

ENSC 835-3: NETWORK PROTOCOLS AND PERFORMANCE

CMPT 885-3: SPECIAL TOPICS: HIGH-PERFORMANCE
NETWORKS

Final Project

EVALUATION OF DIFFERENT TCP CONGESTION
CONTROL ALGORITHMS USING NS-2

Spring 2002

Hui (Hilary) Zhang (hzhang@sfu.ca)

Zhengbing Bian (zbian@cs.sfu.ca)

http://www.sfu.ca/~zbian/courses/cmpt885/

mailto:hzhang@sfu.ca
mailto:zbian@cs.sfu.ca
http://www.sfu.ca/~zbian/courses/cmpt885/

TABLE OF CONTENT

Abstract ..1
1. Introduction..1
2. TCP Congestion Control Algorithm ..2

2.1 TCP Tahoe ...2
2.2 TCP Reno...2
2.3 TCP SACK...3
2.4 TCP Vegas ...3

3. Evaluation of TCP Congestion Control Algorithms..5
3.1 Effective Resource Utilization...5

3.1.1Bandwidth Utilization..5
3.1.2 Congestion Window Size Variation..6
3.1.3 Retransmit Rate...6

3.2 Fairness between Connections with Different Delays ...7
3.2.1 Testify the Behavior on Long Delay connections...7
3.2.1.1 Two Reno TCP connections ..8
3.2.1.2 Two Vegas TCP connections...9
3.2.1.3 Two SACK TCP Connections ...9
3.2.2 Fairness Variation with Delay Changes..10
3.2.3 Queue Algorithms Effects...10
3.2.3.1 DropTail Queue ...11
3.2.3.2 RED Queue ..11

3.3 Fairness between Different Version TCPs when Competing on Same Link.....12
3.3.1 Competition when two connections running together12
3.3.2 Queue Algorithms Effects...13
3.3.2.1 DropTail Queue ...13
3.3.2.2 RED Queue ..14
3.3.3 Other Improvement...15

3.4 Reno-Sack1-Vegas...16
4. Conclusion ...18
Reference ...19
Appendix..19

Source code list ..19

 1

Abstract

The algorithm for TCP congestion control is the main reason we can use the Internet
successfully today despite resource bottlenecks and largely unpredictable user access
patterns. There are different implementations among which are TCP Reno, SACK and
Vegas. We use simulations to evaluate these TCP congestion control algorithms from
many aspects. NS-2 is used for the simulation. Effective resource utilization, such as
bandwidth utilization, retransmission rate and window size, is compared. We also
concern fair resource allocation from two main categories, one is fairness between
different delay links, and the other is competition between different TCP congestion
control algorithms. Our simulation results show that bias exists in both categories, so
factors may affect the fairness are also simulated. We focus on the effect of different
queue algorithms, such as Drop Tail and RED.

1. Introduction

Early TCP (Transmission Control Protocol) implementation uses go-back-n model
with cumulative positive acknowledgement and requires a retransmit time-out to
retransmit the lost packet. These TCP did little to minimize network congestion. TCP
congestion control was introduced into the Internet in the 1988 by Van Jacobson [5].
At that time, the Internet was suffering from congestion collapse. This so-called
Tahoe TCP added a number of new algorithms such as Slow-Start, Congestion
Avoidance and Fast Retransmit. Since then, many modifications have been made to
TCP and several different versions of TCP have been implemented. Two years later
than the release of Tahoe, Jacobson revised it as Reno TCP by modifying the Fast
Retransmit operation to include Fast Recovery [7]. Later, Brakmo et al. have
proposed a new version of TCP, which is named TCP Vegas, with fundamentally
different congestion avoidance algorithm from TCP Reno [3]. Another conservative
extension of Reno TCP is SACK TCP, which adds Selective Acknowledgement to
TCP.

In our project, we will evaluate the congestion control algorithms in Reno, Vegas and
SACK TCP from different aspects. First, we will compare the performance of these
algorithms: how much of the available network bandwidth does it utilize? How
frequently does it retransmit packets? How does it modify window size on congestion?
These comparisons are based on each version TCP running separately on a congested
network. The second evaluation is the fairness of sharing the network. This
comparison is taken in two categories of experiment. One is the fairness between
different delay connections running the same version TCP. Some algorithms may bias
against long delay connection, such as Reno TCP and SACK. The other experiment is
carried out between different versions TCP when they compete each other on the
same connection. TCP Vegas does not receive a fair share of bandwidth when
competing with other TCP Reno or SACK connections. Since bias exists in both
categories, how different queue algorithms may affect the fairness is also studied.

All the evaluation data are gained from NS-2. Reno, Vegas and SACK TCP agents
have been implemented in NS-2 by former researchers. We designed our simulation
scenario and tuned the parameters for each purpose of comparison. We read some
test-suites of NS2 and got a clear understanding of the object TCL programming. In

 1

this report, we will introduce the chief difference between each algorithm in section 2.
In section 3, detail of our simulation and result discussion will be given. A conclusion
will be given based on our simulation result in the section 4.

2. TCP Congestion Control Algorithm

The basis of TCP congestion control lies in Additive Increase Multiplicative Decrease
(AIMD), halving the congestion window for every window containing a packet loss,
and increasing the congestion window by roughly one segment per RTT otherwise.
The second component of TCP congestion control is the Retransmit Timer, including
the exponential bakeoffs of the retransmit timer when a retransmitted packet is itself
dropped. The third fundamental component is the Slow-Start mechanism for the initial
probing for available bandwidth. The fourth TCP congestion control mechanism is
ACK-clocking, where the arrival of acknowledgements at the sender is used to clock
out the transmission of new data.

The TCP variants discussed in this project, except TCP Vegas, all adhere to this
underlying framework of Slow-Start, AIMD, Retransmit Timers, and ACK-clocking.
None of these changes alter the fundamental underlying dynamics of TCP congestion
control. Instead, these changes help to avoid unnecessary Retransmit Timeouts,
correct unnecessary Fast Retransmits and Retransmit Timeouts resulting from
disordered or delayed packets, and reduce unnecessary costs (in delay and
unnecessary retransmits) associated with the mechanism of congestion notification.

2.1 TCP Tahoe
The Tahoe TCP implementation added a number of new algorithms and refinements
to earlier TCP implementations. The new algorithms include Slow-Start, Congestion
Avoidance, and Fast Retransmit [5]. The refinements include a modification to the
round-trip time estimator used to set retransmission timeout values. The Fast
Retransmit algorithm is of special interest because it is modified in subsequent
versions of TCP. With Fast Retransmit, after receiving a small number of duplicate
acknowledgments for the same TCP segment (dup ACKs), the data sender infers that a
packet has been lost and retransmits the packet without waiting for a retransmission
timer to expire, leading to higher channel utilization and connection throughput [1].

2.2 TCP Reno
The Reno TCP implementation retained the enhancements incorporated into Tahoe
TCP but modified the Fast Retransmit operation to include Fast Recovery [7]. The
new algorithm prevents the communication channel from going empty after Fast
Retransmit, thereby avoiding the need to Slow-Start to re-fill it after a single packet
loss. Fast Recovery operates by assuming each dup ACK received represents a single
packet having left the pipe. Thus, during Fast Recovery the TCP sender is able to
make intelligent estimates of the amount of outstanding data. A TCP sender enters
fast Recovery after receiving an initial threshold (tcprexmtthresh) of dup ACKs. Once
the threshold (generally is 3) of dup ACKs is received, the sender retransmits one
packet and reduces its congestion window by one half. After entering Fast Recovery
and retransmit a single packet, the sender effectively waits until half of a window of

 2

dup ACKs have been received, and then sends a new packet for each additional dup
ACK that is received. Upon receipt of an ACK for new data, the sender exits Fast
Recovery. Reno significantly improves upon the behavior of Tahoe TCP when a
single packet is dropped from a window of data, but can suffer from performance
problems when multiple packets are dropped from a window of data.

2.3 TCP SACK
The congestion control algorithms implemented in SACK TCP are a conservative
extension of Reno's congestion control, in that they use the same algorithms for
increasing and decreasing the congestion window, and make minimal changes to the
other congestion control algorithms. Adding SACK (Selective Acknowledgement) to
TCP does not change the basic underlying congestion control algorithms. The SACK
TCP implementation preserves the properties of Tahoe and Reno TCP of being robust
in the presence of out-of-order packets, and uses retransmit timeouts as the recovery
method of last resort. The main difference between the SACK TCP implementation
and the Reno TCP implementation is in the behavior when multiple packets are
dropped from one window of data. During Fast Recovery, SACK maintains a variable
called pipe that represents the estimated number of packets outstanding in the path.
(This differs from the mechanisms in the Reno implementation.) The sender only
retransmits data when estimated number of packets in the path is less than the
congestion window. Use of the pipe variable decouples the decision of when to send a
packet from the decision of which packet to send. . The sender maintains a data
structure (scoreboard) that remembers acknowledgments from previous SACK
options. When the sender is allowed to send a packet, it retransmits the next packet
from the list of packets inferred to be missing at the receiver. The SACK sender has a
special handling for partial ACKs (ACKs received during Fast Recovery that advance
the Acknowledgment Number field of TCP header, but do not take the sender out of
fast Recovery). The sender decrements pipe by two rather than one for partial ACKs,
the SACK sender never recovers more slowly than a Slow-Start. Detailed description
of SACK TCP can be found in [1].

2.4 TCP Vegas
TCP Vegas adopts a more sophisticated bandwidth estimation scheme. It uses the
difference between expected and actual flow rates to estimate the available bandwidth
in the network. The idea is that when the network is not congested, the actual flow
rate will be close to the expected flow rate. Otherwise, the actual flow rate will be
smaller than the expected flow rate. TCP Vegas, using this difference in flow rates,
estimates the congestion level in the network and updates the window size
accordingly. This difference in the flow rates can be easily translated into the
difference between the window size and the number of acknowledged packets during
the round trip time, using the equation

Diff = (Expected – Actual) BaseRTT,
Where Expected is the expected rate, Actual is the actual rate, and BaseRTT is the
minimum round trip time. The details of the algorithm are as follow:

1. First, the sender computes the expected flow rate
BaseRTT
CWNDExpected = ,

where CWND is the current window size and BaseRTT is the minimum round

 3

trip time.
2. Second, the sender estimates the current flow rate by using the actual round

trip time according to
RTT

CWNDActual = , where RTT is the actual round trip

time of a packet.
3. The sender, using the expected and actual flow rates, computes the estimated

backlog in the queue from diff=(Expected – Actual)BaseRTT.
4. Based on diff, the sender updates its window size as follows:








−
+

=
CWND
CWND
CWND

CWND 1
1 α

β
otherwise
if diff >
if diff <

TCP Vegas tries to keep at least α packets but no more than β packets in the queues.
The reason behind this is that TCP Vegas attempts to detect and utilize the extra
bandwidth whenever it becomes available without congesting the network. This
mechanism is fundamentally different from that used by TCP Reno. TCP Reno
always updates its window size to guarantee full utilization of available bandwidth,
leading to constant packet losses, whereas TCP Vegas does not cause any oscillation
in window size once it converges to an equilibrium point [6].

Our project is focused on Reno, SACK and Vegas TCP since Tahoe is replaced by
Reno in most of today’s applications.

 4

3. Evaluation of TCP Congestion Control Algorithms

We use simulations to compare TCP Reno, SACK and Vegas from different aspects.
All the simulations use FTP traffic, which corresponds to bulk data transfer. The
packet size is fixed at 1,000 bytes. The buffer and window sizes are both in the unit of
packet. The receiver advised window is large enough so no packet will be dropped at
the receiver. We also assume that the ACKs are never lost. All the simulations are run
for 120 seconds, unless specified.. We use ACK number ratio to indicate the
bandwidth occupancy ratio, since we use the same packet size throughout our
simulation (ACK number * packet size / time = bandwidth). We will explain and
discuss our simulation results in three main categories as follows.

3.1 Effective Resource Utilization
We compare the effective resource utilization of these three algorithms: how much of
the available network bandwidth does it utilize? How frequently does it retransmit
packets? How does it modify window size on congestion? These comparisons are
based on each version TCP running separately on a congested network.

3.1.1Bandwidth Utilization

Simulation Design

Sender R Receiver

10Mbps, 1ms 1.5Mbps,1ms

Topology 1

Topology 1 shows the topology of the simple simulation network. The circle indicates
a finite-buffer DropTail gateway, and the squares indicate sender and receiver hosts.
The links are labeled with their bandwidth capacity and delay.

Simulation Results
It has been reported that Vegas TCP can achieve 37 to 71 percent higher throughput
than Reno TCP [3]. In this part of the project, we measure the performance of Vegas,
Reno and Sack on link of different loss rates. We add error model on the slow link
between the gateway and the receiver. The buffer size is 6. Table 1 shows the results
of 1% and 5% uniform loss. We found that the bandwidth utilization ratio of these
TCP flavors do not show much difference for link of small loss rate. However, TCP
Vegas achieves higher throughput than Reno and Sack for large loss rate.

Table 1: Effective Bandwidth Utilization Ratio
 Reno Sack Vegas

1% loss 89.4% 97.7% 95.5% Bandwidth

utilization 5% loss 45.5% 53.7% 63.7%

 5

3.1.2 Congestion Window Size Variation

One main difference in congestion control algorithms of TCP SACK and TCP Reno is
how they deal with more than one packet loss in one congestion window. We simulate
the case when four packets are dropped in one congestion window to see the window
size variation. Simulation topology is the same as in 3.1.1. We use the source code
from [1] and get consistent simulation results with [1]. The result graphs are as
follows.

Figure 1 Congestion Window of Four Packets Loss

From Figure 1, we see that congestion window of TCP Reno drops to 0 and slow-start
when more than one packet are dropped in one window. Congestion window of TCP
Vegas oscillates when more packets are dropped, but never goes back from slow-start.
TCP SACK maintains the same window size as the value after the first packet drop
and returns to a higher window size than both Reno and Vegas. We can say that the
algorithm of TCP SACK performs better in the case of more than one packet is
dropped in one window. This is consistent with the algorithm explanations in section
2.

3.1.3 Retransmit Rate

Simulation Design
The network configuration is shown in Topology 2. In the figure, R1 and R2 are
finite-buffer switches and S1~S4 are the end hosts. Connection 1 transmits packets
from S1 to S3, and connection 2 from S2 to S4. The links are labeled with their
capacities and propagation delays.

R1 R2

10Mbps, 1ms

10Mbps, 1ms

10Mbps, 1ms

10Mbps, 1ms

1.5Mbps, 1ms

S1

S2

S3

S4

Topology 2

Simulation Results
We vary the S1 – S3 and S2 – S4 connections to different TCP flavors and get six
possible combinations. These one-on-one experiments are to test the retransmit rate of
Reno, SACK and Vegas. The results from simulation are shown in the following table.

 6

Table 2: One-on-One Transfer
 Vegas/Reno Reno/Vegas Reno/SACK SACK/Reno SACK/Vegas Vegas/SACK
Transmit
packets

6536/13337 13339/6534 9765/10108 10113/9760 13427/6446 6443/13430

Retransmit
Packets

0/273 272/0 348/346 348/346 272/0 0/266

Retransmit
Ratio (%)

0/2.05 2.04/0 3.56/3.42 3.44/3.55 2.03/0 0/1.98

From the above table, we can see that the performance of Vegas is perfect in the sense
of loss control. It never loses a packet. When running together with Vegas, the
retransmit ratio of Reno and SACK is about 2%, which is smaller than Reno and
SACK compete with each other (about 3.5%). The reason for this is as follows. Both
Reno and SACK use aggressive algorithm to increase their window size until drop
happens. They occupy more bandwidth when compete with Vegas. Therefore, fewer
packets are dropped in this case. When Reno and SACK compete, they share the
bandwidth almost in half and half, but with the expense of higher loss rate. We will
explain this unfair behavior in later subsections.

3.2 Fairness between Connections with Different Delays
In this part, we want to test the fairness between different delay connections. When
the same version TCP run together on one bottleneck link, whether they can share the
bandwidth fairly if their connection delays are different? We want to testify that TCP
Reno is biased against the connections with longer delays and see the behaviors of
SACK and Vegas in the same situation. We are also interested in the factors that may
affect this fairness, such as different queue algorithms and buffer size.

Simulation Design
Topology 3 shows the topology of the network that was used in the simulation. In the
figure, R1 and R2 are finite-buffer switches and S1~S4 are the end hosts. Connection
1 transmits packets from S1 to S3, and connection 2 from S2 to S4. The links are
labeled with their capacities and propagation delays, and they will be changed during
different simulations. The propagation delay of the link that connects R2 and S4,
which is denoted by X in Topology 3, will be varied in order to see the effect of
different delays on the fairness.

Topology 3: Network Topology

3.2.1 Testify the Behavior on Long Delay connections

In this part, we want to testify the observation in [6] that TCP Reno is biased against
the connections with longer delays. The reason for this behavior is as follows. While a
source does not detect any congestion, it continues to increase its window size by one

 7

during one round trip time (RTT). Obviously, connections with a shorter delay can
update their window sizes faster than those with longer delays, and thus capture
higher bandwidths. To our understanding, TCP SACK does not change this window
increasing mechanism, so we expect the same unfair behavior with TCP SACK.

We designed the simulation scenarios as follows. The network topology is shown in
Topology 3. S1 and S2 will be set to be the same TCP agents, such as two Reno, two
Vegas or two SACK TCP agents, respectively. Results of X=1ms (the same
propagation delay as comparison baseline) and X=22ms (the RTT of longer delay
connection is 8 times of the shorter one) will be collected to show the fairness
between different delay connections.

We use bandwidth occupancy graphs to show the fairness between different delay
connections. The vertical axis is bandwidth (in Mbps). The horizontal axis is
simulation time (in second). Connections 1 and 2 start at time 0 and 0.5 seconds,
respectively. We start to collect simulation data after 15 seconds to eliminate the
transient effect. The top red line is the total bandwidth, which is set to 1.5Mbps. The
blue line represents the bandwidth of the shorter delay connection. The green one is
the bandwidth of longer delay connection. The graph on the left-hand side is
bandwidth occupancy of two connections with the same delays, which is used as
comparison baseline. The right-hand side graph is bandwidth occupancy of
connections with different delays.

3.2.1.1 Two Reno TCP connections

 Figure 2a (X=1ms) Figure 2b (X=22ms)

Figure 2a and 2b show the bandwidth occupancy of two Reno TCP connections.
From Figure 2a, we can see that bandwidth occupancy of two same delay Reno TCP
connections is fair. The results of Figure 2b show that the delay bias of TCP Reno
becomes very noticeable when the delay difference is large. The shorter delay
connection (blue line) occupies almost twice bandwidth as the longer one. One can
also notices the large oscillation of the total bandwidth Reno TCP. This result is
consistent with what we want to testify.

 8

3.2.1.2 Two Vegas TCP connections

 Figure 3a (X=1ms) Figure 3b (X=22ms)

Figure 3a and 3b show the bandwidth of two Vegas TCP connections. We can see
that the two connections share the bandwidth in almost half and half (X=1ms,
0.75Mbps; X=22ms, 0.7Mbps and 0.8Mbps). The results show that the bandwidth
occupancy does not change significantly with the link delay, which means Vegas TCP
is not biased against connection with longer delay. This result is consistent with what
we want to testify.

3.2.1.3 Two SACK TCP Connections

Figure 4a (X=1ms) Figure 4b (X=22ms)

Figure 4a and 4b show the bandwidth of two Sack TCP connections. From the figures,
we can see that the delay bias of TCP Sack becomes very noticeable when the delay
difference is large. This result is similar to that of Reno TCP, which is quite
straightforward, since the window increasing mechanism of Sack is the same as Reno.

 9

3.2.2 Fairness Variation with Delay Changes

As we find out from previous tests, both Reno and SACK TCP are biased against the
connection with longer delays. We want to see how this bias changes while the delay
differences increase. We vary the number of X in our simulation topology to change
the delay of connection 2 (from S3 to S4) as follows.

Table 3: Fairness with RTT Changes

X
(ms) RTT2/RTT1 ACK1/ACK2
 Reno SACK Vegas
1 1 1 1 1
13 5 1.71 1.77 1.17
22 8 2.2 4.31 1.18
58 20 12.42 30.69 1.03
208 70 46.62 70.3 2.15

Fairness between Different Delay Connections

0

20

40

60

80

1 13 22 58 208

Longer Delay(ms)

A
C

K
1/

A
C

K
2

Reno
SACK
Vegas

Figure 5

ACK1 and ACK2 are the number of packets that have been acknowledged by the
corresponding receivers for connection 1 and 2. We use ACK1/ACK2 to represents
the bias (vertical axis), which is the same as bandwidth occupancy ratio. If there’s no
bias against the longer delay connection, ACK1/ACK2 should be near 1. From the
data above, we can see that the delay bias of TCP Reno and SACK becomes very
noticeable when the delay difference becomes large, while TCP Vegas does not show
such delay bias. The ACK ratio of the two connections under TCP Reno and SACK
increases almost linearly with RTT ratio. When the delay difference is quite large
(X=58ms and 208ms), the delay bias of SACK TCP is even greater than Reno.

3.2.3 Queue Algorithms Effects

There are many suggestions on how to improve the fairness between different delay
connections. Here we focus on the effect of different queuing algorithms, such as
DropTail (First come, first service), RED (Random Early Detection). We use
simulations to see how the buffer size parameter will affect the fairness in this case.

The simulation topology is the same as shown in Figure 2. Queue is set at R1, the
bottleneck of the network. Buffer sizes are given in packets. We set the longer delay

 10

to be 58ms (so the RTT of the longer delay is 30 times of the shorter one) to see
queuing algorithms effect clearly.

3.2.3.1 DropTail Queue

DropTail Queue Effect on Fairness between Different
Delay Connections

0

10

20

30

40

10 15 20 30 50

Buffer size

A
C

K
1/

A
C

K
2

SACK
Reno

We use ACK1/ACK2 to denote the bias on longer delay connections. From the chart,
we can see as the buffer size of DropTail queue increases, both Reno and SACK
ACK1/ACK2 drop down to close 1, which means longer delay connection can receive
more bandwidth. Increasing the buffer size in the router can make the two connections
share the link more fairly. The reason is that Reno and Sack TCP need buffer space to
increase window. When the buffer size is small, the fast link occupies most of the
buffer. When the buffer size is large, the slow link can get some buffer space because
the window of Reno and TCP oscillates due to an AIMD algorithm.

3.2.3.2 RED Queue

RED is designed for congestion avoidance. The two main parameters are threshold
and maxthreshold. When the average queue size is above threshold but smaller than
maxthreshold, it starts dropping packets with certain probability that is proportional to
the queue size. If the average queue size exceeds maxthreshold, all incoming packets
are dropped. We set maxthreshold=buffer_size and threshold=0.5*maxthreshold. In
this setting, we tune the buffer size as we did with DropTail queue to see the effect of
buffer size changes on the fairness. We got the chart as follows.

RED Queue Effect on Different Delay Connections

0

5

10

15

20

10 15 20 30 50

Buffer Size

A
C

K
1/

A
C

K
2

SACK
Reno

From the chart, we got the same result as in DropTail Queue that fairness between
different delay connections is improved while the buffer size grows large. It can also
be seen from the figures that RED gateway needs smaller buffer size than DropTail
gateway to maintain fair connections.

 11

3.3 Fairness between Different Version TCPs when Competing on
Same Link
There are different versions TCP running together on the Internet. Therefore, we are
also interested in the fairness when they compete on the same connection. We carried
out several simulations to test Reno, SACK and Vegas TCP from this aspect.

3.3.1 Competition when two connections running together

Simulation Design
The simulation topology is quite similar to Topology 2. The two connections have the
same round trip time of 6ms. We varied S1 and S2 to be different TCP agents. We put
DropTail Queue in R1 and set the buffer size to be 15 (in packets).

The following three graphs show the bandwidth occupancy of the two TCP
connections running on the same link (R1-R2). The total bandwidth is 1.5Mbps,
shown in the top red line. The horizontal axis is the simulation time (in second). The
total simulation time is 120 seconds. We start to collect simulation data after 15
seconds to eliminate the transient effect.

Figure 6a

Blue line- Reno, Green line-SACK

Figure 6b

Blue line – Reno, Green line – Vegas

 12

Figure 6c

Blue line – SACK, Green line - Vegas

Figure 6a shows that Reno and SACK can share the link quite fairly, almost half and
half (0.75Mbps each). From figure 7b and figure 7c, we can see that TCP Vegas
connection does not receive a fair share bandwidth in the presence of TCP Reno or
TCP SACK.

The TCP Reno congestion avoidance scheme is aggressive in the sense that it leaves
little room in the buffer for other connections, while TCP Vegas is conservative and
tries to occupy little buffer space. When a TCP Vegas connection shares a link with a
TCP Reno connection, the TCP Reno connection uses most of the buffer space and
the TCP Vegas connection backs off, interpreting this as a sign of network congestion.
That’s the reason why TCP Vegas receives a small portion of the bandwidth when
competing with TCP Reno. TCP SACK uses the same aggressive mechanism as TCP
Reno. Therefore the behavior of TCP SACK is the same as TCP Reno when competes
with TCP Vegas [6].

3.3.2 Queue Algorithms Effects

We are also interested in the effects of different queue algorithms on this unfairness.
We carried out simulations to see how the buffer size and different queue algorithm
will affect the behavior of the two connections.

3.3.2.1 DropTail Queue

The simulation setting is the same as section 3.3.1. We vary the buffer size at the
switches to see how the bandwidth occupancy ratio changes with the buffer size. The
simulation results are given as follows.

From the charts below, we can see that when the buffer sizes are small, TCP Vegas
outperforms TCP Reno and TCP SACK. The reason for this is as follows. Both TCP
Reno and SACK need some room in the switch buffer for oscillation in order to
estimate the available bandwidth. Without the necessary room in the buffer, its
performance degrades noticeably. TCP Vegas can quickly adapt to the small buffer
size since it requires enough space for only a few packets [6]. When the buffer size is
large enough, TCP Reno and SACK occupy much more bandwidth and leave little for
TCP Vegas, which is consistent with our previous simulation results. The intersection

 13

points in the chart (about 8 for Reno-Vegas and 10 for SACK-Vegas) suggest the
appropriate buffer size with which the two connections can share the link fairly. This
optimal buffer size is only valid for this simulation scenario.

Reno-Vegas with DropTail

0
5000
10000
15000
20000

4 7 10 15 50
Buffer size

A
C

K Reno
Vegas

SACK-Vegas with DropTail

0
5000
10000
15000
20000

4 7 10 15 50
Buffer size

A
C

K SACK
Vegas

3.3.2.2 RED Queue

We also test RED queue to see the effect of parameters changes. If we set the main
two parameters threshold=0.5*maxthresh and maxthresh=buffer_size as previous
section, we got the results shown in following charts when we tune the buffer size.
The conclusion is similar to DropTail queue. If the buffer size is small, Vegas
outperforms than Reno and SACK. As the buffer size grows up, Reno and SACK
occupy more bandwidth due to their aggressive algorithms.

Reno-Vegas with RED Queue

0
5000
10000
15000
20000

6 10 15 20 30
Buffer Size

A
C

K Reno
Vegas

SACK-Vegas with RED Queue

0
5000
10000
15000
20000

6 10 15 20 30
Buffer Size

A
C

K SACK
Vegas

 14

To our understanding, threshold plays a more important role in RED queuing
algorithm, since when the average queue size exceeds threshold but smaller than the
maxthresh, they start dropping incoming packets with certain probability that is
proportional to the average queue size. Therefore, we fixed the threshold at 3 and vary
the maxthresh to see the effects. The buffer size is set to be the same as maxthresh.
We got the results as show in the following table.

Table 4a: Reno/Vegas Competition with RED maxthresh changes

Maxthresh ACK of Reno ACK of Vegas Reno/Vegas
10 11105 8858 1.3
20 13158 6512 2.02
40 12211 7476 1.63
80 13767 5919 2.33

Table 4b: SACK/Vegas Competition with RED maxthresh changes
Maxthresh ACK of SACK ACK of Vegas SACK/Vegas

10 11180 8484 1.32
20 11854 7829 1.51
40 13519 6150 2.2
80 12478 7209 1.73

From the above tables, we can see that if the threshold is fixed, changes of the
maxthresh do not affect the fairness much. If the threshold is small enough (3, in our
simulation), TCP Vegas can receive a relative fair share of the bandwidth. The reason
behind this is that, when the threshold values are low enough, they give the
connections the impression that the buffer size is smaller than it really is.

3.3.3 Other Improvement

As stated before, Vegas does not receive a fair share of the bandwidth when
competing with Reno or Sack. Vegas uses a conservative algorithm to increase the
congestion window, while Reno and Sack use aggressive ones. If we change the
window increasing mechanism of Vegas, we can somehow enlarge its bandwidth ratio.
From the description of section 2, we know that Vegas tries to maintain a buffer size
between w+α and w+β. The α and β values are usually set to 1 and 3 (default values
in NS2). We set the buffer size to be 15. α and β values are set to 3 and 6. We
compare the result of that of the default values (1 and 3). It can be seen from the
figure that the modified one is not biased against Vegas. We got the same conclusion
for Sack1-Vegas case (result not shown here). However, the result may only be valid
for this simulation scenario. What we try to point out is that it is possible to modify
the algorithm of Vegas to make it more competitive in the presence of TCP Reno and
SACK, while maintaining its fairness on connections with different delays. On the
other hand, one could also change the algorithm of Reno or Sack to reduce the
aggressive behavior, and reduce their unfairness on connections with different delays,
such as the Constant-Rate (CR) algorithm.

 15

 Alpha = 1, Beta = 3 Alpha = 3, Beta = 6

Figure 7. Bandwidth occupancy ratios of default and modified Vegas implementation

3.4 Reno-Sack1-Vegas
As a final part of our project, we test the case in which Reno, Sack and Vegas
compete together on a bottleneck link. The simulation topology is shown in Topology
4, which is quite similar to Topology 2 except that there are three senders instead of
two. The total bandwidth is again set to be 1.5Mbps. Other parameters are the same as
section 3.3. Results of buffer size of 15 and 30 are shown as follows. From the figures,
we can see that when the buffer size is small, Vegas occupies more bandwidth than
Reno and Sack. While the buffer size is large, Reno and Sack receive larger share of
bandwidth than Vegas. In both cases, Reno and Sack receive about the same share of
total bandwidth. This again confirms our previous conclusions. The importance of this
part is that, Reno, Sack and Vegas may run simultaneously on today’s Internet. Our
simulation, though not complete, gives a more realistic result and conclusion.

Simulation Topology

R1 R2

10Mbps, 1ms

10Mbps, 1ms

10Mbps, 1ms

10Mbps, 1ms

1.5Mbps, 1ms

S1

S2

S3

S4

S5

S6

10Mbps
 1ms

10Mbps
 1ms

Topology 4

 16

 Buffer Size =15 Buffer Size = 30

Figure 8. Bandwidth occupancy ratio of Reno, Sack and Vegas

 17

4. Conclusion

In this project, we evaluate the performance of TCP Reno, TCP Vegas and TCP
SACK from many aspects.

From our first subsection simulation results, we find that both TCP Vegas and TCP
SACK make some performance improvements to TCP Reno. TCP Vegas achieves
higher throughput than Reno and SACK for large loss rate. TCP SACK is better when
more than one packets are dropped in one window. TCP Vegas causes much fewer
packets retransmissions than TCP Reno and SACK.

We have also shown that TCP Vegas does lead to a fair allocation of bandwidth for
different delay connections. Both TCP Reno and SACK bias against long delay
connections. We also test different queuing algorithms, trying to find a method to
improve the fairness. We find that with both DropTail and RED gateway, as the
buffer size grows up, the longer delay connections can receive a fair share of the total
bandwidth.

When competing with TCP Reno or SACK connections, TCP Vegas is penalized due
to the aggressive nature of TCP Reno and SACK. We also investigated the effect of
different queuing algorithms and found that when the buffer sizes are small, TCP
Vegas performs better than TCP Reno and SACK, since it does not require much
space in switch buffer. As the buffer sizes increase, TCP Reno and TCP SACK
throughput increase at the cost of a decrease in TCP Vegas throughput. Our
simulation results suggest that, for a certain link, there might be an appropriate value
of buffer size (the intersection of the two ACK lines) for DropTail and RED queue to
make different connections share the bandwidth in a relative fair way. The exact
values may depend on the link speed and propagation delay. However, RED queue
may have more parameters other than buffer size to tune for a fair allocation of
bandwidth. We also suggest a change in Vegas algorithm (tune α and β values) to
make Vegas more aggressive in the competition. This may be worthy of further
investigation in the future work.

However, all the efforts in analysis of queuing algorithms effects lie in the gateway
side of the network. There are many suggestions of modification that lie on the host
side to improve the fairness. We do not have enough time to implement them in this
project.

Many research efforts have been devoted to the comparison of different TCP
implementations, such as Reno and Vegas, or Reno and SACK. To our knowledge, no
research has been carried out for the comparison of all these three algorithms. The
simulation result is consistent with our understanding of the algorithms and the
literature work. Although we carry out many experiments, there are still many
comparisons of TCP congestion control algorithms that can be taken. We hope to do
them in future work.

 18

Reference

[1] Kevin Fall, Sally Floyd, Simulation-based comparisons of Tahoe, Reno and
SACK TCP, ACM SIGCOMM Computer Communication Review, v.26 n.3, p.5-21,
July 1996. http://www.sfu.ca/~zbian/courses/cmpt885/fall96simulationbased.pdf

[2] S. Floyd, Congestion Control Principles, RFC2914, September 2000,
http://www.ietf.org/rfc/rfc2914.txt

[3] L. Brakmo, S. O'Malley, and L. Peterson. TCP Vegas: New techniques for
congestion detection and avoidance. In Proceedings of the SIGCOMM '94
Symposium (Aug. 1994) pages 24-35

[4] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, An Extension to the Selective
Acknowledgement (SACK) Option for TCP, RFC2883, July 2000,
http://www.ietf.org/rfc/rfc2883.txt

[5] V. Jacobson, Congestion avoidance and control, ACM SIGCOMM Computer
Communication Review, v.18 n.4, p.314-329, August 1988.
http://www.sfu.ca/~zbian/courses/cmpt885/congavoid.ps

[6] Jeonghoon Mo, Richard J. La, Venkat Anantharam, and Jean Walrand, Analysis
and Comparison of TCP Reno and Vegas.
http://www.sfu.ca/~zbian/courses/cmpt885/mo-tcp-reno-vegus.pdf

[7] V. Jacobson. “Modified TCP Congestion Avoidance Algorithm”, Technical
report, 30 Apr. 1990.
ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt.

[8] Thomas R. Henderson, Emile Sahouria, Steven McCanne, Randy H. Katz. “On
Improving the fairness of TCP Congestion Avoidance”, Proceeding of IEEE
Globecom. 98, November 1998.

Appendix

Source code list
tcpInit.tcl --- class definition, pre-processing.
tcpTest.tcl --- simulation scenario, result analysis.

 19

http://www.sfu.ca/~zbian/courses/cmpt885/fall96simulationbased.pdf
http://www.ietf.org/rfc/rfc2914.txt
http://www.sfu.ca/~zbian/courses/cmpt885/congavoid.ps
http://www.sfu.ca/~zbian/courses/cmpt885/mo-tcp-reno-vegus.pdf
ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt

	ENSC 835-3: NETWORK PROTOCOLS AND PERFORMANCE
	CMPT 885-3: SPECIAL TOPICS: HIGH-PERFORMANCE NETWORKS
	
	
	
	
	Final Project

	EVALUATION OF DIFFERENT TCP CONGESTION CONTROL ALGORITHMS USING NS-2
	Hui (Hilary) Zhang (hzhang@sfu.ca)
	Zhengbing Bian (zbian@cs.sfu.ca)
	TABLE OF CONTENTAbstract11.Introduction12.TCP Congestion Control Algorithm22.1 TCP Tahoe22.2 TCP Reno22.3 TCP SACK32.4 TCP Vegas33. Evaluation of TCP Congestion Control Algorithms53.1 Effective Resource Utilization53.1.1Bandwidth Utilization53.1.2 Conges
	Abstract
	Introduction
	TCP Congestion Control Algorithm
	2.1 TCP Tahoe
	2.2 TCP Reno
	2.3 TCP SACK
	2.4 TCP Vegas

	3. Evaluation of TCP Congestion Control Algorithms
	3.1 Effective Resource Utilization
	3.1.1Bandwidth Utilization
	3.1.2 Congestion Window Size Variation
	3.1.3 Retransmit Rate

	3.2 Fairness between Connections with Different Delays
	3.2.1 Testify the Behavior on Long Delay connections
	3.2.1.1 Two Reno TCP connections
	3.2.1.2 Two Vegas TCP connections
	3.2.1.3 Two SACK TCP Connections
	3.2.2 Fairness Variation with Delay Changes
	3.2.3 Queue Algorithms Effects
	3.2.3.1 DropTail Queue
	3.2.3.2 RED Queue

	3.3 Fairness between Different Version TCPs when Competing on Same Link
	3.3.1 Competition when two connections running together
	
	
	
	
	Blue line- Reno, Green line-SACK

	3.3.2 Queue Algorithms Effects
	3.3.2.1 DropTail Queue
	3.3.2.2 RED Queue
	
	
	
	Maxthresh
	Maxthresh

	3.3.3 Other Improvement
	
	
	As stated before, Vegas does not receive a fair share of the bandwidth when competing with Reno or Sack. Vegas uses a conservative algorithm to increase the congestion window, while Reno and Sack use aggressive ones. If we change the window increasing me

	3.4 Reno-Sack1-Vegas

	4. Conclusion
	Reference
	Appendix
	Source code list

