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1. ABSTRACT 
Multi-player network games are enjoyed by millions of computer gamers.  This paper analyzes and 
simulates the performance of a TCP implementation of the peer-to-peer architecture to connect remote 
gamers.  It shows that a simple application-layer protocol running over TCP has promise for being able to 
handle large peer-to-peer games – on the order of 10-20 peers over current ADSL connections – despite its 
relative simplicity compared to complex UDP-based protocols currently used by most games. 

2. Introduction 
In the 1990’s gamers got their first taste of mainstream multi-player networked PC games, from first-
person shooters such as Quake (id Software, 1996), to real-time strategy games including Starcraft 
(Blizzard Entertainment, 1997) to Massively Multiplayer Online Role Playing Games (MMORPG) like 
Ultima Online (Origin Systems, 1997).  The early 21st century witnessed the launch of the Sony 
PlayStation2 network adapter kit and the Microsoft Xbox Live service, which widened the audience for 
networked games by millions of users.  Recently the dominant video game maker Electronic Arts 
announced that all future sports games (as well as many other titles) would feature online play.  Given the 
explosive growth of networked multi-player video games, a simulation and analysis of their network 
performance is of significant interest.  This paper, being the result of a project assignment in a course on 
High-Performance Networking, will focus on the performance of those first-person shooters, sports games 
and, real-time strategy games that place the highest demands on network infrastructure in terms of 
bandwidth and delay requirements. 

2.1. Architectural Models 
The key design decision faced by networked game programmers is which network architecture to follow: 
client-server (e.g. Quake) or peer-to-peer (Age of Empires).  Figure 1 illustrates these two models, with 
client-server on the left (each game client communicates solely with the central server), and peer-to-peer on 
the right (each game client communicates directly with all other peers).  For the purposes of this paper, 
when the term peer-to-peer is used, it is implied that it is in the fully-meshed sense – that is each peer 
exchanges data with all other remote peers involved in the same game (as opposed to large peer-to-peer 
networks like Gnutella where thousands of peers maintain connections to only a few remote peers).  This 
paper will focus on the peer-to-peer model, for reasons that will be outlined after a brief discussion of the 
pros and cons of each model in the following sections. 
 

 
Figure 1. Client Server and Peer-to-Peer architectures 



2.1.1. Client-Server 
Client-server games have two main advantages over peer-to-peer games: first, they consume far less 
upstream bandwidth because clients only need to send one copy of information to the server as opposed to 
N remote clients, and conserve some downstream bandwidth (due to less per-packet overhead) as the server 
can aggregate information from all remote clients; second, one central server has the authoritative view of 
the “world”, which allows the game to continue without interruption despite some dropped packets – 
compromising only quality of play for the client whose packets (incoming or outgoing) are dropped. 

2.1.2. Peer-to-Peer 
Peer-to-peer games, on the other hand, have distinct advantages due to the lack of a server: no separate 
server code base needs to be developed, maintained and distributed; there is no need to monitor or provide 
vast (and currently expensive) bandwidth for central servers (run by the developer or a 3rd party contractor 
– although low bandwidth servers are often provided to facilitate users to find others interested in playing 
the same game); there is no central point of failure, only individual peers can lose their connection (many 
games can continue with fewer players by eliminating the disconnected player entirely, or with the 
computer taking over play for that player); and most importantly the end-to-end delay is lower as it is 
simply based on the connection between the peers, rather than client-to-server-to-client.  While the other 
factors mentioned are all desirable, low delay is the key because it directly affects the quality of play as 
there is a strong correlation between lower delay and better gameplay [5]. 

2.1.3. P-2-P as the Way of the Future 
Both client-server and peer-to-peer architectures offer benefits at present, but in the future peer-to-peer 
networks are likely to dominate thanks to the laws of physics.  In typical network games amongst users 
spread out across continental North America, the speed of light places a lower bound on end-to-end delay 
between any two computers on the order of 10ms (i.e. distances on the order of 3000km divided by the 
speed of light 300,000km/s; globally the lower bound is on the order of 100ms).  From extensive personal 
experience with online games, broadband users with good connections currently enjoy delays on the order 
of 50ms to a broad range of hosts in North America; so there remains not even an order of magnitude of 
possible improvement in latency before physical limits are reached.  Bandwidth on the other hand is 
available in much higher quantities than the typical 1 ~ 2 Mbps range most broadband users have today; if 
Moore’s law holds we can expect users to have multi-megabit per second connections in the near future. 
Given that bandwidth is the most significant technical impediment to selecting a peer-to-peer architecture 
for large fully meshed network applications, it is likely that with increasingly high bandwidth and reliable 
connections, peer-to-peer networks will be the obvious choice in the future to maximize performance by 
reducing delay, hence they are the focus of this paper. 
 
The purpose of this project is to investigate the performance of a general fully meshed peer-to-peer gaming 
network.  While the network code for popular games can be quite detailed, and highly optimized for a 
specific game, this paper seeks not to focus on any particular game, but rather to gain an understanding of 
the issues common to many games.  By focusing on the common networking aspects, the goal is to obtain 
results applicable to a broad range of games, and even to other collaborative networked applications with 
similar performance requirements that have yet to be thought of.  

2.2. Choice of simulation tool: ns-2 
The tool used in this project is the ns-2 version 2.26 network simulation tool, available freely from the 
Information Sciences Institute (ISI) at the University of Southern California.  The tool interprets Tcl 
programs, allowing a user to set up topologies of nodes connected by links of varying characteristics, pass 
traffic between them, and track a multitude of network performance statistics.  Through extensions to Tcl, 
namely OTcl and TclCL, it is also possible to link in C++ code, where detailed and intensive algorithms 
can be implemented.  A visualization tool that normally accompanies ns-2, nam, allows the observation of 
the individual packets flowing through the network, link and queue statuses, and some simple annotations. 



2.3. Roadmap 
The following sections of this paper will trace the creation of an at first simple model of a fully meshed 
peer-to-peer gaming network that will be expanded upon to create a reasonably robust model which can be 
used to simulated the performance of a real network with varying network conditions. 
  
The following section of this document will present a more detailed description of the challenges and 
requirements of fully meshed peer-to-peer game networks.  Next, the steps taken to create an ns-2 model 
that simulates such a network will be documented.  Subsequent sections will display results of various 
simulations to observe the performance of the model, an investigation into improvements to the model, 
followed by a discussion of the results, and finally conclusions and recommendations for future work.  

3. Peer-to-Peer Gaming Networks 
Peer-to-peer gaming networks are conceptually easy to understand – one instance of the application runs on 
each host, and each application must update all the other peer applications on a regular basis.  The 
implementation of these networks is a challenging task when the performance requirements are stringent – 
which they are for networked games.  Peer-to-peer network game requirements can be best divided 
amongst the three main factors commonly used to describe network performance: they require absolutely 
no loss, low delay, and the worse the actual delay is, the tighter the delay jitter requirement.  To understand 
the roots of these requirements, and to specify them in more precise terms, we need to take a closer look at 
the typical architecture of a peer-to-peer game. 
 
In peer-to-peer games no single host controls the authoritative view of the “world”.  A networked game can 
only function if each application has a consistent view of the relevant data – to be more precise, the game 
engines must have consistent state data, although what is actually rendered graphically on each user’s 
screen may differ (e.g. graphical effects such as shading, and textures may be rendered differently due to 
differences in hardware).  Without a central server, the applications have two basic methods available to 
them to remain synchronized: first, each peer could periodically send its entire state to each other peer – 
needless to say this is prohibitively expensive for any but the most simple of games; the second approach is 
the defacto solution, each peer must run the same simulation (which is just a complex finite state machine) 
– which requires identical inputs to produce identical outputs.  Given this mechanism for keeping in 
synchronization, the following subsections consider its impact on loss, delay, and delay jitter, as well as the 
transport protocol selected to meet these requirements. 

3.1. Loss in Peer-to-Peer Network Games 
It clearly follows that if all clients need exactly the same input to their simulation, that no packets can be 
lost, otherwise the output of the simulation engines would quickly diverge due to differences in inputs, 
which is known as “desyncing”, and the players would no longer be playing in the same game.  Therefore, 
any dropped packets must be retransmitted until they are received. 

3.2. Delay in Network Games 
Realistic games are much like a TV show, the display must be refreshed at rates of roughly 30 frames per 
second or higher to appear smooth.  The game engine generates these visual frames by rendering a 
visualization based on the state of the game – this state is updated by combining inputs from users with the 
previous state.  As was noted previously, for these frames to match on all hosts, identical inputs must be 
applied to the game engine.  Given current end-to-end network delays on the order of 50ms, let alone the 
time needed for state update and graphical processing, if the application were designed to wait until a frame 
was displayed before soliciting inputs for the next frame, it would be impossible to achieve a frame rate of 
even 20Hz.  Cleary, a better approach than stop-and-wait is necessary to satisfy the expected video quality. 
 
The widely deployed solution is to buffer user input until several frames in the future (for example, if the 
game allows six frames of delay, users would see the first frame rendered on the screen and enter their 
inputs, their inputs are sent to each remote peer while the game engine continues rendering the second, 
third, etc. frames, and only after a delay of six frames (i.e. the 2nd through 7th), are the user inputs applied to 



generate the 8th frame – if user inputs have not been received in time to generate the 8th frame, the peer 
freezes until it receives such data.  Continuing the example, user inputs received after the second frame are 
applied to the 9th, inputs received after the 3rd are applied to the 10th, and so on), which frees the game 
simulation to proceed several frames while allowing time for all user inputs to reach all clients.  The tighter 
the delay requirement, the more responsive the game feels to users as inputs are quickly applied to the 
simulation, the longer the delay requirement, the more “sluggish” the game feels.  Any latency beyond the 
allowable value leads to the game freezing while it is starved of input; hence the delay requirements are 
very stringent for networked games.  For typical real-time strategy games, which are not based entirely on 
reactions, user experience studies indicate delays on the order of 500ms are acceptable, while for reaction-
based games such as first-person shooters and sports games, 100ms is a good time, and 200ms is 
considered adequate [3, 5]. 
  
Significant tradeoffs in terms of game responsiveness and requirements imposed on the network must be 
made by the game designers, based largely on the type of game, but also on their knowledge of the user 
base’s typical connectivity, and perhaps input from the user community.  Designers pick a fixed number of 
frames of delay between when input occurs and when it is used in the game simulation, which imposes a 
requirement on the network that it be able to deliver inputs from each peer to each other peer within that 
time frame.  Any failure to meet this requirement results in an application being starved of input at which 
point it must stall (leading to the choppy “stop-and-go” behaviour typical of games playing with poor 
network connections). 

3.3. The Effect of Jitter in Network Games 
Networked game requirements on delay jitter are closely tied to the maximum allowable delay.  In a 
network game where the maximum allowable delay is only slightly above the actual end-to-end delay, data 
inputs are arriving “just in time”, and any jitter that interrupts this regular arrival will lead to frozen frames.  
Conversely, networks with much better end-to-end delay than required can tolerate a lot more jitter, so long 
as the sum of the average end-to-end delay, and the maximum additional delay due to jitter does not run 
over the maximum allowable delay, the game can continue without interruption.  To summarize, the closer 
the average delay is to the maximum acceptable, the tighter the jitter requirements. 

3.4. Transport protocol of choice: TCP 
Up to this point, the theoretical requirements of a peer-to-peer networked game have been discussed; it is 
now necessary to consider the practical aspects of the implementation.  To an application level 
programmer, there are two choices available for transport protocols: Transmission Control Protocol (TCP) 
and Unreliable Datagram Protocol (UDP).  A student of a networking course (like myself), would examine 
the requirements discussed above, and conclude that what is needed is a reliable, lossless delivery which is 
what TCP offers us.  In practice, however, many games actually choose UDP, and then have to implement 
a TCP-like application layer on top of UDP.  The reasons for this are two-fold: some bandwidth savings 
can be made due to the smaller UDP header (offset to some degree by the increase in the payload of the 
segment to implement TCP-like sequence numbers, acks, etc.); and second: the actual operation of the 
protocol can be more finely tuned.  Despite the predominant usage of UDP, it is more economical in the 
short time frame of this project to use TCP to quickly get the simulation operational, rather than spending a 
significant amount of time re-implementing TCP-like functionality at the application layer.  Beyond the 
benefit of allowing more time for running simulations, this also affords the opportunity to investigate the 
feasibility of using TCP as an alternative to UDP for networked games.  The following section discusses 
the creation of an ns-2 model to simulate such a network. 

4. Simulating a meshed peer-to-peer game in ns-2 
As this project involves the author’s first experience with ns-2 (or Tcl scripting, or even interpreted 
languages for that matter), a non-trivial portion of the time was spent learning about ns-2 on the fly.  This 
section therefore discusses not just the final implementation of the simulation, but the process by which it 
was developed. 



4.1. The tools 
All code in this project was developed using the latest stable version of ns-2 presently available: ns-2 
version 2.26.  It was downloaded and built on a RedHat 9 Linux box, along with the visualization package 
nam, as well as the Tcl, OTcl, and TclCL supporting packages. 
 
The ns-2 documentation suggests that intense packet processing be coded in C++, while topology and non-
numerically intense work be done in Tcl [6].  Since the network being simulated doesn’t involve detailed 
routing algorithms, rather we’re observing the flow of standard TCP data, the clear choice was to begin 
coding in Tcl, and in fact all code for this project was written in Tcl. 
 
While ns-2 is geared mostly towards the analysis of network performance where the actual contents of the 
data don’t matter, the analysis of application-layer performance makes it crucial to know what data has 
been received from each client – since out of order packets could all be transmitted together in one chunk to 
the application, there would be no way of knowing how many separate game packets were received without 
observing the received data.  Fortunately, ns-2 provides a TcpApp wrapper class, which can be layered on 
top of a TCP agent to provide easy access to the data, which is exactly what is needed [6]. 

4.2. Step one – two peers sending periodic data 
The first step in building up the solution was to create a new OTcl class called GameApp that represents the 
application layer protocol running on each peer.  Beginning with two GameApp objects, one attached to 
each of two nodes connected by a direct link, a TCP connection (formed of two TCP Agents wrapped in a 
TcpApp instance) was created between them.  The first iteration of the GameApp code merely defined a 
method to periodically send data to the other peers, using a concrete instance of the Timer Class provided 
by ns-2 to cause periodic timeout events. 

4.3. Step two – handling TCP buffering issues 
From this simple prototype one problem quickly became apparent: typically game packets are quite small, 
much less than the default TCP maximum segment size of 536 [4], and unfortunately ns-2’s TCP agents 
buffered the data even though the slow start period should have been expanding the congestion window and 
thus allowing more data to flow.  The number of frames of game data buffered caused substantial problems, 
as the default maximum segment size would cause the TCP agents to buffer many game frames making the 
delay before they were received (let alone sent) so great that the game would always be frozen.  A simple 
workaround was to reduce the TCP max segment size to an appropriate value (double the packet size in a 
deterministic setting – in the case of variable sized packets of similar sizes a value slightly larger than most 
packets would work), forcing the TCP sender to send out packets quickly enough to satisfy the delay-
sensitive demands while still allowing large enough packets in bursty periods to avoid queue overflows. 

4.4. Step three – adding state 
The next important step was to add the notion of tracking data received from the other peers.  To 
implement the peer-to-peer gaming algorithm discussed previously it was necessary to enforce that no peer 
could send more than a few frames of data beyond the number received from each other peer.  The 
maximum frames outstanding for the purposes of this project were set to 6 (i.e. if the difference in frames 
between one peer’s received data, and the data it needs to send reached 7, the peer would freeze), and the 
frame rate to 25 frames per second.  These values satisfy relatively high-performance delay requirements 
for a broad cross-section of games.  The most interesting feature to observe was the “max delay” – that is 
for each peer the largest difference between the frame number to be sent, and the most recent received 
frame from each other peer.  Adding labeling to each peer to display the maximum current gap, and colour 
coding them for further clarity created a useful tool for quickly visualizing the state of the network (see 
figure 2 in the following section for an example of the nam output). 



4.5. Step four – expansion from two peers to N peers 
The next logical extension was to move from a two-peer point-to-point configuration to a mesh-connected 
network with multiple peers.  The GameApp class was modified to handle multiple TCP connections (one 
to each remote peer), and to keep track of the data received from each remote peer.  While valuable for 
debugging the multiple connection code, additional topology setup code was required to model peers as 
having only one connection to an ISP, shared amongst all TCP connections.  This was easily accomplished 
by adding an ISP node for each game application node.  Each game application node could be connected to 
its ISP via a simulated ADSL, or cable modem, or old-fashioned modem connection.  Connections between 
ISP’s were then modeled by a fully meshed structure, where it was assumed that bandwidth over the 
Internet backbone is plentiful, and the main parameter of interest was delay.  Figure 2 shows a sample nam 
visualization of this network in operation – inner nodes represent ISP’s while nodes around the outer loop 
represent the game peers, with the max delay shown textually and graphically (green represents max delays 
of 4 or less frames, yellow represents 5 or 6, and red for more than 6 represents a frozen peer starved of 
data).  Figure 3 shows this network later after the slow start TCP phase is over, and the peers are all 
transmitting data in a steady state. 
 

 
Figure 2: Sample nam output during TCP slow start phase (0.5 seconds after start of simulation) 

 



 
Figure 3: Sample nam output during steady state (1.0 seconds after start of simulation) 

 
Clearly, the modeling of the Internet as a fully meshed set of ISP’s is not entirely realistic.  At first, this 
model was selected for ease of implementation, and while it is one of the main areas for improvement on 
this simulation, there are a few reasons why this model is not such a bad one: first, games are usually short, 
from 5 minutes to an hour, so daily traffic patterns do not play a strong role; second, the network path 
followed by packets often stays constant with fairly constant delays, as can be witnessed by running 
traceroute continuously over short periods to a variety of hosts.  Further, from years of first-hand 
experience, network gameplay quality is normally relatively constant throughout a game – if all opponent’s 
are observed to have low ping rates before a game begins (i.e. low end-to-end delays), that typically 
guarantees a smooth game, while high ping rates virtually always result in choppy gameplay throughout. 

4.6. Initial test scenario 
For initial testing, all parameters were fixed to the following values: 

• Peer-to-ISP connections were modeled with typical ADSL connection values: 384kbps upstream, 
1.5Mbps downstream and 10ms delay 

• ISP-to-ISP connections were modeled with delays of 50ms (typical of connections across North 
America) 

• The game frame rate was set to 25 frames per second 
• The data payload size was fixed at 64 bytes – a fairly large value for typical games 

4.7. Optimizing the algorithm 
Before moving on to a thorough investigation of variable conditions, it was important to consider if the 
application layer communication was performing well enough.  In fact, one serious issue occurred which 
was addressed.  From the steady-state diagram (figure 3 above), it can be clearly seen that some peers have 
much higher delays than others, and in fact in this completely deterministic model the delays remained 
unchanged once the steady state was reached.  Since each node has identical conditions, this raises the 
obvious question, why do some peers behave differently?  The key lies in the naïve approach to sending 
data that was taken in the initial implementation – each time a peer had data to send, it sent it to the remote 
peers in the same order, i.e. node 0, node 1, node 2 (this is true of all peers, i.e. every single peer sends to 
the same node “0” first). 
 
A more intelligent approach to sending data was clearly needed – and one was devised from the 
information already available.  At each periodic sending of data, a peer checks the difference between the 



frame it’s about to send and the latest frame received from each other peer – those peers which are the 
furthest behind are precisely those that it would be desirable to receive data from sooner.  So, by informing 
each remote peer of the perceived delay, they can prioritize the order of packets to be sent.  This approach 
was implemented (with a considerable reworking of the code), and did in fact yield improved performance.  
Both the overall delays were lower, and several more frames could be sent in the same time frame as 
various peers recovered more quickly from the starvation condition.  In fact, with twelve peers there were 
approximately 3.7 fewer frames per peer at which each peer was starved of inputs.  This new algorithm 
thus will be the basis of the remainder of this project, and along with the initial test configuration from the 
previous section will be referred to as the Reference Model against which other sets of data will be 
compared. 

4.8. Initial Observations 
While still an idealized simulation, with fixed packet sizes and network parameters, nevertheless the 
reference model captures enough of the idea of a peer-to-peer network to allow us to measure some 
reference performance numbers.  The first observation we can make is how many peers can participate in 
the network before it reaches a point such that a steady state of continuous data transfer does not occur.  In 
the above case with identical packet sizes, connection speeds, and delays, 20 peers could participate.  
Another useful characterization of the performance of the network is the amount of bandwidth consumed – 
an efficient algorithm would be able to operate even when the bandwidth required is close to the maximum 
available (i.e. it wouldn’t require a lot of “spare” or wasted bandwidth).  In fact 83% of the available 
(upstream) bandwidth was required to transmit each game packet once (including TCP/IP headers) in the 
20-peer configuration, so the model can be considered fairly efficient.  With the maximum TCP segment 
size set to twice the payload size (as previously discussed), a minimum average overhead of 20 bytes per 
game packet is required (i.e. the TCP/IP header combined size of 40 split over 2 game packets), thus the 
required bandwidth can be computed as the product of: 19 remote peers, 84 bytes / game packet (64 byte 
payload + average 20 byte overhead), 25 game packets / sec, 8 bits / bytes = 319.2kbps, which is 83% of 
our assumed ADSL upstream bandwidth of 384kbps. 
 
Table 1 summarizes the results obtained in testing various numbers of peers in the Reference Model, and 
following is a brief explanation of the data columns.  The frames frozen is the number of times a peer was 
ready to send data but had to abort due to input starvation (these frozen frames all occurred during the TCP 
slow startup phase).  Steady-state time is the time (in seconds) after which the game stabilized, and data 
was transferred continuously – note that in a realistic game, test packets would typically be sent before the 
beginning of the game, so that the game could actually start after the completion of the TCP slow-start 
phase, thus avoid choppy gameplay in the first few seconds.  Each peer tracks the max delay in frames 
between itself and all other peers, this value is averaged over the entire run for each peer – both the worst 
peer as well as the mean over all peers are displayed.  Minimum bandwidth required is the minimum 
bandwidth required per peer to transmit data at steady state. 
 

Table 1: Performance Characteristics of the Reference Model 
Peers Total Frames 

Frozen (avg 
per peer) 

Average of All 
peer’s Max 
Delays (frames) 

Average of Worst 
peer’s Max 
Delays (frames) 

Bandwidth 
Required Per 
Peer (kbps) 

Seconds to 
Reach Steady 
State (s) 

2 0 1.79 1.79 16.8 0 
4 0 2.10 2.13 50.4 0 
6 0 2.37 2.72 84.0 0 
8 0 2.60 2.89 117.6 0 
10 0.10 3.06 3.37 151.2 0.32 
12 0.42 3.08 3.51 184.8 0.32 
14 0.79 3.60 4.31 218.4 0.52 
16 1.6 4.49 5.05 252.0 0.76 
18 6.3 4.83 5.20 285.6 1.52 
20 10.6 4.89 5.42 319.2 1.60 
Beyond 20 peers, the network did not reach a steady state. 



5. More Realistic Network Models 
The network configuration tested in the Reference Model is clearly highly idealized, and useful for 
obtaining base performance measurements for comparisons against more realistic configurations.  While 
more work could be done to model the Internet’s performance to a greater degree of realism, the following 
sections describe the modification of various parameters, and their effects on the overall delay 
performance. 

5.1. Adding deterministic delays 
The first step in varying the completely symmetric and idealized reference model was to add some 
deterministic delay.  The following subsections discuss the effects of adding delay to a peer-to-ISP 
connection, and then to an ISP-ISP connection. 

5.1.1. One slow Peer-ISP link 
Users will have varying latencies between their computer and their ISP, so the impact of a longer peer-to-
ISP delay was the first effect studied.  Tests were run with one peer-to-ISP’s delay increased to 20ms (from 
the 10ms default in the reference model), and then 30ms, with all other parameters held constant.  Figure 4 
(below) summarizes the effect of this increased delay – essentially the average network delay was increased 
for smaller numbers of peers; presumably for larger numbers of peers the dominating factor was the overall 
congestion of the Peer-ISP links and the impact of the additional delay was negligible. It is interesting to 
note that the peer with the slow link itself was rarely the peer with the worst delay; while at first this may 
seem counterintuitive, it does make sense as the incoming and outgoing packets are both delayed by the 
same amount, so the slow link affects all nodes, not just the peer connected to it. 
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Figure 4: Average of Max Delays for all Peers – Varying One Peer-ISP Delay 

5.1.2. One slow ISP-ISP link 
Connections between ISP’s will also generally be quite varied amongst each pair of the peers, due partly to 
geographical distances, but also due to the routing of IP packets.  Similarly to the previous section, the 
delay on one link was increased, this time an ISP-to-ISP link was modified from the 50ms default in the 
reference model to 70ms, 85ms, and then 100ms.  Figure 5 (below) summarizes the effect of this increased 
delay – again for low numbers of peers, the increased delay has a significant impact on the frame delays 
experienced at each peer, but for larger numbers of peers the overall congestion of the network is the 



dominant contributor to the delay, and the increased ISP-ISP link delay has a negligible effect.  It is 
interesting to note that although in the slow start phase the two peers connected by the slow link were 
significantly affected, they did not perform significantly worse in the steady-state.  In essence any effect of 
the increased delay on the two directly affected peers indirectly caused additional delays between them and 
all other peers, which in the end resulted in an overall increase in the average network delay. 
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Figure 5: Average of Max Delays for all Peers – Varying One ISP-ISP Delay 

5.2. Fully Randomized Delays 
The previous sections investigated the impact of adding some delay to one link in the network, it is 
interesting instead to consider the impact of a completely randomized set of link delays.  For comparison 
with the reference model, the mean of the peer-to-ISP delays was kept at 10ms, and the mean of the ISP-to-
ISP delays was kept at 50ms, but they were chosen randomly at startup time to vary uniformly (between 
5ms to 15ms for the peer-to-ISP, and 40ms to 60ms for the ISP-to-ISP).  Three trials were run for each 
number of nodes, and the results were averaged, in order to avoid the impact of any peculiar sets of random 
link delays.  Figure 6 (below) summarizes the impact of randomized delays on the performance of the 
network.  As was seen in the previous sections, for low numbers of peers the randomness causes increased 
delay for the network as a whole, but for larger numbers of nodes the congestion of the network is the 
dominant factor. 
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Figure 6: Average of Max Delays for all Peers – Random Link Delays 

5.3. Randomized packet sizes 
Some games may use fixed packet sizes, but it is more likely that there will be more or less data to send at 
various times, and this is the reason for testing with randomized packet sizes.  Several sources quote the 
extreme distribution: F(x) = e^(-e^((x-a)/b)) as the best description of packet sizes [4, 5], so again to match 
with the reference model, an extreme distribution is selected that yields a mean of 64 bytes per packet, but 
clipping at the lower and upper ends to 24 and 128 bytes respectively (it is assumed that any game 
implementation would have a minimum amount of data to be transferred at each frame, and also a 
maximum amount that it would ever need to send, hence the extreme distribution is a good approximation 
except in the tails), therefore the value for a was set to 52, and b to 20 (a roughly affects the mean in the 
extreme distribution, while b mainly affects the standard deviation).  Just like randomized link delays, three 
trials were run for each number of nodes, and the results were averaged, in order to avoid the impact of any 
peculiar set of random packet sizes.  Figure 7 (below) summarizes the impact of randomized packet sizes 
on the performance of the network.  As was seen in the previous sections, for low numbers of peers the 
randomness causes increased delay for the network as a whole, but for larger numbers of nodes the 
congestion of the network is the dominant factor. 
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Figure 7: Average of Max Delays for all Peers – Random Packet Sizes 

5.4. Putting it all together 
As a final test, the effects of the previous two sections – randomized delays and randomized packets sizes – 
were investigated in conjunction.  Once again three trial runs were performed for each number of nodes, 
with the results averaged.  Figure 8 (below) summarizes the impact of both random link delays and random 
packet sizes on the performance of the network, compared with the impact of only random link delays, as 
well as only random packet sizes.  The figure shows that there is very little difference between the impacts 
of just one parameter being random, or both, i.e. the effects are largely orthogonal. 
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Figure 8: Average of Max Delays for all Peers – Random Link Delays and Packet Sizes 



6. Future Work 
As can be seen from the results obtained in this paper, a relatively simple TCP implementation for 
networked games appears promising, but significant work could be added in many areas.  The following 
are four key areas recommended for future students to take this project from an interesting introduction to 
the performance of networked games to a full-fledged analysis of them. 
 

1. Realistic network models.  As alluded to several times in class, the modeling of the Internet is a 
difficult task, and unfortunately time did not permit a very realistic implementation of the network 
core to simulate real Internet behaviour.  With more time and computational resources, as detailed 
a simulation of the Internet core as possible would lend much validity to the results.  Also, it is 
possible that more than one user may be connected to a large ISP – while this paper essentially 
considers the worst case of users each connected to a separate ISP, it would be interesting to 
obtain statistics on the likelihood of multiple users being connected to one ISP, and the 
corresponding performance improvement.  

2. Comparison to existing application layer protocols.  This paper presented a fairly simple but 
robust TCP model for networked games, it would be very interesting to compare it’s performance 
to several existing games.  Source code for some games is available in the public domain, and 
could be added to ns-2, then compared against the TCP model presented in this paper (with 
parameters appropriately adjusted to make the comparison as fair as possible). 

3. Real traffic traces.  This paper analyzed the performance with both fixed-size data packets and 
the extreme distribution that is characteristic of many games, but for even more realism it would 
be interesting to use real traffic traces.  These traces are of course easy to obtain, as any game of 
interest can be purchased and played on a home computer, with a traffic tracing utility to capture 
statistics of interest. 

4. Enhancing the intelligence of the application layer.  Most video games model some abstraction 
of a real-world physical arena, such as city streets, a hockey rink, etc.  A key concept in these 
games is the location of players (or the units they control) – clearly players far apart are unlikely to 
interact with each other until they “approach”.  It would be interesting to investigate how a much 
larger game simulation in the hundreds (or thousands) of users could perform if only users in close 
proximity needed to update each other’s state at a high frequency.  If it turns out that the physical 
distribution of game players (and hence the distribution of frequencies of packets sent to the 
corresponding hosts) is similar for a wide spectrum of games, this would make a very interesting 
area of research. 

 

7. Conclusion 
This project successfully implemented an application-layer protocol using TCP to model a peer-to-peer 
networked game.  While much work can be done to improve the realism of the Internet core, simulated here 
as a fully-meshed collection of ISP’s, the initial results show that it is quite robust, especially given the 
simplicity of the algorithm.  The protocol performed well in a completely deterministic case, and as 
expected the performance was affected to a certain degree by randomizing delays and packet sizes.  The 
effects were most pronounced for low numbers of peers, while as expected the dominant factor affecting 
average delays with a large number of peers was the high congestion of the peer-to-ISP links. 
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