Simulation and Performance Study of Ad Hoc Networks

ENSC 835 Project Fall 2003

Mohamed Soliman

(msoliman@cs.sfu.ca)

1

Outline

Introduction to the project
Ad hoc routing protocol overview
Implementation and simulation goals
Discussion
Conclusion

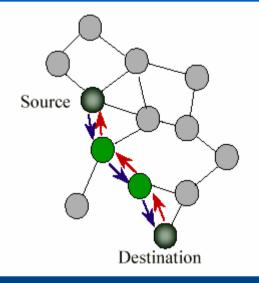
Project Goals

Understand ad hoc networks
Study an ad hoc routing protocol
Determine influencing performance factors specific to ad hoc routing
Simulate a standard protocol evaluating performance and suggesting enhancements

Ad-hoc Networks

- Infrastructure less
- Self starting based on *proximity*
- Assumes no centralized access point
- Wireless mobile nodes
- IETF, manet working group
- Examples
 - Nomadic: in a conference room
 - Military applications
 - Sensor networks

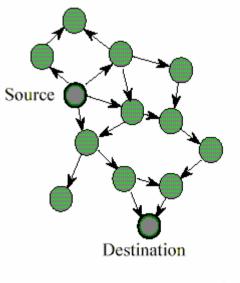
Ad hoc routing: Related Work


Proactive approaches

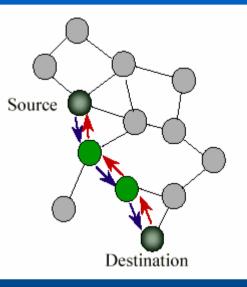
- Maintain complete routing information for the network (similar to link state algorithms)
- Examples: DSDV *
- Overhead: dealing with frequent link breakages
- Reactive approaches (on demand)
 - Establish route only when needed
 - Overhead: route establishment delay is added when a source sends to destination
 - \rightarrow Utilize prior route information as links are valid
- Hybrid approaches

Ad-hoc On-Demand Distance Vector Routing (AODV)

Route establishment


- Route discovery: request (RREQ)
 & reply (RREP) discovery cycles
- Reverse route establishment
- Forward path establishment
- Routing Tables

- Record next hop and hop count to destination
- Uses seq # to determine route freshness
- Updated on RREQ & RREP
- Local connectivity management
 - The hello message and hello_interval


Route Discovery

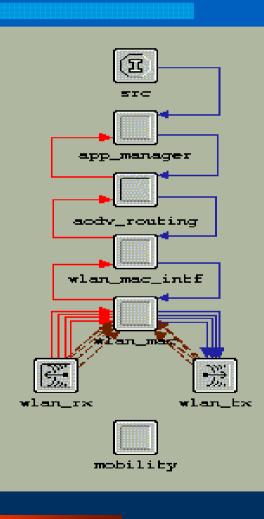
- Source broadcasts Route Request (RREQ)
 <J_flag, R_flag, Broadcast_ID, Src_Addr,
 Src_Seq#, Dst_Addr, Dst_Seq#,
 HopCnt>
- Node can issue *Route Reply* if
 - It is the destination
 - It has a "fresh enough" route to destination
- Record <u>Src IP Addr / Broadcast ID</u> to prevent multiple processing
- \rightarrow Reverse path setup

Forward Path Setup

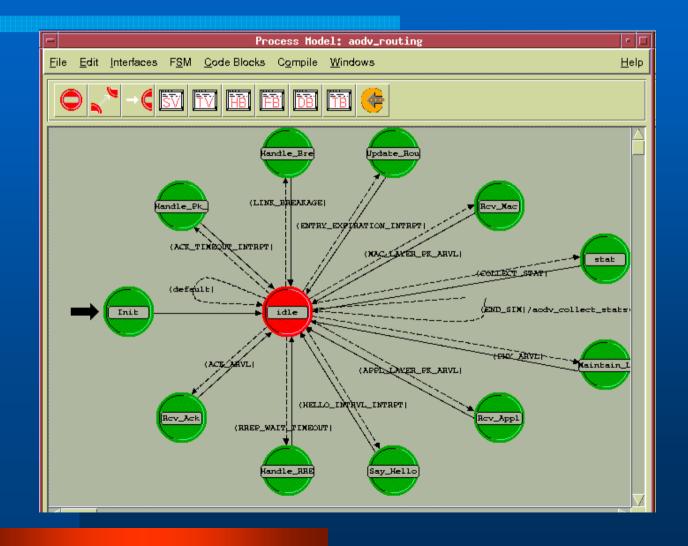
 Destination, or intermediate node unicasts RREP to source
 <<u>R_flag</u>, Dst_Addr, Dst_Seq#, Prev_Hop_Addr, HopCnt, Lifetim

Nodes along path create forward route to dest
 No RREP → route will expire (active_route_timout = 3 sec.)
 If duplicate RREP

 Higher seq# for dest is used (fresher info)
 Or same seq# and lower hop count (shorter route)₈


Local Connectivity Management

- Node must periodically (hello_interval) hear from active neighbors to know they are still within range
- Every time hear broadcast, update lifetime
- If no broadcast with hello_interval, broadcast Hello message (TTL = 1)


Failure to hear from a neighbor
 allowed_hello_loss=2 indicates loss of link
 →Notify of link failure (broadcast RERR)
 →Source to issue an new RREQ with new dest seq #

9

AODV OPNET Node Model

AODV Routing Process Model

11

Performance Evaluation

Based on RFC 2501

- Average end-to-end delay and data throughput & control overhead (route establishment)
- Route Acquisition latency (control overhead of ondemand protocol)
- Dynamic topology
 - Protocol performance and connectivity in response to nodes movement
- Scalability indicator
 - Protocol performance stability in response to adding new nodes

Enhancements

 Giving multiple routes different priorities (or expiry) based on density of prior visited data packets

 By linking the hello_interval value to mobility model

→ When nodes move less frequently, links are less probable to break that can reduce control overhead

Conclusion

- Ad hoc networks are spontaneous networks created on the fly based on proximity
- AODV an IETF standard Ad hoc on demand routing protocol
- Dynamic topology is a main characteristic on ad hoc networks
- Scalability is a main concern
- Many interesting applications

References

[1] C. Perkins and E. Royer, "Ad-hoc On-Demand Distance Vector Routing" In IEEE Workshop on Mobile Computing Systems and Applications, February 1999.

[2] C. Perkins, E. Royer, and S. Das, Mobile Ad Hoc Networking (MANET), "Ad-hoc On-Demand Distance Vector (AODV) Routing", IETF RFC 3561.

[3] S. Corson and J. Macker, "Routing Protocol Performance Issues and Evaluation Considerations" in IETF RFC 2501.

[4] I. Chakeres and E. Royer, "The Utility of Hello Messages for Determining Link connectivity", The Fifth International Symposium on Wireless Personal Multimedia Communications, Oct. 2002.

[5] Günes, U. Sorges, I. Bouazizi, "ARA The Ant-Colony Based Routing Algorithm for MANETs" Int. Workshop on Ad Hoc Networking (IWAHN 2002), Vancouver, British Columbia, Canada, August 18-21, 2002.

Thank You

Questions