More Efficient Routing Algorithm for Ad Hoc Network

ENSC 835: HIGH-PERFORMANCE NETWORKS INSTRUCTOR: Dr. Ljiljana Trajkovic

Mark Wang mrw@sfu.ca Carl Qian chunq@sfu.ca

Outline

- Quick Overview of Ad hoc Networks
- AODV Routing Protocols
- Motivation
- Multipoint Relays Select techniques
- Implementation and Challenges
- NS2 Simulation Environment and Results
- Conclusion and Future Works

Mobile Ad Hoc Networks (MANET)

- Host movement frequent
- Topology change frequent

- No cellular infrastructure. Multi-hop wireless links may need to traverse multiple links to reach destination
- Data must be routed via intermediate nodes.

Unicast Routing Protocols

- Many protocols have been proposed
- Some specifically invented for MANET
- Others adapted from protocols for wired networks
- No single protocol works well in all environments
 - some attempts made to develop adaptive/hybrid protocols
- Standardization efforts in IETF
 - MANET, MobileIP working groups
 - http://www.ietf.org

Existing Ad Hoc Routing Protocols Ad Hoc Routing Protocols Reactive Hybrid Proactive Source-initiated Hybrid Table driven on-demand WRP **OSLR** DSD ZRP

)SR

ΓΟR Α

SSR

ABR

Routing Protocols

Proactive protocols

- Traditional distributed shortest-path protocols
- Maintain routes between every host pair at all times
- Based on periodic updates; High routing overhead
- Example: DSDV (destination sequenced distance vector)

Reactive protocols

- Determine route if and when needed
- Source initiates route discovery
- Example: DSR (dynamic source routing)
- Hybrid protocols
 - Adaptive; Combination of proactive and reactive
 - Example : ZRP (zone routing protocol)

Protocol Trade-offs

Proactive protocols

- Always maintain routes
- Little or no delay for route determination
- Consume bandwidth to keep routes up-to-date
- Maintain routes which may never be used

Reactive protocols

- Lower overhead since routes are determined on demand
- Significant delay in route determination
- Employ flooding (global search)
- Control traffic may be bursty
- Which approach achieves a better trade-off depends on the traffic and mobility patterns

Ad Hoc On-Demand Distance Vector Routing (AODV)

- Route Requests (RREQ) are flooded through entire network searching for destination
- When a node re-broadcasts a Route Request, it sets up a reverse path pointing towards the source
 - AODV assumes symmetric (bi-directional) links
- When the intended destination receives a Route Request, it replies by sending a Route Reply (RREP)
- Route Reply travels along the reverse path set-up when Route Request is forwarded

Represents a node that has received RREQ for D from S

Represents transmission of RREQ

• Node C receives RREQ from G and H, but does not forward it again, because node C has already forwarded RREQ once

 Node D does not forward RREQ, because node D is the intended target of the RREQ

Forward links are setup when RREP travels along the reverse path

Represents a link on the forward path

Motivations

The Lack of Scalability of AODV:

- As the number of source-destination pairs increases
 - Major control overhead of AODV is caused by "Route Query" flood packets
 - Routing overhead is proportional to the number of route queries
- As the given traffic becomes heavy
 - Heavy routing overhead causes significant effective throughput degradation

Proposed Modification

- Reduce routing overhead of AODV using Efficient Flooding (Selective Flooding)
- What's efficient flooding?
 - Only a subset of nodes (dominating nodes) forwards a Route Query flood packet
 - In contrast, in blind flooding all nodes relay each packet at most once
- How to choose dominant nodes?
 - Multipoint Relay Sets (MPRs)

Multipoint Relay (MPR)

- The Concept of MPR is to reduce the number of duplicated retransmissions while forwarding a broadcast packet
- Multipoint relay set (MPRs): subset of a node's 1-hop neighbors, such that each of its 2-hop neighbors is a 1hop neighbor of a node in the MPR set

Multipoint Relay

- A node selects its Multipoint relays with two rules:
 - Any 2-hop neighbors must be covered by at least one multipoint relay
 - Try to minimize the multipoint relay set
- Note that each node independently determines its own MPR set (no global "network MPR set")
- A node forward a flooding packet with the following rules:
 - The packet has not yet been received.
 - The node is multipoint relay of last emitter

Multipoint Relay

Diffusion of broadcast message using pure flooding

Diffusion of broadcast message using multipoint relays

Implementation

The algorithm for calculating the multipoint relay table is shown bellow:

- 1. Find all 2-hop neighbors that can only be reached by one 1-hop neighbor. Assign those 1-hop neighbors as MPRs.
- 2. Determine the resultant cover set (i.e., the set of 2- hop neighbors that will receive the packet from the current MPR set).
- 3. From the remaining 1-hop neighbors not yet in the MPR set, find the one that would cover the most 2-hop neighbors not in the cover set.
- 4. Repeat from step 2 until all 2-hop neighbors are covered.

Challenges

- Because of the nature of Ad Hoc network, nodes are moving constantly. We have to keep updating each node's movement and their neighbors.
- Each node must have the 1-hop and 2-hop neighbor information at any given time.
- This information can only be obtained by exchanging message periodically

NS2 Simulation Environment

- Simulator: NS2-2.26
- Operating System: Linux
- Network Area: 900 * 900 meters
- Number of nodes simulated: 10, 50, 100,150
- Max. pause time: 10s
- Max. speed: 20m/s

Conclusion

- Our simulations show the MPR technique improves AODV protocol significantly by reducing the overhead and delay in dense node networks
- With this technique, AODV can achieve better package delivery ratio

MPR: Multipoint Relay

AODV: Ad Hoc On-Demand Distance Vector Routing

Future Works

The AODV protocol can be further optimized by applying other techniques such as probability based methods or location based methods

References

- Yoav Sasson, David Cavin, André Schiper. Probabilistic Broadcast for Flooding in Wireless Mobile Ad hoc Networks. *IEEE Wireless Communications and Networking Conference (WCNC) -March 2003*
- Zygmunt J. Haas, Joseph Y. Halpern, and Li Li. Gossip-based ad hoc routing. In *IEEE INFOCOM*, Jun 2002. Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu.
- 3. The broadcast storm problem in a mobile ad hoc network. In *Proceedings of the Fifth Annual ACM/IEEE International Conference on Mobile Computing and Networking*, pages 151–162, Aug 1999.
- T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, a. Qayyum et L. Viennot. Optimized Link State Routing Protocol, IEEE INMIC Pakistan 2001.
- 5. Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir Das. "Ad Hoc On Demand Distance Vector (AODV) Routing." *IETF Internet draft*, draft-ietf-manet-aodv-12.txt, November 2002 (Work in Progress).

Any Questions And Comments?