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Abstract 

The algorithm for TCP congestion control is the main reason we can use the Internet 
successfully today despite resource bottlenecks and largely unpredictable user access 
patterns. There are different implementations among which are TCP Reno, SACK and 
Vegas. We use simulations to evaluate these TCP congestion control algorithms from 
many aspects. NS-2 is used for the simulation. Effective resource utilization, such as 
bandwidth utilization, retransmission rate and window size, is compared. We also 
concern fair resource allocation from two main categories, one is fairness between 
different delay links, and the other is competition between different TCP congestion 
control algorithms. Our simulation results show that bias exists in both categories, so 
factors may affect the fairness are also simulated. We focus on the effect of different 
queue algorithms, such as Drop Tail and RED.  
 
1. Introduction 

Early TCP (Transmission Control Protocol) implementation uses go-back-n model 
with cumulative positive acknowledgement and requires a retransmit time-out to 
retransmit the lost packet. These TCP did little to minimize network congestion. TCP 
congestion control was introduced into the Internet in the 1988 by Van Jacobson [5]. 
At that time, the Internet was suffering from congestion collapse. This so-called 
Tahoe TCP added a number of new algorithms such as Slow-Start, Congestion 
Avoidance and Fast Retransmit. Since then, many modifications have been made to 
TCP and several different versions of TCP have been implemented. Two years later 
than the release of Tahoe, Jacobson revised it as Reno TCP by modifying the Fast 
Retransmit operation to include Fast Recovery [7]. Later, Brakmo et al. have 
proposed a new version of TCP, which is named TCP Vegas, with fundamentally 
different congestion avoidance algorithm from TCP Reno [3]. Another conservative 
extension of Reno TCP is SACK TCP, which adds Selective Acknowledgement to 
TCP.  
 
In our project, we will evaluate the congestion control algorithms in Reno, Vegas and 
SACK TCP from different aspects. First, we will compare the performance of these 
algorithms: how much of the available network bandwidth does it utilize? How 
frequently does it retransmit packets? How does it modify window size on congestion? 
These comparisons are based on each version TCP running separately on a congested 
network. The second evaluation is the fairness of sharing the network. This 
comparison is taken in two categories of experiment. One is the fairness between 
different delay connections running the same version TCP. Some algorithms may bias 
against long delay connection, such as Reno TCP and SACK. The other experiment is 
carried out between different versions TCP when they compete each other on the 
same connection.  TCP Vegas does not receive a fair share of bandwidth when 
competing with other TCP Reno or SACK connections. Since bias exists in both 
categories, how different queue algorithms may affect the fairness is also studied. 
 
All the evaluation data are gained from NS-2. Reno, Vegas and SACK TCP agents 
have been implemented in NS-2 by former researchers. We designed our simulation 
scenario and tuned the parameters for each purpose of comparison. We read some 
test-suites of NS2 and got a clear understanding of the object TCL programming. In 

  1



this report, we will introduce the chief difference between each algorithm in section 2. 
In section 3, detail of our simulation and result discussion will be given. A conclusion 
will be given based on our simulation result in the section 4.  
 
2. TCP Congestion Control Algorithm  

The basis of TCP congestion control lies in Additive Increase Multiplicative Decrease 
(AIMD), halving the congestion window for every window containing a packet loss, 
and increasing the congestion window by roughly one segment per RTT otherwise. 
The second component of TCP congestion control is the Retransmit Timer, including 
the exponential bakeoffs of the retransmit timer when a retransmitted packet is itself 
dropped. The third fundamental component is the Slow-Start mechanism for the initial 
probing for available bandwidth. The fourth TCP congestion control mechanism is 
ACK-clocking, where the arrival of acknowledgements at the sender is used to clock 
out the transmission of new data. 
 
The TCP variants discussed in this project, except TCP Vegas, all adhere to this 
underlying framework of Slow-Start, AIMD, Retransmit Timers, and ACK-clocking. 
None of these changes alter the fundamental underlying dynamics of TCP congestion 
control. Instead, these changes help to avoid unnecessary Retransmit Timeouts, 
correct unnecessary Fast Retransmits and Retransmit Timeouts resulting from 
disordered or delayed packets, and reduce unnecessary costs (in delay and 
unnecessary retransmits) associated with the mechanism of congestion notification. 
 

2.1 TCP Tahoe  
The Tahoe TCP implementation added a number of new algorithms and refinements 
to earlier TCP implementations. The new algorithms include Slow-Start, Congestion 
Avoidance, and Fast Retransmit [5]. The refinements include a modification to the 
round-trip time estimator used to set retransmission timeout values. The Fast 
Retransmit algorithm is of special interest because it is modified in subsequent 
versions of TCP. With Fast Retransmit, after receiving a small number of duplicate 
acknowledgments for the same TCP segment (dup ACKs), the data sender infers that a 
packet has been lost and retransmits the packet without waiting for a retransmission 
timer to expire, leading to higher channel utilization and connection throughput [1]. 
 

2.2 TCP Reno  
The Reno TCP implementation retained the enhancements incorporated into Tahoe 
TCP but modified the Fast Retransmit operation to include Fast Recovery [7]. The 
new algorithm prevents the communication channel from going empty after Fast 
Retransmit, thereby avoiding the need to Slow-Start to re-fill it after a single packet 
loss. Fast Recovery operates by assuming each dup ACK received represents a single 
packet having left the pipe. Thus, during Fast Recovery the TCP sender is able to 
make intelligent estimates of the amount of outstanding data. A TCP sender enters 
fast Recovery after receiving an initial threshold (tcprexmtthresh) of dup ACKs. Once 
the threshold (generally is 3) of dup ACKs is received, the sender retransmits one 
packet and reduces its congestion window by one half. After entering Fast Recovery 
and retransmit a single packet, the sender effectively waits until half of a window of 
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dup ACKs have been received, and then sends a new packet for each additional dup 
ACK that is received. Upon receipt of an ACK for new data, the sender exits Fast 
Recovery. Reno significantly improves upon the behavior of Tahoe TCP when a 
single packet is dropped from a window of data, but can suffer from performance 
problems when multiple packets are dropped from a window of data. 
 

2.3 TCP SACK  
The congestion control algorithms implemented in SACK TCP are a conservative 
extension of Reno's congestion control, in that they use the same algorithms for 
increasing and decreasing the congestion window, and make minimal changes to the 
other congestion control algorithms. Adding SACK (Selective Acknowledgement) to 
TCP does not change the basic underlying congestion control algorithms. The SACK 
TCP implementation preserves the properties of Tahoe and Reno TCP of being robust 
in the presence of out-of-order packets, and uses retransmit timeouts as the recovery 
method of last resort. The main difference between the SACK TCP implementation 
and the Reno TCP implementation is in the behavior when multiple packets are 
dropped from one window of data. During Fast Recovery, SACK maintains a variable 
called pipe that represents the estimated number of packets outstanding in the path. 
(This differs from the mechanisms in the Reno implementation.) The sender only 
retransmits data when estimated number of packets in the path is less than the 
congestion window. Use of the pipe variable decouples the decision of when to send a 
packet from the decision of which packet to send. . The sender maintains a data 
structure (scoreboard) that remembers acknowledgments from previous SACK 
options. When the sender is allowed to send a packet, it retransmits the next packet 
from the list of packets inferred to be missing at the receiver. The SACK sender has a 
special handling for partial ACKs (ACKs received during Fast Recovery that advance 
the Acknowledgment Number field of TCP header, but do not take the sender out of 
fast Recovery). The sender decrements pipe by two rather than one for partial ACKs, 
the SACK sender never recovers more slowly than a Slow-Start. Detailed description 
of SACK TCP can be found in [1]. 
 

2.4 TCP Vegas  
TCP Vegas adopts a more sophisticated bandwidth estimation scheme. It uses the 
difference between expected and actual flow rates to estimate the available bandwidth 
in the network. The idea is that when the network is not congested, the actual flow 
rate will be close to the expected flow rate. Otherwise, the actual flow rate will be 
smaller than the expected flow rate. TCP Vegas, using this difference in flow rates, 
estimates the congestion level in the network and updates the window size 
accordingly. This difference in the flow rates can be easily translated into the 
difference between the window size and the number of acknowledged packets during 
the round trip time, using the equation 

Diff = (Expected  –  Actual) BaseRTT, 
Where Expected is the expected rate, Actual is the actual rate, and BaseRTT is the 
minimum round trip time. The details of the algorithm are as follow: 

1. First, the sender computes the expected flow rate 
BaseRTT
CWNDExpected = , 

where CWND is the current window size and BaseRTT is the minimum round 
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trip time. 
2. Second, the sender estimates the current flow rate by using the actual round 

trip time according to 
RTT

CWNDActual = , where RTT is the actual round trip 

time of a packet. 
3. The sender, using the expected and actual flow rates, computes the estimated 

backlog in the queue from diff=(Expected – Actual)BaseRTT. 
4. Based on diff, the sender updates its window size as follows: 

            







−
+

=
CWND
CWND
CWND

CWND 1
1 α

β
otherwise
if diff  >  
if diff <  

 
TCP Vegas tries to keep at least α packets but no more than β  packets in the queues. 
The reason behind this is that TCP Vegas attempts to detect and utilize the extra 
bandwidth whenever it becomes available without congesting the network. This 
mechanism is fundamentally different from that used by TCP Reno. TCP Reno 
always updates its window size to guarantee full utilization of available bandwidth, 
leading to constant packet losses, whereas TCP Vegas does not cause any oscillation 
in window size once it converges to an equilibrium point [6]. 
 
Our project is focused on Reno, SACK and Vegas TCP since Tahoe is replaced by 
Reno in most of today’s applications. 
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3. Evaluation of TCP Congestion Control Algorithms 

We use simulations to compare TCP Reno, SACK and Vegas from different aspects. 
All the simulations use FTP traffic, which corresponds to bulk data transfer. The 
packet size is fixed at 1,000 bytes. The buffer and window sizes are both in the unit of 
packet. The receiver advised window is large enough so no packet will be dropped at 
the receiver. We also assume that the ACKs are never lost. All the simulations are run 
for 120 seconds, unless specified.. We use ACK number ratio to indicate the 
bandwidth occupancy ratio, since we use the same packet size throughout our 
simulation (ACK number * packet size / time = bandwidth). We will explain and 
discuss our simulation results in three main categories as follows. 
 

3.1 Effective Resource Utilization 
We compare the effective resource utilization of these three algorithms: how much of 
the available network bandwidth does it utilize? How frequently does it retransmit 
packets? How does it modify window size on congestion? These comparisons are 
based on each version TCP running separately on a congested network. 
 
3.1.1Bandwidth Utilization 

Simulation Design 
 

     
Sender R Receiver

10Mbps, 1ms 1.5Mbps,1ms

 
 

Topology 1  
 
Topology 1 shows the topology of the simple simulation network. The circle indicates 
a finite-buffer DropTail gateway, and the squares indicate sender and receiver hosts. 
The links are labeled with their bandwidth capacity and delay. 
 
Simulation Results 
It has been reported that Vegas TCP can achieve 37 to 71 percent higher throughput 
than Reno TCP [3].  In this part of the project, we measure the performance of Vegas, 
Reno and Sack on link of different loss rates. We add error model on the slow link 
between the gateway and the receiver. The buffer size is 6. Table 1 shows the results 
of 1% and 5% uniform loss. We found that the bandwidth utilization ratio of these 
TCP flavors do not show much difference for link of small loss rate. However, TCP 
Vegas achieves higher throughput than Reno and Sack for large loss rate. 
 
Table 1: Effective Bandwidth Utilization Ratio 
 Reno Sack Vegas 

1% loss 89.4% 97.7% 95.5% Bandwidth 

utilization 5% loss 45.5% 53.7% 63.7% 
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3.1.2 Congestion Window Size Variation 

One main difference in congestion control algorithms of TCP SACK and TCP Reno is 
how they deal with more than one packet loss in one congestion window. We simulate 
the case when four packets are dropped in one congestion window to see the window 
size variation. Simulation topology is the same as in 3.1.1. We use the source code 
from [1] and get consistent simulation results with [1]. The result graphs are as 
follows. 
 

   
Figure 1 Congestion Window of Four Packets Loss 

 
From Figure 1, we see that congestion window of TCP Reno drops to 0 and slow-start 
when more than one packet are dropped in one window. Congestion window of TCP 
Vegas oscillates when more packets are dropped, but never goes back from slow-start. 
TCP SACK maintains the same window size as the value after the first packet drop 
and returns to a higher window size than both Reno and Vegas. We can say that the 
algorithm of TCP SACK performs better in the case of more than one packet is 
dropped in one window. This is consistent with the algorithm explanations in section 
2. 
   
3.1.3 Retransmit Rate 

Simulation Design 
The network configuration is shown in Topology 2. In the figure, R1 and R2 are 
finite-buffer switches and S1~S4 are the end hosts. Connection 1 transmits packets 
from S1 to S3, and connection 2 from S2 to S4. The links are labeled with their 
capacities and propagation delays.  

 

R1 R2

10Mbps, 1ms

10Mbps, 1ms

10Mbps, 1ms

10Mbps, 1ms

1.5Mbps, 1ms

S1

S2

S3

S4
 

Topology 2 
 
Simulation Results 
We vary the S1 – S3 and S2 – S4 connections to different TCP flavors and get six 
possible combinations. These one-on-one experiments are to test the retransmit rate of 
Reno, SACK and Vegas. The results from simulation are shown in the following table. 
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Table 2: One-on-One Transfer 
 Vegas/Reno Reno/Vegas Reno/SACK SACK/Reno SACK/Vegas Vegas/SACK 
Transmit 
packets 

6536/13337 13339/6534 9765/10108 10113/9760 13427/6446 6443/13430 

Retransmit 
Packets 

0/273 272/0 348/346 348/346 272/0 0/266 

Retransmit 
Ratio (%) 

0/2.05 2.04/0 3.56/3.42 3.44/3.55 2.03/0 0/1.98 

 
From the above table, we can see that the performance of Vegas is perfect in the sense 
of loss control. It never loses a packet. When running together with Vegas, the 
retransmit ratio of Reno and SACK is about 2%, which is smaller than Reno and 
SACK compete with each other (about 3.5%). The reason for this is as follows. Both 
Reno and SACK use aggressive algorithm to increase their window size until drop 
happens. They occupy more bandwidth when compete with Vegas. Therefore, fewer 
packets are dropped in this case. When Reno and SACK compete, they share the 
bandwidth almost in half and half, but with the expense of higher loss rate. We will 
explain this unfair behavior in later subsections. 
 

3.2 Fairness between Connections with Different Delays  
In this part, we want to test the fairness between different delay connections. When 
the same version TCP run together on one bottleneck link, whether they can share the 
bandwidth fairly if their connection delays are different? We want to testify that TCP 
Reno is biased against the connections with longer delays and see the behaviors of 
SACK and Vegas in the same situation. We are also interested in the factors that may 
affect this fairness, such as different queue algorithms and buffer size.  
 
Simulation Design 
Topology 3 shows the topology of the network that was used in the simulation. In the 
figure, R1 and R2 are finite-buffer switches and S1~S4 are the end hosts. Connection 
1 transmits packets from S1 to S3, and connection 2 from S2 to S4. The links are 
labeled with their capacities and propagation delays, and they will be changed during 
different simulations. The propagation delay of the link that connects R2 and S4, 
which is denoted by X in Topology 3, will be varied in order to see the effect of 
different delays on the fairness. 

 
Topology 3: Network Topology 

 
3.2.1 Testify the Behavior on Long Delay connections 

In this part, we want to testify the observation in [6] that TCP Reno is biased against 
the connections with longer delays. The reason for this behavior is as follows. While a 
source does not detect any congestion, it continues to increase its window size by one 
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during one round trip time (RTT). Obviously, connections with a shorter delay can 
update their window sizes faster than those with longer delays, and thus capture 
higher bandwidths. To our understanding, TCP SACK does not change this window 
increasing mechanism, so we expect the same unfair behavior with TCP SACK.  
 
We designed the simulation scenarios as follows. The network topology is shown in 
Topology 3. S1 and S2 will be set to be the same TCP agents, such as two Reno, two 
Vegas or two SACK TCP agents, respectively. Results of X=1ms (the same 
propagation delay as comparison baseline) and X=22ms (the RTT of longer delay 
connection is 8 times of the shorter one) will be collected to show the fairness 
between different delay connections. 
 
We use bandwidth occupancy graphs to show the fairness between different delay 
connections. The vertical axis is bandwidth (in Mbps). The horizontal axis is 
simulation time (in second). Connections 1 and 2 start at time 0 and 0.5 seconds, 
respectively. We start to collect simulation data after 15 seconds to eliminate the 
transient effect. The top red line is the total bandwidth, which is set to 1.5Mbps. The 
blue line represents the bandwidth of the shorter delay connection. The green one is 
the bandwidth of longer delay connection. The graph on the left-hand side is 
bandwidth occupancy of two connections with the same delays, which is used as 
comparison baseline. The right-hand side graph is bandwidth occupancy of 
connections with different delays.  
 
3.2.1.1 Two Reno TCP connections 

         
              Figure 2a (X=1ms)      Figure 2b (X=22ms) 

 
Figure 2a and 2b show the bandwidth occupancy of two Reno TCP connections. 
From Figure 2a, we can see that bandwidth occupancy of two same delay Reno TCP 
connections is fair. The results of Figure 2b show that the delay bias of TCP Reno 
becomes very noticeable when the delay difference is large. The shorter delay 
connection (blue line) occupies almost twice bandwidth as the longer one.  One can 
also notices the large oscillation of the total bandwidth Reno TCP. This result is 
consistent with what we want to testify. 
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3.2.1.2 Two Vegas TCP connections 

 

          
  Figure 3a (X=1ms)     Figure 3b (X=22ms) 

        
Figure 3a and 3b show the bandwidth of two Vegas TCP connections. We can see 
that the two connections share the bandwidth in almost half and half (X=1ms, 
0.75Mbps; X=22ms, 0.7Mbps and 0.8Mbps). The results show that the bandwidth 
occupancy does not change significantly with the link delay, which means Vegas TCP 
is not biased against connection with longer delay. This result is consistent with what 
we want to testify. 
 
3.2.1.3 Two SACK TCP Connections 

 

           
Figure 4a (X=1ms)     Figure 4b (X=22ms) 

 
Figure 4a and 4b show the bandwidth of two Sack TCP connections. From the figures, 
we can see that the delay bias of TCP Sack becomes very noticeable when the delay 
difference is large. This result is similar to that of Reno TCP, which is quite 
straightforward, since the window increasing mechanism of Sack is the same as Reno. 
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3.2.2 Fairness Variation with Delay Changes 

As we find out from previous tests, both Reno and SACK TCP are biased against the 
connection with longer delays. We want to see how this bias changes while the delay 
differences increase. We vary the number of X in our simulation topology to change 
the delay of connection 2 (from S3 to S4) as follows. 
 
Table 3: Fairness with RTT Changes 

X 
(ms) RTT2/RTT1   ACK1/ACK2   
    Reno SACK Vegas 
1 1 1 1 1 
13 5 1.71 1.77 1.17 
22 8 2.2 4.31 1.18 
58 20 12.42 30.69 1.03 
208 70 46.62 70.3 2.15 

 

Fairness between Different Delay Connections
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20

40
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80
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Figure 5 

 
ACK1 and ACK2 are the number of packets that have been acknowledged by the 
corresponding receivers for connection 1 and 2. We use ACK1/ACK2 to represents 
the bias (vertical axis), which is the same as bandwidth occupancy ratio. If there’s no 
bias against the longer delay connection, ACK1/ACK2 should be near 1. From the 
data above, we can see that the delay bias of TCP Reno and SACK becomes very 
noticeable when the delay difference becomes large, while TCP Vegas does not show 
such delay bias. The ACK ratio of the two connections under TCP Reno and SACK 
increases almost linearly with RTT ratio. When the delay difference is quite large 
(X=58ms and 208ms), the delay bias of SACK TCP is even greater than Reno. 
 
3.2.3 Queue Algorithms Effects 

There are many suggestions on how to improve the fairness between different delay 
connections. Here we focus on the effect of different queuing algorithms, such as 
DropTail (First come, first service), RED (Random Early Detection). We use 
simulations to see how the buffer size parameter will affect the fairness in this case. 
 
The simulation topology is the same as shown in Figure 2. Queue is set at R1, the 
bottleneck of the network. Buffer sizes are given in packets. We set the longer delay 
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to be 58ms (so the RTT of the longer delay is 30 times of the shorter one) to see 
queuing algorithms effect clearly. 
 
3.2.3.1 DropTail Queue 

DropTail Queue Effect on Fairness between Different
Delay Connections

0

10

20
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40

10 15 20 30 50

Buffer size
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C

K
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A
C

K
2

SACK
Reno

 
We use ACK1/ACK2 to denote the bias on longer delay connections. From the chart, 
we can see as the buffer size of DropTail queue increases, both Reno and SACK 
ACK1/ACK2 drop down to close 1, which means longer delay connection can receive 
more bandwidth. Increasing the buffer size in the router can make the two connections 
share the link more fairly. The reason is that Reno and Sack TCP need buffer space to 
increase window. When the buffer size is small, the fast link occupies most of the 
buffer. When the buffer size is large, the slow link can get some buffer space because 
the window of Reno and TCP oscillates due to an AIMD algorithm. 
 
3.2.3.2 RED Queue 

RED is designed for congestion avoidance. The two main parameters are threshold 
and maxthreshold. When the average queue size is above threshold but smaller than 
maxthreshold, it starts dropping packets with certain probability that is proportional to 
the queue size. If the average queue size exceeds maxthreshold, all incoming packets 
are dropped. We set maxthreshold=buffer_size and threshold=0.5*maxthreshold. In 
this setting, we tune the buffer size as we did with DropTail queue to see the effect of 
buffer size changes on the fairness. We got the chart as follows. 
 

RED Queue Effect on Different Delay Connections
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From the chart, we got the same result as in DropTail Queue that fairness between 
different delay connections is improved while the buffer size grows large. It can also 
be seen from the figures that RED gateway needs smaller buffer size than DropTail 
gateway to maintain fair connections. 
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3.3 Fairness between Different Version TCPs when Competing on 
Same Link 
There are different versions TCP running together on the Internet. Therefore, we are 
also interested in the fairness when they compete on the same connection. We carried 
out several simulations to test Reno, SACK and Vegas TCP from this aspect. 
 
3.3.1 Competition when two connections running together 

Simulation Design 
The simulation topology is quite similar to Topology 2. The two connections have the 
same round trip time of 6ms. We varied S1 and S2 to be different TCP agents. We put 
DropTail Queue in R1 and set the buffer size to be 15 (in packets). 
 
The following three graphs show the bandwidth occupancy of the two TCP 
connections running on the same link (R1-R2). The total bandwidth is 1.5Mbps, 
shown in the top red line. The horizontal axis is the simulation time (in second). The 
total simulation time is 120 seconds. We start to collect simulation data after 15 
seconds to eliminate the transient effect. 
 

 
Figure 6a 

Blue line- Reno, Green line-SACK 
 
 
 

 

 
Figure 6b 

Blue line – Reno, Green line – Vegas 
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Figure 6c 

Blue line – SACK, Green line - Vegas 
 
Figure 6a shows that Reno and SACK can share the link quite fairly, almost half and 
half (0.75Mbps each). From figure 7b and figure 7c, we can see that TCP Vegas 
connection does not receive a fair share bandwidth in the presence of TCP Reno or 
TCP SACK. 
 
The TCP Reno congestion avoidance scheme is aggressive in the sense that it leaves 
little room in the buffer for other connections, while TCP Vegas is conservative and 
tries to occupy little buffer space. When a TCP Vegas connection shares a link with a 
TCP Reno connection, the TCP Reno connection uses most of the buffer space and 
the TCP Vegas connection backs off, interpreting this as a sign of network congestion. 
That’s the reason why TCP Vegas receives a small portion of the bandwidth when 
competing with TCP Reno. TCP SACK uses the same aggressive mechanism as TCP 
Reno. Therefore the behavior of TCP SACK is the same as TCP Reno when competes 
with TCP Vegas [6]. 
 
3.3.2 Queue Algorithms Effects 

We are also interested in the effects of different queue algorithms on this unfairness. 
We carried out simulations to see how the buffer size and different queue algorithm 
will affect the behavior of the two connections. 
 
3.3.2.1 DropTail Queue 

The simulation setting is the same as section 3.3.1. We vary the buffer size at the 
switches to see how the bandwidth occupancy ratio changes with the buffer size. The 
simulation results are given as follows. 
 
From the charts below, we can see that when the buffer sizes are small, TCP Vegas 
outperforms TCP Reno and TCP SACK. The reason for this is as follows. Both TCP 
Reno and SACK need some room in the switch buffer for oscillation in order to 
estimate the available bandwidth. Without the necessary room in the buffer, its 
performance degrades noticeably. TCP Vegas can quickly adapt to the small buffer 
size since it requires enough space for only a few packets [6]. When the buffer size is 
large enough, TCP Reno and SACK occupy much more bandwidth and leave little for 
TCP Vegas, which is consistent with our previous simulation results. The intersection 
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points in the chart (about 8 for Reno-Vegas and 10 for SACK-Vegas) suggest the 
appropriate buffer size with which the two connections can share the link fairly. This 
optimal buffer size is only valid for this simulation scenario. 

Reno-Vegas with DropTail 

0
5000
10000
15000
20000

4 7 10 15 50
Buffer size

A
C

K Reno
Vegas

SACK-Vegas with DropTail

0
5000
10000
15000
20000

4 7 10 15 50
Buffer size

A
C

K SACK
Vegas

 
 
3.3.2.2 RED Queue 

We also test RED queue to see the effect of parameters changes. If we set the main 
two parameters threshold=0.5*maxthresh and maxthresh=buffer_size as previous 
section, we got the results shown in following charts when we tune the buffer size. 
The conclusion is similar to DropTail queue. If the buffer size is small, Vegas 
outperforms than Reno and SACK. As the buffer size grows up, Reno and SACK 
occupy more bandwidth due to their aggressive algorithms. 
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To our understanding, threshold plays a more important role in RED queuing 
algorithm, since when the average queue size exceeds threshold but smaller than the 
maxthresh, they start dropping incoming packets with certain probability that is 
proportional to the average queue size. Therefore, we fixed the threshold at 3 and vary 
the maxthresh to see the effects. The buffer size is set to be the same as maxthresh. 
We got the results as show in the following table. 
 
Table 4a: Reno/Vegas Competition with RED maxthresh changes 

Maxthresh ACK of Reno ACK of Vegas Reno/Vegas
10 11105 8858 1.3 
20 13158 6512 2.02 
40 12211 7476 1.63 
80 13767 5919 2.33 

 
Table 4b: SACK/Vegas Competition with RED maxthresh changes 
Maxthresh ACK of SACK ACK of Vegas SACK/Vegas

10 11180 8484 1.32 
20 11854 7829 1.51 
40 13519 6150 2.2 
80 12478 7209 1.73 

 
From the above tables, we can see that if the threshold is fixed, changes of the 
maxthresh do not affect the fairness much. If the threshold is small enough (3, in our 
simulation), TCP Vegas can receive a relative fair share of the bandwidth. The reason 
behind this is that, when the threshold values are low enough, they give the 
connections the impression that the buffer size is smaller than it really is. 
 
3.3.3 Other Improvement 

As stated before, Vegas does not receive a fair share of the bandwidth when 
competing with Reno or Sack. Vegas uses a conservative algorithm to increase the 
congestion window, while Reno and Sack use aggressive ones. If we change the 
window increasing mechanism of Vegas, we can somehow enlarge its bandwidth ratio. 
From the description of section 2, we know that Vegas tries to maintain a buffer size 
between w+α and w+β. The α and β values are usually set to 1 and 3 (default values 
in NS2). We set the buffer size to be 15. α and β values are set to 3 and 6. We 
compare the result of that of the default values (1 and 3). It can be seen from the 
figure that the modified one is not biased against Vegas. We got the same conclusion 
for Sack1-Vegas case (result not shown here). However, the result may only be valid 
for this simulation scenario. What we try to point out is that it is possible to modify 
the algorithm of Vegas to make it more competitive in the presence of TCP Reno and 
SACK, while maintaining its fairness on connections with different delays. On the 
other hand, one could also change the algorithm of Reno or Sack to reduce the 
aggressive behavior, and reduce their unfairness on connections with different delays, 
such as the Constant-Rate (CR) algorithm. 
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     Alpha = 1, Beta = 3      Alpha = 3, Beta = 6 

Figure 7. Bandwidth occupancy ratios of default and modified Vegas implementation 

 

3.4 Reno-Sack1-Vegas 
As a final part of our project, we test the case in which Reno, Sack and Vegas 
compete together on a bottleneck link. The simulation topology is shown in Topology 
4, which is quite similar to Topology 2 except that there are three senders instead of 
two. The total bandwidth is again set to be 1.5Mbps. Other parameters are the same as 
section 3.3. Results of buffer size of 15 and 30 are shown as follows. From the figures, 
we can see that when the buffer size is small, Vegas occupies more bandwidth than 
Reno and Sack. While the buffer size is large, Reno and Sack receive larger share of 
bandwidth than Vegas. In both cases, Reno and Sack receive about the same share of 
total bandwidth. This again confirms our previous conclusions. The importance of this 
part is that, Reno, Sack and Vegas may run simultaneously on today’s Internet. Our 
simulation, though not complete, gives a more realistic result and conclusion. 
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Topology 4 
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                 Buffer Size =15                          Buffer Size = 30 

Figure 8. Bandwidth occupancy ratio of Reno, Sack and Vegas
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4. Conclusion 

In this project, we evaluate the performance of TCP Reno, TCP Vegas and TCP 
SACK from many aspects.  
 
From our first subsection simulation results, we find that both TCP Vegas and TCP 
SACK make some performance improvements to TCP Reno. TCP Vegas achieves 
higher throughput than Reno and SACK for large loss rate. TCP SACK is better when 
more than one packets are dropped in one window. TCP Vegas causes much fewer 
packets retransmissions than TCP Reno and SACK. 
 
We have also shown that TCP Vegas does lead to a fair allocation of bandwidth for 
different delay connections. Both TCP Reno and SACK bias against long delay 
connections. We also test different queuing algorithms, trying to find a method to 
improve the fairness. We find that with both DropTail and RED gateway, as the 
buffer size grows up, the longer delay connections can receive a fair share of the total 
bandwidth. 
 
When competing with TCP Reno or SACK connections, TCP Vegas is penalized due 
to the aggressive nature of TCP Reno and SACK. We also investigated the effect of 
different queuing algorithms and found that when the buffer sizes are small, TCP 
Vegas performs better than TCP Reno and SACK, since it does not require much 
space in switch buffer. As the buffer sizes increase, TCP Reno and TCP SACK 
throughput increase at the cost of a decrease in TCP Vegas throughput. Our 
simulation results suggest that, for a certain link, there might be an appropriate value 
of buffer size (the intersection of the two ACK lines) for DropTail and RED queue to 
make different connections share the bandwidth in a relative fair way. The exact 
values may depend on the link speed and propagation delay. However, RED queue 
may have more parameters other than buffer size to tune for a fair allocation of 
bandwidth.  We also suggest a change in Vegas algorithm (tune α and β values) to 
make Vegas more aggressive in the competition. This may be worthy of further 
investigation in the future work. 
 
However, all the efforts in analysis of queuing algorithms effects lie in the gateway 
side of the network. There are many suggestions of modification that lie on the host 
side to improve the fairness. We do not have enough time to implement them in this 
project.  
 
Many research efforts have been devoted to the comparison of different TCP 
implementations, such as Reno and Vegas, or Reno and SACK. To our knowledge, no 
research has been carried out for the comparison of all these three algorithms. The 
simulation result is consistent with our understanding of the algorithms and the 
literature work. Although we carry out many experiments, there are still many 
comparisons of TCP congestion control algorithms that can be taken. We hope to do 
them in future work. 
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Appendix 

Source code list 
tcpInit.tcl ---  class definition, pre-processing. 
tcpTest.tcl ---  simulation scenario, result analysis. 
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