
Simulation and Performance Analysis
of Peer-to-Peer Network Games

ENSC 835 – High-Performance Networks
Final Project Presentation

Fall 2003
David Mikulec

Email: dmikulec@sfu.ca / Web: www.sfu.ca/~dmikulec

Roadmap

Introduction to Network Games
Defining the Challenge
Implementation in ns-2
Discussion of Results
List of Remaining Work
Conclusion

Introduction to Network
Games

What is a network game?
Two or more players on separate
computers connected by LAN or Internet
One “world” whose state is maintained by
network communication
Typically all network communication is
application-layer

Introduction to Network
Games

Some examples
First Person Shooters (Quake)
Real Time Strategy (StarCraft)
Sports (NHL 2004)
Card / Board Games (Chess)
MMORPG (Everquest)

Introduction to Network
Games

Client-Server Peer to Peer

Introduction to Network
Games

Client-server advantages
Requires less bandwidth due to single
connection
Lost packets affect only one client

Peer-to-peer advantages
No server means no central point of failure
Lower delay due to direct connections

Introduction to Network
Games

Focus on Peer-to-peer networks
because…

High bandwidth connections are becoming
commonplace, currently ~1Mbps but future
may bring orders of magnitude more
Higher round trip time (RTT) in client-
server connections is here to stay (speed
of light places lower bound on delay)

Defining the Challenge

Major challenge
Distributed game simulation must run
identically on all machines – identical
inputs required at each frame to guarantee
synchronization. How can we achieve 30
frames per second (or more) given typical
network delays of 20-100ms across North
America (and even longer globally)?

Defining the Challenge
The solution – apply inputs to the
simulation engine several frames after
their generation.

For example, wait 6 frames (or 200ms
assuming 30 fps) – if all peers can
consistently deliver data within 200ms the
game will run smoothly
Any delay beyond the maximum causes the
game to freeze while starved of data

Defining the Challenge
For example, dark blue indicates packets received, light blue
represent packets to be received. The top row is the local
user’s input, other rows represent remote peers. In this case,
the yellow frame are the last full set of inputs, which will let us
simulate up to, but not including the red frame.

Implementation in ns-2

Simulate and analyze the performance
of various configurations of fully-
meshed peer-to-peer network games,
variable parameters include:

Client connectivity (ADSL, modem, etc.)
Number of peers
Traffic characteristics (fixed / variable size)

Implementation in ns-2
Key implementation decision – which
transport layer protocol to use?

Peer-to-peer games require reliable
communication which implies TCP
Real games however often choose UDP,
why?

Save per-packet overhead by implementing a
lighter-weight reliable application level protocol
Finer level of control over retransmissions, etc.

Implementation in ns-2

TCP is the protocol of choice for this
project because:

Implementing an extremely detailed
application layer protocol which performs a
similar function to TCP is time consuming
Interesting to view the performance of TCP
as an alternative to complicated UDP
solutions

Implementation in ns-2
High-level simulation – use OTcl
Built-in OTcl class TcpApp in ns-2 provides
the necessary functionality to pass data
between applications connected by TCP
New GameApp class was defined to hold onto
TcpApp connections to each peer, GameApp
sends packets at a constant rate as long as
no remote peer is more than 6 frames behind
Modify labels and colours on nodes to identify
when game is running smoothly or stuck

Implementation in ns-2

Code model used to connect peers, blue
circles represent game applications, red
their TCP agents, and yellow the
wrapper TCPApps

Implementation in ns-2

Sample nam output (startup phase)

Implementation in ns-2

Sample nam output (steady state)

Discussion of Results

Initial Results
First run used ADSL connections, 384 kbps
upstream, using 25 frames per second with
64 bytes constant data packet size
Up to 13 peers could participate
Bandwidth required for 13 nodes = 12
remote peers * 25 fps * 104 bytes =
250kbps (or 65% of available bandwidth)

List of Remaining Work

Investigate asymmetric networks
Cable, ADSL, and possibly modems

Real-world conditions
Varying traffic models
Lossy connections
Interrupting competing traffic

Improve sequencing of packets

List of Remaining Work

Enhancements other could add to this
project:

Compare to UDP
Compare different flavours of TCP
Use real traffic traces
Smart algorithms

Conclusion

So far, so good :o)
Network was successfully implemented,
and simulated
Even a simple model successfully
connected 13 peers
Lots of fun work ahead

Conclusion

References
1. Postel, J. “TRANSMISSION CONTROL PROTOCOL”, IETF-RFC-793,

http://www.ietf.org/rfc/rfc0793.txt?number=793, September 1981
2. Bonham, S., Grossman, D., Portnoy, W., Tam, K. “Quake: An Example Multi-User

Network Application – Problems and Solutions in Distributed Interactive
Simulations”, University of Washington,
http://www.cs.washington.edu/homes/grossman/projects/561projects/quake/Quak
e.ps, May 2000

3. Bettner, B., Terrano, M. “1500 Archers on a 28.8: Network Programming in Age of
Empires and Beyond”,
http://www.ensemblestudios.com/openjournal4/story/networking.ppt, March 2001

4. Borella, M. “Source Models of Network Game Traffic”, 3Com Corp.,
http://www.borella.net/mike/academics/game-traffic.pdf, November 2003

5. Faerber, J. “Network Game Traffic Modelling”, Institute of Communication Networks
and Computer Engineering, http://www.ibr.cs.tu-
bs.de/events/netgames2002/presentations/faerber.pdf, April 2002

Conclusion

Thank you!
Questions?

