### Internet Infrastructure Security

### Simon Fraser University Scott Wakelin

1

### Road Map

- Project Goals and Overview
- Project Status
- Network Infrastructure
  - ISP Topology
  - **ISP** Interconnection
- Routing Protocols
- Routing Protocol Security Issues
- Example Case: OSPF
- Future Work
- References

### **Project Goals**

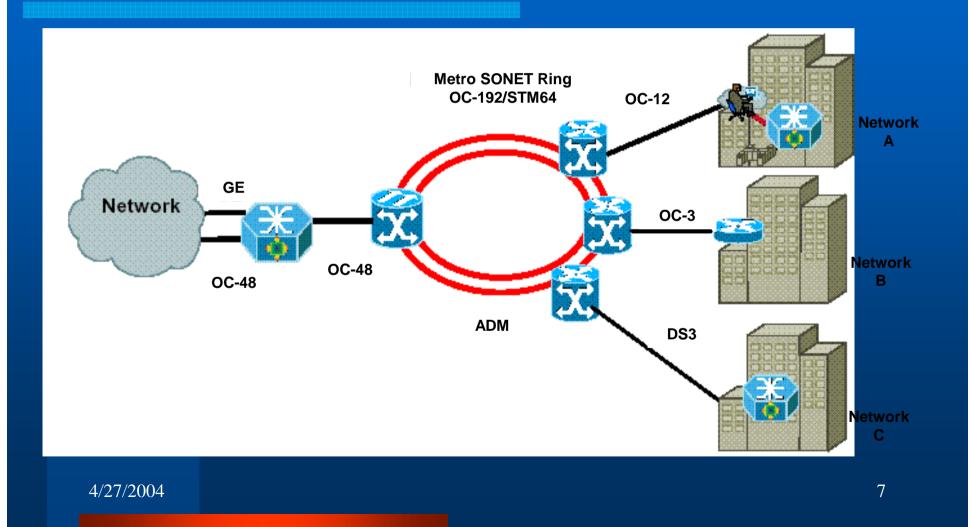
- Understand Internet Infrastructure and typical topology
- Understand routing protocols
- Understand attacks against Internet Infrastructure
- Demonstrate weaknesses of routing protocols using OPNET and NS-2.

### Is it important?

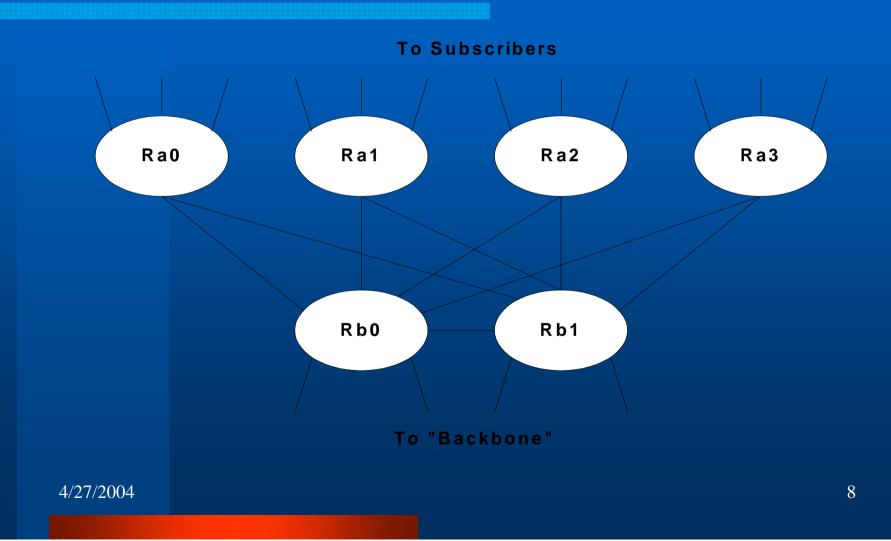
"Our very way of life depends on the secure and safe operations of critical systems that depend on cyberspace"

 Richard Clarke, Former US Homeland Security Advisor on Cyberterrorism

### **Current Status**


- Completed:
  - Implemented OSPF network using OPNET
  - Created "misbehaving" router scenario in OPNET
  - Used FlowAnalysis to analyze routing tables, in addition to link and host statistics
  - Examined internal implementation of OSPF process module, function blocks, identified potential code changes
  - Built NS model to simulate link cutting attacks
- Work Remaining:
  - Determine feasibility of modifying OPNET to support "faulty" router operation (eg. I know what to do, but can it be done?)
  - Gather additional traffic statistics
  - Code link selection/cutting algorithm in Tcl for NS-2
  - Demo, and Final Report

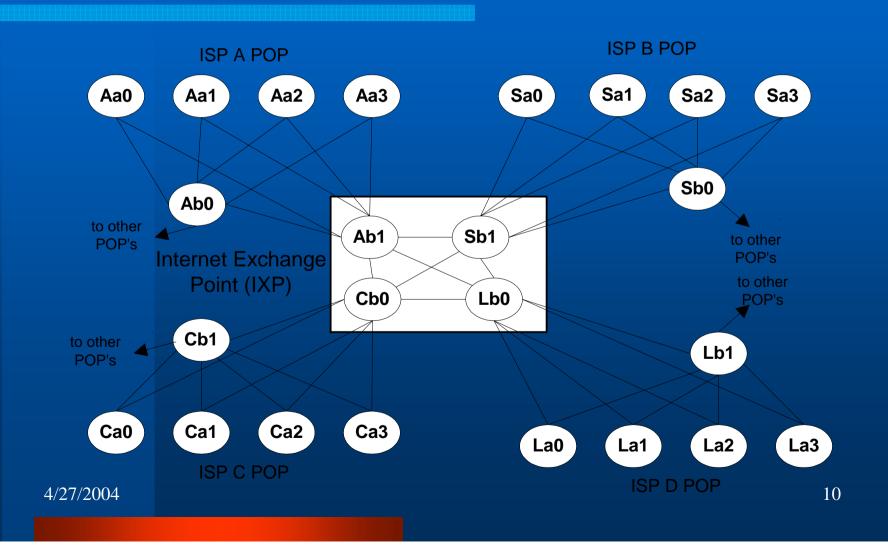
### Internet Infrastructure


- "Network of Networks"
- Subscriber networks connect to ISP POP's
- ISP POP's interconnected via IP backbone routers
- ISP's interconnected IXP (eg. MAE-WEST)

ISP = Internet Service Provider POP = Point of Presence IXP = Internet Exchange Point

### Subscriber to ISP Network




### **Typical POP Architecture**



### **ISP POP Interconnect**



### Interconnecting ISP's



### **Routing Protocols: OSPF**

- OSPF is defined in RCF 2328
- Link State Routing protocol
- Intra-domain protocol
- OSPF Phases:
  - Neighbor Discovery
  - LSA Generation
  - LSA Propagation
  - Shortest Path Calculation
- OSPF runs over IP

OSPF: Open Shorted Path First LSA: Link State Advertisement

### **OSPF** Packet Header

| Octets |                     |
|--------|---------------------|
| 1      | Version             |
| 1      | Packet Type         |
| 2      | Packet Length       |
| 4      | Router ID           |
| 4      | Area ID             |
| 2      | Checksum            |
| 2      | Authentication Type |
| 8      | Authentication Data |

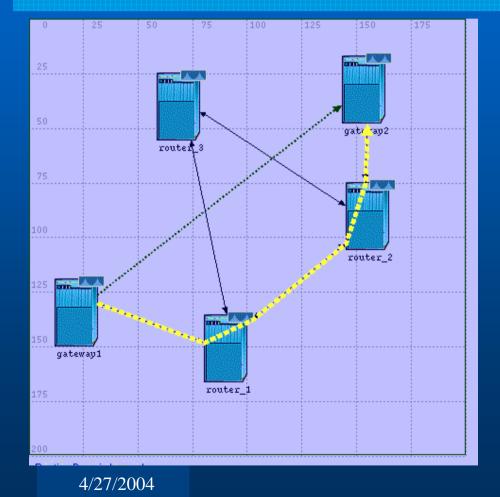
### **Routing Protocols: BGP-4**

- BGP-4 is defined in RFC 1771
- Path-Vector algorithm
- Inter-domain protocol
- BGP Phases:
  - Opening a BGP Connection
  - Exchange of routing tables
  - Maintenance of the connection
- BGP Runs over TCP

**BGP: Border Gateway Protocol** 

### **OSPF/BGP** Interworking

- OSPF and BGP work alongside each other in a router
- Router maintain two route tables, one internal, one external
- Router uses BGP next-hop to index into OSPF table

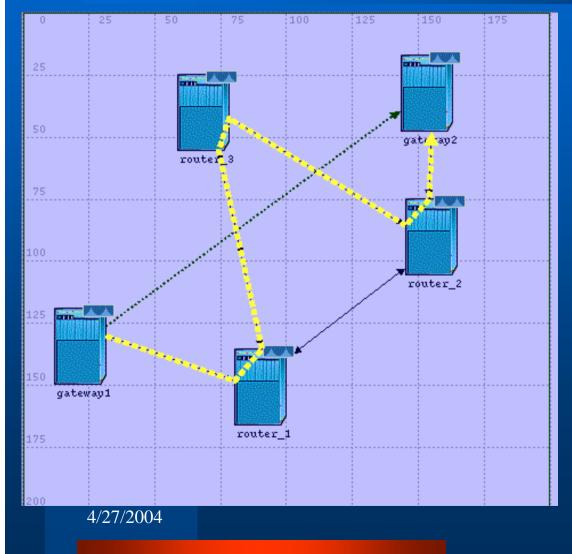

### **Routing Protocol Security**

- ....or lack thereof...
- Implicit trust relationship amongst routers
- Attacks can be devastating:
  - Service disruption
  - Loss of confidentiality
- And difficult to detect
  - How does one router know another is lying?

### **OSPF** Example

- One router can lie and advertise incorrect costs
- The lying router then becomes the part of the preferred route to some other router (perhaps gateway)
- The lying router can then do just about anything it wants with the traffic

# Example Topology using OPNET




Assume gateway1 has sensitive data to send to gateway2
Assume all link costs equal
Normal route:
•G1 -> R1 -> R2 -> G2

### But what if...

- Router 3 lies?
- Routers 1, 2 and the gateway routers don't know that Router 3 is lying.
- They assume that what Router 3 advertises is correct

### **OSPF** Failure Case



- Now all traffic from G1 -> G2 goes through Router 3
- New Route:
  - G1 -> R1 -> R3 ->
     R2 -> G2
- Possible results:
  - Snooping
  - Packet mistreatment
  - Congestion
  - ???

### But what about OSPF Auth?

 Authentication field in OSPF only provides assurance that Router 3 sent the message

 Authentication field DOES NOT mean that the information is correct

### **S-OSPF:** A Solution?

One solution is to have each router digitally sign/authenticate each LSA Problems: - Computationally expensive - Requires PKI for certification - Others Still not a complete solution Link Cutting

### Link Cutting

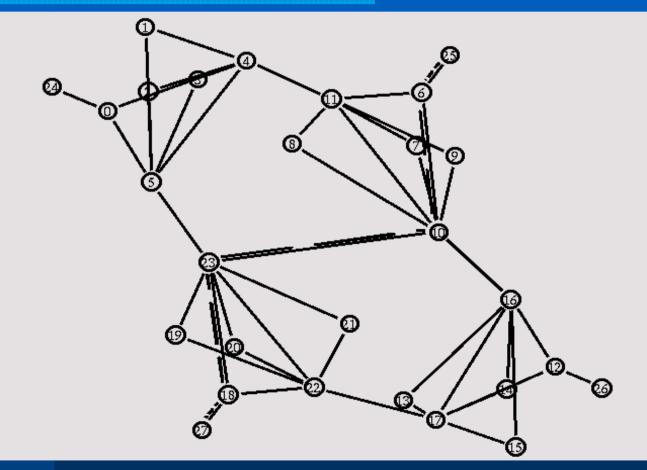
- Targetting specific hosts/links and bringing them down
- How?
  - Fibre cuts (for the serious attacker)
  - DDoS attacks
  - Others...
- Idea: Force traffic to go through a node/link controlled by an attacker
- Requires some knowledge of the network topology:
  - Not so hard to obtain...See Rocketfuel research.
- Bellovin et al. developed algorithm to select which links to cut.

### Link Cutting...cont.

## • Traceroute can provide a lot of information:

Tracing route to www.sprint.net [199.0.233.22] over a maximum of 30 hops:

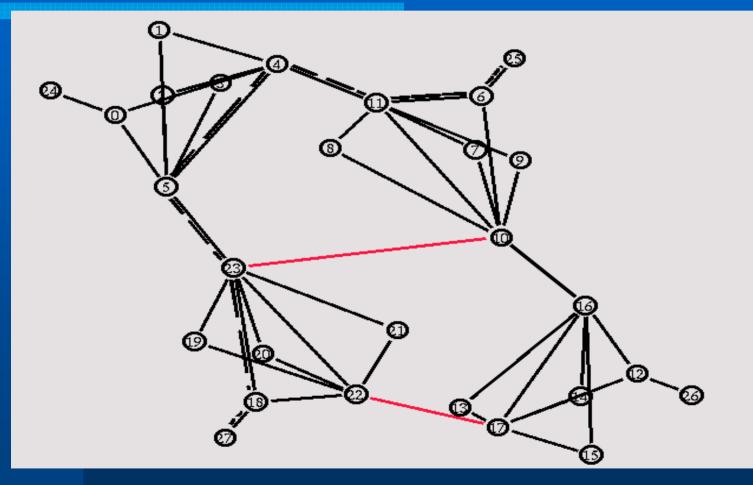
- 1 20 ms 30 ms 20 ms 209.53.1.226
- 2 20 ms 30 ms 20 ms 208.181.229.118
- 3 20 ms 30 ms 20 ms vancbc01gr01.bb.telus.com [154.11.4.97]
- 4 30 ms 30 ms 30 ms vancbc01br01.bb.telus.com [154.11.10.49]
- 5 20 ms 30 ms 30 ms sttlwa01gr01.bb.telus.com [209.53.75.166]


6 20 ms 30 ms 30 ms sl-gw14-sea-10-0.sprintlink.net [144.224.23.33]

- 7 20 ms 30 ms 30 ms sl-bb21-sea-9-1.sprintlink.net [144.232.6.133]
- 8 70 ms 70 ms 70 ms sl-bb25-chi-2-0.sprintlink.net [144.232.20.157]
- 9 70 ms 71 ms 70 ms sl-bb23-chi-15-0.sprintlink.net [144.232.26.93]
- 10 90 ms 90 ms 90 ms sl-bb27-rly-11-0.sprintlink.net [144.232.20.185]
- 11 90 ms 90 ms \* sl-bb22-rly-10-0.sprintlink.net [144.232.14.177]

### Link Cutting Example: NS-2

- Network built using ISP topology shown on pg. 7.
- Attacker wants to see traffic flowing between Node 27 and 25
- Assume attacker has control of backbone router 4
- Normal path:
  - Nodes 27 -> 18 -> <u>23</u> -> <u>10</u> -> 6 -> 25


### Normal Case: NS-2



### Link Cutting Attack

- Attack Links 23-10, 22-17
  Causes traffic to flow through backbone router 4
  New route:
  - 27, *18*, <u>23, 5, 4, 11</u>, 6, 25

### Link Cutting Attack, cont.



### Future Work

- Implement S-BGP
  - IBGP, EBGP peers communicate using IPSec
  - Each router cryptographically signs its advertisements
- Implement S-OSPF
- Are the solutions scalable?
- What other pitfalls exist?

### References

- [1] J. Moy, "OSPF Version 2", RFC 2328, April 1998.
- [2] Y. Rekhter and P. Gross, "Application of the Border Gateway Protocol in the Internet", RFC 1772, March 1995.
- [3] C. Metz, "Interconnecting ISP Networks", *IEEE Internet Computing*, vol. 5, no. 2, March-April 2001, pp 74-80.
- [4] S. Kent, C. Lynn, and K. Seo, "Secure Border Gateway Protocol (S-BGP)", *IEEE Journal on Selected Areas in Communications*, vol. 18, no. 4, April 2000. pp. 582-592.
- [5] S. Kent, C. Lynn, and K. Seo, "Public-key infrastructure for the Secure Border Gateway Protocol (S-BGP)", *Proc. Darpa Information Survivability Conference and Exposition II*, vol. 1, June 2001, pp. 239-252.
- [6] S. Kent, C. Lynn, and K. Seo, "Design and analysis of the Secure Border Gateway Protocol (S-BGP)", *Proc. Darpa Information Survivability Conference and Exposition II*, vol. 1, Jan. 2000, pp 18-33.
- [7] H. Papadimitratos, "Securing the Routing Infrastructure", *IEEE Communications Magazine*, vol. 40, no. 10, Oct. 2002, pp. 60-68.
- [8] A. Chakrabarti, and G. Manimaran, "Internet Infrastructure Security: A Taxonomy", *IEEE Network*, vol. 16, no. 6, Nov.-Dec. 2002, pp. 13-21.
- [9] S. M. Bellovin, and E. R. Gansner, "Using Link Cuts to Attack Internet Routing", DRAFT, May 2003.
- [10] Rocketfuel, <u>http://www.cs.washington.edu/research/networking/rocketfuel/</u>
- [11] Marc Greis' Tutorial for the UCB/LBNL/VINT Network Simulator "ns", http://www.isi.edu/nsnam/ns/tutorial/index.html

## Questions?