

ENSC 835: HIGH-PERFORMANCE NETWORK
CMPT 885: SPECIAL TOPICS: HIGH-PERFORMANCE NETWORKS

More Efficient Routing Algorithm for

Ad Hoc Routing Algorithm

Fall 2003

Final Report

 Mark Wang mrw@sfu.ca
 Carl Qian chunq@sfu.ca

 http://www.ensc.sfu.ca/people/grad/chunq/personal/

 2

Table of Contents

ABSTRACT……………………………………………………………………………………..3
I. Introduction………………………………………………………………………………….4
II. Overview of AODV ………………………………………………………………………….6
III. Efficient Flooding in Ad Hoc Networks and related works………………………………7
IV. Multipoint Relays Technique……………………………………………………………….8
IV.1 Terminology………………………………………………………………………………………9
 Node……………………………………………………………………………………………………9
 Neighbor node……………………………………………………………………………………….....9
 2-hop neighbor………………………………………………………………………………………....9
 Multipoint relay (MPR)………………………………………………………………………………..9
 Multipoint relay selector (MPR selector, MS)…………………………………………….…………...9
 Symmetric link…………………………………………………………………………………………9
 Asymmetric link………………………………………………………………………………………..9
IV.2 Multipoint Relay in Detail………………………………………………………………………...9
IV.3 Multipoint Relay Enhancement…………………………………………………………………..10
IV.4 Implementation of MPR……………………………………………………………………….....10
IV.4.1 HELLO message broadcast…………………………………………………………………….10
IV.4.2 HELLO message processing…………………………………………………………………...11
IV.4.3 Multipoint Relay Selection Algorithm…………………………………………………………12
V. Simulation results comparison and analysis………………………………………………..14
VI. Discussion and Future work………………………………………………………………..16
VII. Conclusion……………………………………………………………………………….....16
VIII. References……………………………………………………………………………….. .17
APPENDIX I: MPR Selector Pseudo Code…………………………………………………....18
APPENDIX II: Code Listing…………………………………………………………………....20
aodv_queue.cc ...…………………………..…………………………………………………………..20
aodv_queue.h ……………………………………….………………………………………………....25
OTCL CODES ……………………………………….……………………………………………......26

 3

ABSTRACT

Network wide broadcasting [3] in Mobile Ad Hoc Networks provides important control
and route establishment functionality for a number of unicast and multicast protocols.
Nodes in an ad hoc network must cooperate and carry out a distributed routing protocol
in order to make multi-hop communications possible. On Demand Routing is one of the
most popular routing styles in ad hoc networks. In On Demand Routing, "flooding" is
used to find a feasible route from source to destination. The blind flooding can become
very inefficient because of redundant, “superfluous” forwarding. In fact, superfluous
flooding increases link overhead and wireless medium congestion. In this project, we
implement and modify the mechanism of multipoint relays (MPR) [4] to efficiently flood
the broadcast message [3] in the mobile wireless networks. We demonstrate the
efficiency of the proposed scheme in the AODV (Ad Hoc on Demand Distance Vector)
[5] routing scheme.

Mark Wang
Carl Qian

 4

I. Introduction

Mobile ad hoc networks are emerging as a very hot issue in telecommunication. It is a
collection of wireless nodes dynamically forming a temporary network without the use of
any existing network infrastructure or centralized administration, characterized by node
mobility, dynamic topology structure, scarce bandwidth, unreliable media and limited
power supply. They have numerous applications in several fields, including both military
and civilian use. Since the effective range of high capacity radio link is limited (IEEE
802.11a, g), the capacity of packet relaying inside the network is a key component of
such network. Mobile ad hoc routing has received tremendous quantity of intention since
the opening of the IETF working group MANET. There have been many recent proposals
of unicast routing protocols for ad hoc mobile networks. We have done a complete
research on the current routing protocols and summarized the existing ad hoc routing
protocols as shown in Figure 1. The common classifications for these protocols are in the
following three main categories:

1. Proactive protocols (routing table-driven) : based on periodic exchanges that
proactively update the routing tables to all possible destination, even if no traffic goes
through. OLSR, TBRPF, and DSDV are proactive protocols.

2. Reactive protocols (route on-demand): based on on-demand route discoveries that

update routing table only for the destination that have traffic going through. The
two reactive protocols are AODV and DSR.

3. Hierarchical and Hybrids Protocol: based on selected cluster head and gateway to

find routes from source to destination.

 Figure 1: Existing Ad Hoc Routing Protocols

Ad Hoc Routing Protocols

Table driven Source-initiated
on-demand

WRP

AODV DSR TORA AB

SSR

Reactive Proactive

Hybrid

ZRP

Hybrid

OSLRDSDV

 5

On Demand Routing [5] is one of the most popular routing styles in ad hoc networks. It
discovers routes based on needs, thus reduces the broadcast overhead. Flooding is the
basic mechanism to propagate control messages in finding the route from source to
destination. In flooding, a node transmits a message to all of its neighbors. The neighbors
in turn transmit to their neighbors and so on until the message has been propagated to the
entire network. Conventional flooding can be very costly in On Demand networks in
terms of network throughput efficiency as well as node energy consumption. The main
reason is that the same packet is rebroadcast unnecessarily several times (redundant
rebroadcast). Indeed, the penalty of redundant rebroadcast increases when the size of
network grows and the density of network increases. AODV protocol uses two control
mechanisms to reduce the cost of flooding. One of the mechanisms for prohibiting
infinite duplication is tracking flooding packets. Duplicates are detected (from a unique
source identifier and a sequence number, for example) by each receiving node and are
immediately discarded in order to avoid endless looping. Another control mechanism is
Time-to-Live (TTL). A flooding packet carries a TTL field which represents the
maximum hop that the packet can traverse. Upon reception of a flooding packet, the
receiving node checks the TTL field and determines whether the packet will be re-
broadcasted (after decreasing TTL) or dropped.

In this project we implement and optimize an alternative flooding control mechanism,
called Multipoint Relay (MPR), which was first introduced in the Optimized Link State
Routing Protocol (OLSR) [4], a proactive routing protocol. In order to use this optimized
mechanism, the nodes must perform a proactive control in order to know their two-hop
neighborhood. This can be done via the reception of hello messages generating by the
nodes and containing their neighbors list. Since two nodes are neighbors when they can
see each other address in their respective hellos, this is a very straightforward procedure.
The cost of the proactive neighbors control is not negligible but is far less important than
the cost of classical flooding, in particular when the condition of traffic and mobility
causes too many route discovery procedures. In this project, we will do some
comparisons between AODV and AODV with modified MPR under different situations.

 6

II. Overview of AODV

The Ad hoc On Demand Distance Vector (AODV) [5] routing algorithm is a routing
protocol designed for ad hoc mobile networks. AODV is capable of both unicast and
multicast routing. It is an on demand algorithm, meaning that it builds routes between
nodes only as desired by source nodes. It maintains these routes as long as they are
needed by the sources. Additionally, AODV forms trees which connect multicast group
members. The trees are composed of the group members and the nodes needed to connect
the members. AODV uses sequence numbers to ensure the freshness of routes. It is loop-
free, self-starting, and scales to large numbers of mobile nodes.

AODV builds routes using a route request / route reply query cycle. When a source node
desires a route to a destination for which it does not already have a route, it broadcasts a
route request (RREQ) packet across the network. Nodes receiving this packet update their
information for the source node and set up backwards pointers to the source node in the
route tables. In addition to the source node's IP address, current sequence number, and
broadcast ID, the RREQ also contains the most recent sequence number for the
destination of which the source node is aware. A node receiving the RREQ may send a
route reply (RREP) if it is either the destination or if it has a route to the destination with
corresponding sequence number greater than or equal to that contained in the RREQ. If
this is the case, it unicasts a RREP back to the source. Otherwise, it rebroadcasts the
RREQ. Nodes keep track of the RREQ's source IP address and broadcast ID. If they
receive a RREQ which they have already processed, they discard the RREQ and do not
forward it.

As the RREP propagates back to the source, nodes set up forward pointers to the
destination. Once the source node receives the RREP, it may begin to forward data
packets to the destination. If the source later receives a RREP containing a greater
sequence number or contains the same sequence number with a smaller hop count, it may
update its routing information for that destination and begin using the better route.

As long as the route remains active, it will continue to be maintained. A route is
considered active as long as there are data packets periodically traveling from the source
to the destination along that path. Once the source stops sending data packets, the links
will time out and eventually be deleted from the intermediate node routing tables. If a
link break occurs while the route is active, the node upstream of the break propagates a
route error (RERR) message to the source node to inform it of the now unreachable
destination(s). After receiving the RERR, if the source node still desires the route, it can
reinitiate route discovery.

 7

III. Efficient Flooding in Ad Hoc Networks and Related Works

Flooding is a packet dissemination procedure by which every incoming packet at a node
is sent out on every outgoing link except the one it arrived on. It is used to find a feasible
route to a destination or to advertise routing information. If the network is dense, it is not
necessary for every node to relay the flood search packet. In fact, it may suffice to use
only a subset of nodes as relays. There are many ways to reduce the number of
forwarding participants. All of the approaches concern selecting the dominant set, i.e., a
minimal subset of forwarding nodes which is sufficient to deliver the flooding packet to
every other node in the system. One is called Probability Based Methods [1] [2] in which
nodes only rebroadcast with a predetermined probability. In dense networks multiple
nodes share similar transmission coverage. Thus, randomly having some nodes not
rebroadcast saves node and network resources without harming delivery effectiveness.
The other one is called Location-Based Scheme which uses a more precise estimation of
expected additional coverage area in the decision to rebroadcast. In this method, each
node must have the means to determine its own location, e.g., a Global Positioning
System (GPS). Our project is focused on the Neighbor Knowledge Methods witch
employs multipoint technique to choose the dominated set to forward the routing
packages. Figure2 and Figure 3 [4] show that applying MPR technique can reduce the
flood significantly.

 8

IV. Multipoint Relays Technique (Our Modification)

In this section, we present the multipoint relay technique by introducing the related
terminologies followed by detailed description of MPR technique.

Figure 2: Diffusion of broadcast message using pure flooding

Figure 3: Diffusion of broadcast message using Multipoint Relays

 9

IV.1. Terminology

??Node
A MANET router which implements AODV Routing protocol.

??Neighbor node
A node X is a neighbor node of node Y if node Y can hear node X
.
??2-hop neighbor
A node heard by a neighbor.

??Multipoint relay (MPR)
A node which is selected by its 1-hop neighbor, node X, "re-transmit" all the broadcast
messages that it receives from X, provided that the message is not a duplicate, and that
the time to live field of the message is greater than one.

??Multipoint relay selector (MPR selector, MS)
A node which has selected its 1-hop neighbor, node X, as its multipoint relay, will be
called a multipoint relay selector of node X.

??Symmetric link
A verified bi-directional link between two AODV interfaces.

??Asymmetric link
A link between two AODV interfaces, verified in only one direction.

IV.2. Multipoint Relay in Detail

The idea of multipoint relays is to minimize the overhead of flooding messages in the
network by reducing duplicate retransmissions in the same region. Each node in the
network selects a set of nodes in its neighborhood which may retransmit its messages.
This set of selected neighbor nodes is called the "Multipoint Relay" (MPR) set of that
node. The neighbors of node N which are *NOT* in its MPR set, receive and process
broadcast messages but do not retransmit broadcast messages received from node N.
Each node selects its MPR set among its one hop neighbors. This set is selected such that
it covers (in terms of radio range) all nodes that are two hops away. The neighborhood of
any node N can be defined as the set of nodes which have a symmetric link to N. The 2-
hop neighborhood of N can be defined as the set of nodes which don't have a symmetric
link to N but have a symmetric link to the neighborhood of N. The MPR set of N,
denoted as MPR (N), is then an arbitrary subset of the neighborhood of N which satisfies
the following condition: every node in the 2-hop neighborhood of N must have a
symmetric link toward MPR (N). The smaller the MPR set is, the more optimal is the
routing protocol. Each node maintains information about a set of its neighbors. This is the
set of neighbors, called the "Multipoint Relay Selector set" (MPR selector set), which
have selected the node as a MPR. A node obtains this information from the periodic
HELLO messages received from the neighbors. A broadcast message, intended to be

 10

diffused in the whole network, coming from these MPR selector neighbor nodes is
assumed to be retransmitted by the node. This set can change over time (i.e. when a node
selects another MPR-set) and is indicated by the selector nodes in their HELLO messages.
Each node has a specific "Multipoint relay Selector Sequence Number" (MSSN)
associated with this set. Whenever its MPR selector set is updated, the node also
increments it’s MSSN.

IV.3. Multipoint Relay Enhancement

In our modified MRP, when a node receives a broadcast packet and is listed as a MRP,
the node uses 2-hop neighbor knowledge to determine which neighbors also received the
broadcast packet in the same transmission. These neighbors are considered already
“covered” and are removed from the neighbor graph used to choose next hop MRPs. This
modification will further reduce the flood overhead because it eliminated the duplication
of choose MRPs.

IV.4. Implementation of MRP

The implementation of MPR technique requires up to 2-hop neighbor information. This
information is obtained by HELLO message broadcast and HELLO message processing.
A node maintains information about its one hop neighbors, the status of the link with
these neighbors, a list of 2-hop neighbors that these one hop neighbors give access to, and
an associated holding time. Based on the one hop and 2-hop neighbor information, the
MPR dominate set can be calculated.

IV.4.1. HELLO message broadcast

Each node should detect the neighbor nodes with which it has a direct and symmetric link.
The uncertainties over radio propagation may make some links asymmetric.
Consequently, all links MUST be checked in both directions in order to be considered
valid. To accomplish this, each node broadcasts HELLO messages, containing
information about neighbors and their link status. The link status may be "symmetric", "
asymmetric” or "MPR". "Symmetric" indicates that the link has been verified to be bi-
directional, i.e. it is possible to transmit data in both directions. "Asymmetric" indicates
that the node can hear HELLO messages from a neighbor, but it is not confirmed that this
neighbor is also able to receive messages from the node. "MPR" indicates that a node is
selected by the sender as a MPR. A status of MPR further implies that the link is
symmetric. These HELLO messages are broadcast to all one-hop neighbors, but are *Not
Relayed* to further nodes.
A HELLO-message contains:
??A list of addresses of neighbors, to which there exists a symmetric link;
??A list of addresses of neighbors, which have been " Asymmetric ";
??A list of neighbors, which have been selected as MPRs.

 11

IV.4.2. HELLO message processing

Upon receiving a HELLO message, the node should update the neighbor information
corresponding to the sender node address. Suppose the "Originator Address" will be used
for the address of the node which sent the HELLO-message.

 1. If there exists a neighbor tuple with N_addr = Originator Address:

 1.1 if for that tuple N_status == ASYM_LINK:
 1.1.1 if the node finds its own address among the
 addresses listed in the HELLO message (with Link
 Type ASYM_LINK, SYM_LINK or MPR_LINK), it updates
 the N_status of the tuple to SYM_LINK and sets
 N_time = current time + NEIGHB_HOLDING_TIME.

 1.1.2 otherwise, if the node does not find its own
 address among the addresses listed in the HELLO
 message, it sets N_time = current time +
 NEIGHB_HOLDING_TIME.

 1.2 otherwise, if for that tuple:
 N_status == SYM_LINK OR
 N_status == MPR_LINK
 then:
 1.2.1 if the node finds its own address among the addresses
 listed in the HELLO message (with Link Type
 ASYM_LINK, SYM_LINK or MPR_LINK), it sets N_time =
 current time NEIGHB_HOLDING_TIME.
 2. Otherwise, a new neighbor tuple is created with:

 N_addr = Originator Address
 N_status with the value of SYM_LINK if the node
 finds its own address (with Link Type ASYM_LINK, SYM_LINK
 or MPR_LINK) among the addresses listed in the HELLO
 message, and to the value of ASYM_LINK otherwise
 N_time = current time + NEIGHB_HOLD_TIME

The 2-hop neighbor set is updated as follows: for each 2-hop neighbor address listed in
the HELLO message with Link Type
 SYM_LINK or MPR_LINK:
 1. if a 2-hop tuple exists with:
 N_addr == Originator Address AND
 N_2hop_address == the address of the 2-hop neighbor
 then the N_time of that tuple is set to:
 N_time = current time + NEIGHB_HOLD_TIME

 12

 2. otherwise a new 2-hop tuple is created with:
 N_addr = Originator Address,
 N_2hop_address = the address of the 2-hop neighbor,
 N_time = current time + NEIGHB_HOLD_TIME.

Based on the information obtained from the HELLO messages, each node construct its
MPR selector set. Thus, upon receiving a HELLO message, if a node finds its own
address in the address list with a link type of "MPR", it MUST update the MPR selector
set to contain updated information about the sender of the HELLO message:
 1. If a MPR selector tuple exists with:
 MS_addr == Originator Address
 then the expiration time of that tuple is set to:
 MS_time = current time + NEIGHB_HOLD_TIME.

 2. Otherwise, a new MPR selector tuple is created with:
 MS_addr = Originator Address
 MS_time = current time + NEIGHB_HOLD_TIME
 2.1 MSSN is incremented by one to indicate that the MPR
 selector table has been changed.

IV.4.3. Multipoint Relay Selection Algorithm

Each node in the network selects independently its own set of MPRs. MPRs are used to
flood control messages from that node into the network while reducing the number of
retransmissions that will occur in a region. Thus, the concept of MPRs is an optimization
of a pure flooding mechanism.

The MPR set must be calculated by a node in a way such that it, through the neighbors in
the MPR set, can reach all 2-hop neighbors. This means that the union of the neighbor
sets the MPR nodes contains the entire 2-hop neighbor set. While it is not essential that
the MPR set is minimal, it is essential that all 2-hop neighbors can be reached through the
selected MPR nodes. The smaller a MPR-set, however, the more optimizations are
achieved. By default, the MPR set can coincide with the entire neighbor set. This will be
the case at network initialization.

The Figure 4 and following specifies a proposed heuristic for selection of MPRs. The
following terminology will be used in describing this algorithm:

1. Find all 2-hop neighbors tha t can only be reached by one 1-hop
 neighbor. Assign those 1-hop neighbors as MPRs.

2. Determine the resultant cover set (i.e., the set of 2- hop neighbors that will
receive the packet from the current MPR set).

3. From the remaining 1-hop neighbors not yet in the MPR set, find
the one that would cover the most 2-hop neighbors not in the cover set.

4. Repeat from step 2 until all 2-hop neighbors are covered.

 13

After selecting the MPRs among the neighbors, the link status of the corresponding one
hop neighbors is changed from SYM_LINK to MPR_LINK in the neighbor table. The
MPR set is re-calculated when:

?? a change in the neighborhood is detected, i.e. either a symmetric link
 with a neighbor is failed, or a new neighbor with a symmetric link is
 added; or
?? a change is detected in the 2-hop neighborhood such that a
 symmetric link is either detected or broken between a 2-hop
 neighbor and a neighbor.

Figure 4: Flowchart of Multipoint Relay Selection

2

H
op

 n
ei

gh
bo

ur
 T

ab
le

1-Hop
neighbor
Table

M
PR

 T
ab

le

Can only be
reached by 1-hop
neighbors?

Yes

Remove the nodes from table

More
Nodes?

Yes

Yes Move this 1-
Hop node to
MPR Table

Will the 2-hop
neighbour be
covered by
this MPR?

Find a node
covers the
most 2- hop
nodes?

 14

V. Simulation results comparison and analysis

Our simulation is done in the ns2.26 simulator installed on Linux Operating System. We
use the AODV implementation in ns2 downloaded from one of the author's web site,
using IEEE 802.11 as the MAC layer protocol. The radio model simulates Lucent's
WaveLAN with a nominal bit rate of 2Mb/sec and a nominal range of 250 meters. The
radio propagation model is the tworay ground model. Our application traffic is CBR
(constant bit rate). The source destination pairs (connections) are chosen randomly. The
application packets are all 512 bytes. We assumed a sending rate of 2 packets/second and
15 connections. The network area we set is 900 * 900 meters. The maximum node
movement is 20 m/s, and maximum pause time is 10 seconds. We have simulated with
10, 50, 100, and 150 nodes using original AODV protocol and our implementation
AODV+MPR protocol. Each data point represents an average of four runs using the
identical traffic model, but with different randomly generated mobility scenarios. To
preserve fairness, identical mobility and traffic scenarios are used for AODV and
AODV+MPR. We study the performance of the following two metrics:

1. The packet delivery ratio represents the ratio of the data packets delivered to
the destination to those generated by the CBR sources.

2. The average endtoend delay of data packets includes all possible delays
caused by buffering during routing discovery, queuing at the interface queue,
retransmission at MAC layer, propagation, and transfer time.

Because of the long real-time simulation run for large network experiments, only four
runs for each scenario were performed. The results of these runs were averaged together
to produce the resulting graphs. From the trace file, we extracted the related data and
calculated the packet delivery ratio and average end-to-end delay. The results are shown
in Figure 4 and Figure 5. We can see that AODV+MPR achieves much better results in
the dense network. There is less end-to-end delay and the package delivery ratio is much
higher than the original AODV protocol. However from the results, we can see that the
multipoint relay technique does not achieve better results, especially for the end-to-end
delay, in the less dense network. This is because AODV+MPR takes longer time to
discover the route from the source to destination.

 15

 Figure 5: Average End to End Delay

 Figure 6: Package Delivery Ratio

0 50 100 150
40

50

60

70

80

90

100

Number of nodes

Packets Delivering Ratio

Packets Delivering Ratio

AODV+MPR

AODV

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of nodes

Average End ot End Delay(secs)

AODV

AODV+MPR

 16

VI. Discussion and Future work

Due to the natures of mobile ad hoc networks - no infrastructure or centralized
administration, characterized by node mobility and dynamic topology structure, scarce
bandwidth, unreliable media and limited power supply, our implementation has to use the
proactive HELLO message to obtain the neighbor information regularly, thus it causes
background traffic overhead to exchange information between neighbors. Secondly, as
the node mobility increase, accurate neighbor information collection is very hard. Our
implementation works effectively only with complete neighbor topology information. As
a result, the effectiveness of MPR technique is severely impaired by the increase of
neighbor degree or node mobility.

The algorithm for calculating the MPR set is very complicated in this implementation; as
a result, it takes huge amount of CPU power. It will be worth while to come up some
more optimized and intelligent algorithms. The AODV protocol can also be further
optimized by applying other techniques such as probability based methods or location
based methods.

We would also like to do more simulation with different parameters such as more nodes
in the network, higher mobility, increasing pause time. We believe that under different
situations, the effectiveness of this technique will be different.

VII. Conclusion

In this project, we first studied and simulated the AODV routing protocol. By analyzing
the simulation results, we found that the current AODV protocol has major control
overhead which is caused by “Route Query” flood packets. We have improved the
AODV routing protocol by reducing routing overhead using an efficient flooding
technique – multipoint relay. This technique selects the dominated nodes through out the
entire network to forward route query flood packets. From the results of our simulations,
we can see that MPR technique optimized original AODV protocol.

 17

VIII. References

[1] Yoav Sasson, David Cavin, André Schiper, “Probabilistic Broadcast for Flooding in Wireless
Mobile Ad hoc Networks”. IEEE Wireless Communications and Networking Conference (WCNC) - March
2003

[2] Zygmunt J. Haas, Joseph Y. Halpern, and Li Li, “Gossip-based ad hoc routing”, In IEEE
INFOCOM, Jun 2002.

[3] Sze -Yao Ni, Yu -Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu,

“The broadcast storm problem in a mobile ad hoc network”, In Proceedings of the Fifth Annual ACM/IEEE

 International Conference on Mobile Computing and Networking, (pages 151–162), Aug 1999.

[4] T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, a. Qayyum et L. Viennot, “Optimized Link State

Routing Protocol”, IEEE INMIC Pakistan 2001.

[5] Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir Das, "Ad Hoc On Demand Distance

Vector (AODV) Routing", IETF Internet draft, draft-ietf-manet-aodv-12.txt, Nov. 2002 (Work in Progress).

 18

Appendix I

Pseudo Code
??Hello message processing
1. IF There exists a neighbor tuple with N_addr = Originator Address:
 THEN

1.1 IF (For that tuple) N_status == ASYM_LINK

THEN

IF The node finds its own address among the
 addresses listed in the HELLO message (with Link
 Type ASYM_LINK, SYM_LINK or MPR_LINK),

THEN
It updates the N_status of the tuple to SYM_LINK and sets
N_time = current time + NEIGHB_HOLDING_TIME.

 ELSE IF
The node does not find its own address among the
addresses listed in the HELLO message;

THEN
N_time = current time + NEIGHB_HOLDING_TIME.

 ENDIF

1.2 ELSE IF (For that tuple)
 N_status == SYM_LINK OR
 N_status == MPR_LINK
 THEN
 IF The node finds its own address among the addresses
 listed in the HELLO message (with Link Type
 ASYM_LINK, SYM_LINK or MPR_LINK),

THEN
N_time = current time NEIGHB_HOLDING_TIME.

ENDIF
 ENDIF

ENDIF

2. ELSE

A new neighbor tuple is created with:
N_addr = Originator Address

 N_status with the value of SYM_LINK if the node finds its own address
(with Link Type ASYM_LINK, SYM_LINK or MPR_LINK) among the addresses
listed in the HELLO message, and to the value of ASYM_LINK otherwise

 N_time = current time + NEIGHB_HOLD_TIME

 19

2-hop neighbor set updating:
For each 2-hop neighbor address listed in the HELLO message with Link Type
 SYM_LINK or MPR_LINK:

IF A 2-hop tuple exists with:

N_addr == Originator Address AND
N_2hop_address == the address of the 2-hop neighbor

THEN The N_time of that tuple is set to:
N_time = current time + NEIGHB_HOLD_TIME

ELSE

A new 2-hop tuple is created with:
N_addr = Originator Address,
N_2hop_address = the address of the 2-hop neighbor,
N_time = current time + NEIGHB_HOLD_TIME

ENDIF

Updating MPR selector set:
IF A MPR selector tuple exists with:

MS_addr == Originator Address

THEN

The expiration time of that tuple is set to:
 MS_time = current time + NEIGHB_HOLD_TIME.

ELSE A new MPR selector tuple is created with:

MS_addr = Originator Address
 MS_time = current time + NEIGHB_HOLD_TIME

MSSN is incremented by one to indicate that the MPR
 selector table has been changed.
ENDIF

 20

Appendex II

Program Codes

Our program code files include aodv.cc, aodv.h, aodv_queue.cc, aodv_queue.h, which are
C++ codes, totally about 3200 lines and 4 Otcl files, the only difference between those
Otcl files is the number of nodes for simulation, we only attach one file-ensc835_50.octl
as an example, this one is used for 50 nodes simulation. Since the codes file is too long,
we list only part of them, and will submit the electrical copy.

Aodv_queue.cc

#include <string.h>
#include <math.h>

#include "aodv_queue.h"
#include "aodv.h"

/***
 * MessageQueue implementation
 */
int aodvQueue::numlinks=0;

aodvQueue::aodvQueue()
 : head(NULL), tail(NULL), peek_ptr(NULL)
{
 head=NULL;
 tail=NULL;
 peek_ptr=NULL;
 backup_peek=NULL;
 print_peek_ptr=NULL;
 temp_ptr=NULL;
}

void aodvQueue::QueueObject(AodvTuple *theObject)
{
 struct linknode *prev = tail;
 struct linknode *newnode=new struct linknode;
 newnode->object=theObject;
 newnode->N_time=CURRENT_TIME + AODV::Neighb_Hold_Time;
 theObject->parent=newnode;
 while (prev)
 {
 if (theObject->N_time < prev->object->N_time)
 {
 prev = prev->prev; // Go up the queue
 }
 else
 {

 21

 newnode->prev=prev;
 if ((newnode->next = prev->next))
 newnode->next->prev = newnode;
 else
 tail = newnode;
 prev->next = newnode;
 return;
 }
 }

 // theObject goes to top of the queue
 if ((newnode->next = head))
 head->prev = newnode;
 else
 tail = newnode;
 newnode->prev = NULL;
 head = newnode;
} // end aodvQueue::QueueObject()

//added later to sort by sort value instead of time value
void aodvQueue::QueueObject(AodvTuple *theObject,float sortvalue)
{
 struct linknode *prev = tail;
 struct linknode *newnode=new struct linknode;
 //fprintf(stderr," %d \n",numlinks++);
 newnode->object=theObject;
 newnode->N_time=CURRENT_TIME + AODV::Neighb_Hold_Time;
 theObject->parent=newnode;
 while (prev)
 {
 if (theObject->N_sort < prev->object->N_sort)
 {
 prev = prev->prev; // Go up the queue
 }
 else
 {
 newnode->prev=prev;
 if ((newnode->next = prev->next))
 newnode->next->prev = newnode;
 else
 tail = newnode;
 prev->next = newnode;
 return;
 }
 }

 // theObject goes to top of the queue
 if ((newnode->next = head))
 head->prev = newnode;
 else
 tail = newnode;
 newnode->prev = NULL;
 head = newnode;

 22

} // end aodvQueue::QueueObject()

AodvTuple* aodvQueue::FindObject(nsaddr_t id1, nsaddr_t id2)
{
 peek_ptr=head;
 while (peek_ptr) {
 if (peek_ptr->object->N_addr==id2){
 // if (peek_ptr->object->N_2hop_addr==id2){
 if(((peek_ptr->object)->parents).FindObject(id1)){
 return peek_ptr->object;
 }
 if(((peek_ptr->object)->stepparents).FindObject(id1)){
 return peek_ptr->object;
 }
 }
 peek_ptr=peek_ptr->next;
 }
 return NULL;
}

AodvTuple* aodvQueue::FindObject(nsaddr_t id)
{
 int errorfix=0;
 peek_ptr=head;
 while (peek_ptr) {
 if(peek_ptr->object!=NULL) { // shouldn't need this at all remove me
 if (peek_ptr->object->N_addr==id){
 return peek_ptr->object;
 }
 }
 else {
 fprintf(stderr,"FindObject: Got a null object");
 }
 temp_ptr=peek_ptr;
 peek_ptr=peek_ptr->next;
 }
 return NULL;
}

AodvTuple* aodvQueue::FindNextObject(nsaddr_t id)
{
 if(peek_ptr)
 peek_ptr=peek_ptr->next;
 while(peek_ptr) {
 if (peek_ptr->object->N_addr==id) {
 return peek_ptr->object;
 }
 peek_ptr=peek_ptr->next;
 }
 return NULL;
}

 23

void aodvQueue::printpeek()
{
 fprintf(stderr, "%p is peek ptr \n",peek_ptr);
}
void aodvQueue::RestoreBackupPeek()
{
 peek_ptr=backup_peek;
}
void aodvQueue::SetBackupPeek()
{
 backup_peek=peek_ptr;
}
int aodvQueue::checkCurrent()
{
 if(peek_ptr!=NULL)
 // fprintf(stderr, "time is %f and %f is experiation time \n",CURRENT_TIME,peek_ptr->N_time);
 if(peek_ptr->N_time<CURRENT_TIME){
 temp_ptr=peek_ptr;
 //RemoveCurrent();
 return 1;
 }
 return 0;
}
void aodvQueue::Clear()
{
 peek_ptr=head;
 while(peek_ptr!=NULL){
 temp_ptr=peek_ptr->next;
 //fprintf(stderr,"removing %d's pointer ",peek_ptr->object->N_addr);
 //fflush(stdout);
 free(peek_ptr);
 peek_ptr=temp_ptr;
 }
 head=NULL;
 tail=NULL;
}

void aodvQueue::RemoveCurrent()
{
 if(peek_ptr==NULL){
 peek_ptr=head;
 }
 temp_ptr=NULL;
 //fprintf(stderr,"%p peek pointer in RemoveCurrent\n",peek_ptr->next);
 if(peek_ptr){
 if (peek_ptr->prev){
 temp_ptr=peek_ptr->prev;
 peek_ptr->prev->next = peek_ptr->next;
 }
 else {
 head = peek_ptr->next;
 temp_ptr = NULL;
 }

 24

 if (peek_ptr->next)
 peek_ptr->next->prev = peek_ptr->prev;
 else
 tail = peek_ptr->prev;
 free(peek_ptr);
 peek_ptr=temp_ptr;
 }
} // end aodvQueue::Remove()
AodvTuple* aodvQueue::PeekInit()
{
 peek_ptr=head;
 if(peek_ptr!=NULL)
 return peek_ptr->object;
 return NULL;
}

AodvTuple* aodvQueue::PeekNext()
{
 if (peek_ptr!=NULL){
 peek_ptr=peek_ptr->next;
 if(peek_ptr!=NULL)
 return peek_ptr->object;
 return NULL; // list has been traversed
 }
 else {
 peek_ptr=head;
 if(peek_ptr!=NULL) //object was removed and peek_ptr was pointing at null
 return peek_ptr->object;
 else
 return NULL; //last object was removed
 }
}

AodvTuple* aodvQueue::PrintPeekInit()
{
 print_peek_ptr=head;
 if(print_peek_ptr!=NULL)
 return print_peek_ptr->object;
 return NULL;
}

AodvTuple* aodvQueue::PrintPeekNext()
{
 if (print_peek_ptr!=NULL){
 print_peek_ptr=print_peek_ptr->next;
 if(print_peek_ptr!=NULL)
 return print_peek_ptr->object;
 return NULL; // list has been traversed
 }
 else {
 return NULL;
 }
}

 25

/***/
aodv_queue.h

#ifndef __aodv_queue_h__
#define __aodv_queue_h__

#include <aodv/aodv_rtable.h>
//#include <aodv/aodv_rqueue.h>

struct linknode {
 struct linknode *next;
 struct linknode *prev;
 class AodvTuple *object;
 double N_time;
};

class aodvQueue
{
 friend class AODV;
 private:
 linknode *head, *tail;
 linknode *peek_ptr,*temp_ptr, *print_peek_ptr,*backup_peek;
 static int numlinks;

 public:
 aodvQueue();
 bool IsEmpty() {return (head == NULL);}
 void QueueObject(AodvTuple *theObject);
 void QueueObject(AodvTuple *theObject,float sortvalue);
 AodvTuple *FindObject(nsaddr_t id1,nsaddr_t id2);
 AodvTuple *FindObject(nsaddr_t id);
 AodvTuple *FindNextObject(nsaddr_t id);
 AodvTuple *Head() {return head->object;}
 void RemoveCurrent();
 void Clear();
 int checkCurrent();
 void printpeek();
 void RestoreBackupPeek();
 void SetBackupPeek();
 AodvTuple * PeekInit();
 AodvTuple * PeekNext();
 AodvTuple * PrintPeekInit();
 AodvTuple * PrintPeekNext();
};

class AodvTuple
{
 friend class aodvQueue;

 public:

 26

 nsaddr_t N_addr;
 nsaddr_t N_2hop_addr; //address fo neighbor
 u_int16_t N_delay; //used in routing
 int N_status; // ASYM_LINK SYM_LINK or MRP_LINK possible LOST_LINK
only used in 1 hop list
 double N_sort; // planed to be used in SOME list sorting
 double N_time; // Node id of message source (list sorted by this value)
 double N_time2;
 int hop; // number of hop neighbor
 int cdegree; // used to find mprs current
 int tdegree; // used to find mprs total
 int seq_num; // used by dupicate and topology tables
 double konectivity; //used by historisis function
 int recievedHello; //set to 0 on sending hello 1 on recieving

 aodvQueue parents; //queue of links
 aodvQueue children; //queue of links
 aodvQueue stepparents; //queue of links
 private:

struct linknode *parent;
};

#endif

ensc835_50.tcl

===
Define options
===

set opt(chan) Channel/WirelessChannel
set opt(prop) Propagation/TwoRayGround
set opt(netif) Phy/WirelessPhy
set opt(mac) Mac/802_11
set opt(ifq) Queue/DropTail/PriQueue
set opt(ll) LL
set opt(ant) Antenna/OmniAntenna

set opt(x) 900 ;# X dimension of the topography
set opt(y) 900 ;# Y dimension of the topography
set opt(cp) "cbr-50-test"
set opt(sc) "scen-50-test"

set opt(progress) 4 ;# progress markers

set opt(ifqlen) 50 ;# max packet in ifq
set opt(nn) 50 ;# number of nodes
set opt(seed) 1.0
set opt(cn) 15.0 ;# number of connections
set opt(rate) 4 ;# packet generating rate

 27

;# Traffic pattern parameter
set opt(stop) 275 ;# simulation time
set opt(tr) aodv50.tr ;# trace file
set opt(nam) aodvg.nam
set opt(rp) AODV ;# routing protocol script
set opt(lm) "off" ;# log movement
set opt(energymodel) EnergyModel ;
set opt(initialenergy) 100 ;# Initial energy in Joules

LL set mindelay_ 50us
LL set delay_ 25us
LL set bandwidth_ 0 ;# not used
LL set off_prune_ 0 ;# not used
LL set off_CtrMcast_ 0 ;# not used

Agent/Null set sport_ 0
Agent/Null set dport_ 0

Agent/CBR set sport_ 0
Agent/CBR set dport_ 0
Agent/AODV set aodvDebugValue_ 4 ;#debug level
Agent/AODV set Hello_Interval_ 1 ;#hello interal
Agent/AODV set Hello_Jitter_ 0.5 ;#hello interal

Queue/DropTail/PriQueue set Prefer_Routing_Protocols 1

unity gain, omni-directional antennas
set up the antennas to be centered in the node and 1.5 meters above it
Antenna/OmniAntenna set X_ 0
Antenna/OmniAntenna set Y_ 0
Antenna/OmniAntenna set Z_ 1.5
Antenna/OmniAntenna set Gt_ 1.0
Antenna/OmniAntenna set Gr_ 1.0

Initialize the SharedMedia interface with parameters to make
it work like the 914MHz Lucent WaveLAN DSSS radio interface
Phy/WirelessPhy set CPThresh_ 10.0
Phy/WirelessPhy set CSThresh_ 1.559e-11
Phy/WirelessPhy set RXThresh_ 3.652e-10
Phy/WirelessPhy set Rb_ 11*1e6
Phy/WirelessPhy set Pt_ 0.2818
Phy/WirelessPhy set freq_ 914e+6
Phy/WirelessPhy set L_ 1.0
Phy/WirelessPhy set bandwidth_ 11e6

Initialize the 802.11 MAC
Mac set bandwidth_ 11e6

===
Main Program

 28

===

Initialize Global Variables

set ns_ [new Simulator]
set topo [new Topography]
set god_ [new God]

#set namtrace [open $opt(nam) w]
set traceall [open $opt(tr) w]

$topo load_flatgrid $opt(x) $opt(y)
$ns_ use-newtrace
$ns_ trace-all $traceall
#$ns_ namtrace-all-wireless $namtrace $opt(x) $opt(y)

#$ns_ use-newtrace

Create God

create-god $opt(nn)

Create the specified number of nodes $opt(nn) and "attach" them
the channel.
Each routing protocol script is expected to have defined a proc
create-mobile-node that builds a mobile node and inserts it into the
array global $node_($i)

Create channel #1
set chan_1_ [new $opt(chan)]

#global node setting

$ns_ node-config -adhocRouting $opt(rp) \
 -llType $opt(ll) \
 -macType $opt(mac) \
 -ifqType $opt(ifq) \
 -ifqLen $opt(ifqlen) \
 -antType $opt(ant) \
 -propType $opt(prop) \
 -phyType $opt(netif) \
 -channel $chan_1_ \
 -topoInstance $topo \
 -energyModel $opt(energymodel) \
 -macTrace OFF \
 -agentTrace ON \
 -routerTrace ON \
 -movementTrace OFF \
 -rxPower 0.3 \

 29

 -txPower 0.6 \
 -initialEnergy $opt(initialenergy)

for {set i 0} {$i < $opt(nn) } {incr i} {
 set node_($i) [$ns_ node]
 $node_($i) random-motion 1 ;# enable random motion
 $god_ new_node $node_($i)
}

Source the Connection and Movement scripts

puts "Loading connection pattern..."
source $opt(cp)

puts "Loading scenario file..."
source $opt(sc)
puts "Load complete."

stopping the simulation

for {set i 1} {$i <= $opt(progress)} {incr i} {
 set t [expr $i * $opt(stop) / ($opt(progress) + 1)]
 $ns_ at $t "puts \"completed through $t secs...\""
}

proc stop {} {
 global ns_ traceall namtrace
 close $traceall
 $ns_ flush-trace
 exit 0
}

for {set i 0} {$i < $opt(nn) } {incr i} {
 $ns_ at $opt(stop).0 "$node_($i) reset";
}

$ns_ at $opt(stop).0002 "stop"

Define node initial position in nam

for {set i 0} {$i < $opt(nn)} {incr i} {

 # positions will be set by scenario
 # The function must be called after mobility model is defined

 $ns_ initial_node_pos $node_($i) 20 ;# whatever
}

 30

puts "Starting Simulation..."
$ns_ run

