servers and

causes the throughput to decrease. When using the IP Tunneling and Direct Routing,

this phenomenon occurs when the number of real servers reaches 12.

The ranking of the speed among these three methods is illustrated by figure 8 and

figure 17 below. In figure 8, when the connection rate is lower than 22,000/s, the loss

rate of the Direct Routing on the load balancer is the highest, the IP Tunneling is the

second, the modified NAT is the last. Given the speed gap between the IPVS agent

and the local area network, we can think that the speed of the Direct Routing is the

fastest, thus the corresponding IPVS agent pumps more packets into the queue

belonging to the local area network VLINK within the same period. So the queue

when using the Direct Routing is quicker to be full and causes more packet loss on

the load balancer. This is confirmed by getting the first packet dropping time on the

load balancer from the trace file. When the connection rate is 9,000/s, the first packet

drops at 2.712400s when using the modified NAT, it is at 1.075400s when using the

IP Tunneling, and it is at 1.160400s when using the Direct Routing. Furthermore,

since more packets are sent to the real server due to the relatively slow processing

speed of the modified NAT, the throughput of the modified NAT is even higher than

 32

that of the Direct Routing and IP Tunneling.

The IP Tunneling is a little different from the other two methods, because it must

allocate one more IP header, increases the transmitting overhead. In fact, the

processing speed of the IP Tunneling and Direct Routing is very close, in a 1000M

LAN, with the connection rate 70,000/s, under the IP Tunneling, the first packet

drops at the time 1.039900s, the time is 1.038527 under the Direct Routing. Under

the modified NAT, it is 1.388400s.

Under different connection rate and different transmitting methods, the first packet

loss may happen at the real server or the load balancer. As a whole, the virtual server

via the modified NAT drops less number of packets, and has a higher throughput than

the other two methods.

It must be notified that the differences between the processing speed of these three

techniques are very small. The average round trip time of the modified NAT and

Direct Routing when the connection rate is 6000/s is the same----0.007233s. The

round trip time of the IP Tunneling is 0.007242, a little larger than the other two

techniques, mainly because of adding the extra IP header into the packet when using

the IP Tunneling method. We choose a connection rate of 6000/s just because under

this configuration no packet loss occurs, every request has been processed and replied

by the virtual server under this scenario.

Local area network with a bandwidth 1000M

We know from above simulations that a LAN with a bandwidth 100M becomes the

whole system’s bottleneck. Simulations below just aims to find how is the situation

of the virtual server in a LAN with a 1000M bandwidth.

 33

Below are the figures:

Figure 17 throughput, topology 1, 1000M LAN

Figure 17 shows that the throughput of the virtual server in a 1000M LAN is much

higher than that of the virtual server in a 100M LAN. The transmitting capability of

the local area network is crucial to the system’s performance. And when the

connection rate exceeds 30,000/s, the throughput does not increase anymore, but is

rather steady. Is this caused by reaching the maximum processing capability of the

IPVS agent or by the local area network? Figure 18, 19 and 20 shows that packet loss

is still severe in a 1000M local area network.

 34

Figure 18 loss rate on the load balancer, topology 1, 1000M LAN

 35

Figure 19 loss rate on the real server, topology 1, 1000M LAN

The packet loss on the load balancer and the real server shows that a 1000M LAN is

still the bottleneck of the system. Its transmitting capability can not match that of the

IPVS agent. Figure 20 shows the throughput of the virtual server when having 1, 4, 8

and 12 real servers.

 36

Figure 20 throughput, the modified NAT, topology 1, 1000M LAN

In a 1000M LAN, the throughput of the virtual server via the modified NAT when

having one real server is the highest, adding more real servers to the network will

degrade the system’s performance. This is due to both the higher loss rate on the load

balancer, the higher loss rate on the real server, and the higher loss rate due to

collision. Relevant figures and those for the IP Tunneling and Direct Routing are

included in the appendix. These figures together with figure 20 illustrate that adding

new real servers in a 1000M LAN under current configuration and topology will

cause more network traffic and even lower the throughput of the virtual server. The

local area network with a bandwidth 1000M is still the system’s bottleneck.

Another topology

 37

In this topology, the local area network will only handle half of all the traffic, we

simulate the scenario that the local area network has the least affection on the virtual

server. Below is the structure of this topology:

12

3

4

0

2
1

Figure 21 topology 2

In the above figure, node 0 is the load balancer, node 1 is the real server, and node 2

is the VLAN node in ns-2. Node 3 to 12 are the clients(client number varies under

different connection rate). The links between the real servers and the clients have a

bandwidth of 10M and delay of 1ms. Other parameters remain the same with above

simulations.

 38

Figure 22 throughput, topology 2, 1000M LAN

The throughput under this topology can be views as the upper bound of the

throughput of the virtual server in a 1000M LAN. From figure 22 we can see that the

virtual server via the IP Tunneling and Direct Routing have the similar processing

speed. The modified NAT is slower, gives more time for the network to transmit the

packets, thus has a higher throughput. Under all the three techniques, no packet lost

on the real server or due to collision, all packets are lost on the load balancer because

of the mismatch of the processing speed of the IPVS agent and the local area network.

Figure of the loss rate on the load balancer is included in the appendix.

Scheduling algorithms

 39

We have implemented the Round Robin, weighted Round Robin, Least Connection

and weighted Least Connection algorithms in this project. The round robin algorithm

just chooses the next server, thus it has the least scheduling overhead. The weighted

round robin algorithm will schedule the next server which has a weight is larger than

current weight(the current weight is initialized to the largest weight among the

servers, and will update after each scheduling). The least connection algorithm needs

to scan the real server list to find the real server with the least connection number.

The weighted least connection also scans the list and chooses a server with the

minimum value of (connection number)/weight. The least connection and weighted

least connection algorithm needs to scan the whole real server list, thus they have the

highest overhead.

A simulation is designed to investigate the impact of the scheduling overhead. In this

simulation, the virtual server has 200 real servers, uses the modified NAT

transmitting method, all the servers have the equal weight. And there’s one client

node sends request to the virtual server at an interval of 1ms. The result is that the

round trip time when using above four scheduling algorithms is the same----

0.006891s. This means that the four algorithms have nearly the same cost, the

overhead of searching the real server list is small. It needs a more powerful machine

to see the overhead’s impact on the system’s throughput.

Round Robin vs. Weighted Round Robin

The weighted round robin can treat each real server different. If we can accurately

give weights to the real servers, it will perform superior to the round robin. To

illustrate this, simulation below uses two real servers, one has the weight 1, and the

other server has the weight 3. Server one has a queue size of 50, server two has queue

size of 150. One hundred clients send packets to the load balancer at a interval of 1ms.

And the local area network queue size on the load balancer is set to be 10,000 to

ensure that no packet loses on the load balancer. The LAN has a bandwidth of 1000M.

 40

The IPVS agent is again modified to treat each request as a new one, thus it will

schedule a new server for them. Below is the result:

Figure 23 throughput, RR vs. WRR, 1000M LAN

The horizontal axis represents the time(unit is second), the vertical axis represents the

throughput of the virtual server. Figure 23 shows that the weighted round robin

performs much better than the round robin algorithm. This is because the round robin

algorithm distribute packets equally to the real servers, but server one only has a

queue size of 50, thus causes a much higher loss rate on this server. The figures of

receiving rate and loss rate on each real server are included in the appendix.

Round Robin vs. Least Connection

 41

Unlike round robin, the least connection algorithm is dynamic. When the work load

of the requests are all the same, there’re no much difference between these two

algorithms(given each server has the same weight). However, if the work load of the

requests vary, the least connection scheduling algorithm is superior to the round robin

algorithm. Figure below illustrates this:

Figure 24 throughput, RR vs. WRR, 1000M LAN

Above simulation uses a designated traffic pattern file. The pattern is that, the only

one client sends request to the virtual server at an interval of 0.5ms or 1ms. That is to

say, the client sends the next packet randomly after 0.5ms or 1ms. This simulation

treats each request different, if the sequence number of the request packet is odd, the

sink agent will send two more packets back. The timeout of each connection is set to

 42

be 1ms in the IPVS agent. The bandwidth of the LAN is 100M. Below is the

throughput of the virtual server using the round robin and the least connection

scheduling algorithms and the modified NAT transmitting method:

Figure 25 throughput, RR vs. LC, 100M LAN

As in figure 24, the horizontal axis represents the time, the vertical axis represents the

throughput. We can see the least connection algorithm performs better than round

robin all the time. The reason is that the round robin treats each request and server

equal, just deliver packets to different server in turn. Thus the real server 1 is always

receiving the packets whose sequence number is odd, and the real server 2 is always

receiving the packets whose sequence number is even. So the real server 1 sends

twice more number of packets back, the traffic is not evenly distributed between

these two servers. While using the least connection algorithm, things are different.

 43

Since the least connection algorithm chooses the server with the least number of

connections, and randomly arrival time of the packets(since we have a random

sending interval), at given time, the connection number on the two real servers are

different. Thus the least connection algorithm will not always choose server 1 for

packets with an odd sequence number. The network traffic is rather evenly distributed

among the servers. Relevant figures are included in the appendix.

Throughput Improvement

Recall that in the simulations above, we see that the local area network is the whole

system’s bottleneck. To improve the system’s throughput, the best way is to improve

the performance of the local area network and eliminate this bottleneck. But it’s also

helpful to improve the virtual server’s performance under current LAN technology.

This project uses a hierarchical virtual server structure to improve the virtual server’s

throughput. Though it’s rather simple and straightforward, no similar work has been

seen in the development and application of LVS. The hierarchical structure is

illustrated in the figure below:

0

20

13

12 0

1 2 3 4

6 7 8 9 1

Figure 26 A hierarchical virtual server structure

In figure 26, node 12 to 20 are clients. Node 0 and 4 are load balancers. Node 1, 2, 3

 44

and 4 are real servers of load balancer 0. Node 6 to 10 are real servers of load

balancer 4. Node 4 acts both as a real server of load balancer 0 and load balancer of

node 6 to 10. Node 0 to 4 consists a LAN, node 4 and node 6 to 10 consists another

LAN. These two LAN further consists the virtual server.

When a client, for example node 12, send a request to the virtual server, it first arrives

at node 0. Node 0 chooses a real server, modifies the packet and forward it to the

chosen real server. When node 0 chooses node 4, whose role is both a real server and

a load balancer, node 4 will further modify the packet and forward the packet to one

of its real servers.

The advantage of this hierarchical structure is that, it has fewer nodes in each level.

From previous simulation, we can see that adding more machines will degrade the

system’s performance provided that the real server can respond promptly and the

requesting connection rate is high. We can expect that this structure will improve the

system’s throughput. And it is verified by figure below:

 45

Figure 27 throughput, NAT, 8 servers, hierarchical structure

Figure 27 is a comparison of the throughput of the virtual server using the modified

NAT transmitting method under these two structures. Other parameters just are the

same with in figure 21, a 1000M LAN, queue size of 100, etc.

We can see in figure 27 that the hierarchical structure performs better. The reason is

just that fewer packets are dropped on the load balancer. It can be seen from figure

below:

 46

Figure 28 loss rate on the load balancer, NAT, 8 servers, hierarchical structure

Figure 29 loss rate on the real server, NAT, 8 servers, hierarchical structure

 47

In figure 28, loss rate on the load balancer(just node 0) with a hierarchical structure is

much smaller. In figure 29, the loss rate on the real server with a hierarchical

structure is higher, but the difference is small. In fact, the loss rate on the real server

isn’t high under the two structures, for we have 8 servers to share the work load. The

loss rate on node 0 is the main factor influencing the throughput.

Currently the approach to deal with the extremely website is to configure several

clusters, and use a round robin DNS to distribute requests among the different

clusters. But as we have pointed out, the DNS redirection approach may lead to

severe load imbalance, and under this approach, the scheduling granularity is per

cluster. This may cause some clusters to a very busy state, while others are not.

Another approach may be just group the real servers into different LAN, and all

addressable by the load balancer. But the scalability of this approach is not as good as

the hierarchical structure.

The disadvantage of the hierarchical structure is that, a request may unfortunately go

through several levels, this introduces extra overheads. But we can carefully choose

the level of the hierarchical structure, and connect each load balancer to the outside

world directly. By doing so, replying packets need not go up through the tree and can

be forwarded to the users directly.

So this structure seems a good solution, though it needs further consideration. In

Linux, it seems that the virtual server via the IP Tunneling can support this structure

directly. It needs further tests under LINUX, if it can not, it will be helpful to add

such a support. The virtual server via the NAT can not support the structure. So it’s

another important reason that LVS should modify its current NAT technique.

Conclusions and future work
 48

Through simulations of virtual server via the modified NAT, IP Tunneling and direct

routing, we find that the performance of the modified NAT is comparable to other

two techniques under all simulation scenarios in this project. Thus although the

modified NAT needs to change the codes on the real servers, it is worthwhile to

implement the virtual server using the modified NAT. Or at least, it is worthwhile to

add the support for the modified NAT and provide an option to users.

Also through simulation, we find the implementation of the IPVS is not the

bottleneck of the virtual server. Even a LAN with a bandwidth 1000M can not catch

up with its processing speed, and the LAN becomes the system’s bottleneck.

Simulation results show that the Direct Routing method is not so good as the first

look. Its speed is slightly faster than the other two techniques, but it requires all real

servers on the same physical segment. Given the bottleneck is the local area network,

its faster speed is even not so attractable. Compared with the Direct Routing, the

modified NAT and IP Tunneling have nearly the same speed and other more benefits.

The modified NAT can use private IP addresses, and the IP Tunneling can be used in

geographically distributed environments.

Finally, simulation results show that the hierarchical virtual server structure can

improve the system’s throughput. But in this project, all the real servers are assumed

that they have the enough capability to process and respond all the requests. It needs

further consideration and simulation with using a distributed file system.

References

 49

[1] Wensong Zhang, “Linux Virtual Server for Scalable Web Services”,

 http://www.linuxvirtualserver.org/ols/lvs.ps.gz

[2] Wensong Zhang, Shiyao Jin, Quanyuan Wu, “Creating Linux Virtual

Servers”, http://www.linuxvirtualserver.org/linuxexpo.html

[3] Internet Appliance INTERNET pro Enterprise Stack: Performance &

failover testing,

http://www.veritest.com/clients/reports/internetapp/internetapp.pdf

[4] Cisco local director: Cisco Systems, Inc., 1998,

 http://www.cisco.com/Warp/public/751/lodir/index.html

[5] T.Brisco, Dns support for load balancing,

 http://www.ietf.org/rfc/rfc1794.txt

[6] M. Wangsmo. White paper: Piranha – load-balanced web

and ftp clusters. http://www.redhat.com/support/wpapers/piranha/

[7] P. Braam and et al. The intermezzo project.

 http://intermezzo.org/

Appendix A

Below are the files included in the implementation:

Modifications in ns-2

Classifier/classifer-hash.h

Classifier/classifier-has.cc

Common/agent.h

Common/agent.cc

Common/ns-process.cc

Common/packet.h

Mac/lanRouter.h

 50

http://www.linuxvirtualserver.org/ols/lvs.ps.gz
http://www.linuxvirtualserver.org/linuxexpo.html
http://www.veritest.com/clients/reports/internetapp/internetapp.pdf
http://www.cisco.com/Warp/public/751/lodir/index.html
http://www.ietf.org/rfc/rfc1794.txt
http://www.redhat.com/support/wpapers/piranha/
http://intermezzo.org/

Mac/lanRouter.cc

Mac/ll.h

Mac/ll.cc

Tcl/lib/node.tcl

IPVS Agent:

ip_vs.h

ip_vs_core.cc

ip_vs_conn.cc

ip_vs_rr.cc

ip_vs_lc.cc

ip_vs_wrr.cc

ip_vs_wlc.cc

jhash.h

list.h

types.h

IPVS sink agent:

ip_vs_sink.cc

Simulation scripts:

Nat1.tcl

Tunnel1.tcl

Dr1.tcl

Nat3.tcl

Tunnel3.tcl

Dr3.tcl

 51

Nat-new.tcl

File for generating simulation results:

gen.cc

File for generating simulation traffic:

trafgen.cc

Appendix B Additional Figures

Figure 30 loss rate on the load balancer, IP tunneling, topo1, 100M

 52

Figure 31 loss rate on the real server, IP tunneling, topo1, 100M

Figure 32 loss rate on the load balancer, Direct Routing, topo1, 100M

 53

Figure 33 loss rate on the real server, Direct Routing, topo1, 100M

Figure 34 loss rate on the load balancer, modified NAT, topo1, 1000M

 54

Figure 35 loss rate on the real server, modified NAT, topo1, 1000M

Figure 36 throughput, IP Tunneling, topo1, 1000M

 55

Figure 37 loss rate on the load balancer, IP Tunneling, topo1, 1000M

Figure 38 loss rate on the real server, IP Tunneling, topo1, 1000M

 56

Figure 39 loss rate on the load balancer, Direct Routing, topo1, 1000M

Figure 40 loss rate on the real server, Direct Routing, topo1, 1000M

 57

Figure 41 loss rate on the load balancer, topo2, 1000M

Figure 42 receiving rate on the real servers, RR vs. WRR, 1000M

 58

Figure 43 loss rate on the real servers, RR vs. WRR, 1000M

Figure 44 receiving rate on the real servers, RR vs. LC, 1000M

 59

Figure 45 loss rate on the real servers, RR vs. LC, 1000M

 60

