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1. Abstract 
 
In this project, we investigate the performance improvement of applying the Forward 
Error Control (FEC) to the IEEE 802.11b Wireless LAN standard.  In the IEEE 802.11b 
standard, bit error introduced by the channel noise is protected by Cyclic Redundancy 
Check (CRC) and results in packet loss. Reliable end-to-end connection is provided by 
higher layer protocols such as TCP, whose performance is severely degraded by the bit 
error rate in the channel.  We evaluate the performance of two different approaches of 
FEC implementation, Reed Solomon code, and Turbo code over TCP Wireless LAN.  
From the OPNET simulations, we concluded that both implementations reduce the packet 
loss and the congestion in the network. 
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2. Introduction 
 
The popularity and growth of the Internet makes TCP/IP the de-facto network layer 
protocol in data transmission between computers.  Traditionally, within a local area 
network area, TCP/IP is carried on wired Ethernet connected to the computers.  Since 
TCP is originally designed for low noise channel, the recent development of wireless 
LAN created many challenges in TCP performance.  This project is to investigate the 
application of Forward Error Control (FEC) to TCP transmitted over the IEEE 802.11b 
Wireless LAN standard. 
 
A brief introduction of the IEEE 802.11b Wireless LAN standard is discussed in section 
2.  In section 3, there is the principle of Forward Error Control and introduction of the 
two different FEC approaches, Reed-Solomon Code and Turbo Code.  Section 4 
describes the simulation environment with two network scenarios A simple one with just 
one transmitter and one receiver, and a more complex one involves simultaneous 
transmission between several mobile hosts.  In the last section, we will discuses the 
simulation results and conclude our research with suggestions. 
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3. Overview of 802.11b Wireless Local Area Networks 
 
Wireless Local Area Network (LAN) 802.11b is a standard out of the IEEE 802.11 
committee. It is primarily used for low cost wireless LANs in enterprise networks. The 
cost is kept low by using a low power unlicensed spectrum band. 
 
The data in 802.11b is encoded using DSSS (direct-sequence spread-spectrum) 
technology. The way that DSSS operates is that it first takes a data stream of zeroes and 
ones and modulates it with a second pattern, what is called the chipping sequence. In this 
case the chipping sequence is known as the Barker code. This is an 11 bit sequence 
(10110111000) that has been derived to have certain mathematical properties that make it 
easy for modulation radio waves. The method that the Barker code operates on the data is 
to exclusive OR with the data and this generates data object called chips. The format is 
each bit is encoded by the 11 bit Barker code so 11 chips is equivalent to one bit of data. 
 
For 1Mbps transmission BPSK (Binary Phase Shift Keying) is used. For 2Mbps 
transmission QPSK (Quadrature Phase Shift Keying) is used. To maintain quality of 
transmission at the higher bitrate power must be increased or range must be decreased. So 
the radio adapts by using a slower encoding mechanism for larger ranges. 
 
The wireless physical layer has tow parts the PLCP (Physical Layer Convergence  
Protocol)  and the PMD (Physical Medium Dependent) sublayer. The PMD is responsible 
for the wireless encoding. and the PLCP enables an interface for higher-level drivers 
through CCA (Clear Channel Assessment) this is the signal that MAC (Media Access 
Control) to determine channel availability. The figure below shows the PHY Frame. 

 
Figure 1 802.11 PHY Frame 

192bits of the header is always transmitted at 1Mbps so 802.11b is at best 85 percent 
efficient at the physical layer. 
 
The MAC layer must sense a quiet time on the network to transmit. Each station listens to 
the network and determines when to transmit by waiting for the random back-off timer to 
reach 0. When the node has transmitted the timer is reset. Other features that enable radio 
communication, which can be unpredictable, is the RTS/CTS (request to send/clear to 
send) feature. However this adds significant overhead to the network and must also be 
enabled on the client and access point. The MAC layer also identifies the source and 
destination addresses, data payload & CRC. 
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 An example implementation of a wireless network is shown in Figure 2. Here the 
wireless network is connected, through an IP gateway and unsecure network to a remote 
wired network. 

 
Figure 2 Example Wireless Network 
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4. Introduction to Forward Error Correction 
 
The sender based repair techniques are shown in Figure 3. Out of these techniques we 
will be investigating forward error correction under the passive heading. 

 
Figure 3 Sender Based Repair Techniques 

There are two major kinds of Forward Error Correction (FEC), media independent and 
media specific FEC.  In this project, we use the Reed Solomon Code to represent media 
independent FEC, and Turbo code to represent media specific FEC. 
 
The major reasons that FEC is important for WLAN applications are 1) Packet loss in 
TCP causes window size decrease and retransmission of the lost packet. 2) The goal is to 
maximize the window size, for optimal utilization of bandwidth in channel. 3) In wired 
network, mostly traffic congestion lead to decrease in window size, and not bit error rate. 
4) In a noisy wireless networks, window size is very small due to the high bit error rate of 
the channel 5) FEC reduces retransmission by transmitting error correction code with 
packets 

4.1. Reed-Solomon Code 
 
This kind of media independent FEC code uses block or algebraic codes that produces 
additional packets for transmission. This aids in the correction of packet losses. It is 
important to note that each code takes a codeword of k data packets and generates n-k 
additional packets, which is used in the transmission of n packets over the network 
 
The origins of the Reed-Solomon (RS) code are in the detection and correction of errors 
in bit streams. Here it has been adapted to do the same for packet streams. The 
advantages that the RS codes have over other codes is that thy have excellent error 
correction properties and they are robust against burst losses. The coding procedure is 
based on an encoding scheme using polynomials and readily available algorithms make 
the computing cost small. 
 
Using media independent codes such as the RS code results in recovery and repair with 
the exact replacement. Some disadvantages of this are a possible delay penalty, increased 
bandwidth and possible difficulties in implementation. 
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4.2. Turbo Codes 
 
The media specific codes include a special type of code called the Turbo Code. This 
method of coding allows close to the Shannon capacity, the theoretical maximum, of the 
channel to be used.  
 
This code is media specific because it addresses several non-ideal characteristics of the 
wireless communication network. These include multipath fading and propogation losses. 
The use of the turbo codes will result in acceptable bit error rates. 
 
The turbo code principal is shown in Figure 4 consists of two Recursive Systematic 
Convolutional Codes (RSC) are and the interleaver on the left. If the interleaver length or 
the code length constraints are increased the turbo code performance can be improved. 
 

RSC 1

RSC 2

Π

 
Figure 4 Turbo Encoding 

 
However, one of the disadvantages of the turbo coding method is that the decoder is very 
complex to implement and an efficient memory management scheme is needed. 
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5. Implementation Details 
 
 
To investigate the benefit of the Reed Solomon code and the Turbo code to the TCP 
performance of Wireless LAN, we modeled the behavior of these two FEC using OPNET 
and simulated the network with traffic traces.  We modified the OPNET built-in WLAN 
model by adding the behavior of FEC with Reed Solomon Code and Turbo Code to the 
Radio Link Transceiver Pipeline.  (Figure 5) 
 
 

 
Figure 5 Radio Link Transceiver Pipeline 
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OPNET is a packet base simulator, the transmitter, receivers and radio channel properties 
is modeled with 13 Radio Link Transceiver Pipeline stages. Since our simulation is 
focused on the TCP performance rather than physical properties of the channel, we 
deactivated all physical layer related stage except stage 11, which introduce the bit error 
rate (BER).  We replaced the original BER model, which calculate the BER from 
Antenna gain, background noise, Signal-to-Noise ratio etc from previous stages with our 
custom BER model, which read the BER from the node attribute.  
 

5.1. Reed Solomon Code 
 
To model the behavior of RS Code, we need two new attributes, the length of the code 
word (n), the length of the data in a code word (k).  The number of bit error that can be 
corrected (t) can be calculated from n and k, where 2t = n – k.  In the RS code for every k 
data bits, the transmitter will attach n-k bits of parity bits for error correction.  We model 
this behavior by change the first pipeline stage that calculate transmission delay.   On 
each packet, we calculated the extra RS parity bits required and then added extra bits to 
the packet length, which used to calculate the transmission delay.  
 
On the receiver side, stage 12, the error allocation stage determines the number of error 
bits in the packet base on the BER from stage 11.  In stage 13, error correction, the 
original model decided whether to accept or reject the packet base on the ecc threshold 
attribute.  Here we replace this stage with our custom model, which reject all packets 
with number of bit error larger than t. 
 
Please note that the processing time of the RS code is neglected due to the fact that in real 
world, RS encoder and decoder can be implemented by hardware with only one clock 
cycle processing delay. 
 

5.2. Turbo Code 
 
To model the behavior of Turbo Code, we need two new attributes, the processing delay 
to encode and decode the turbo code, and the BER threshold that the code can correct.  
Turbo code is a math intensive calculation which most of the impact to the network is the 
delay it introduces.  We neglect the overhead turbo code may add to the packet size due 
to the overhead is usually very small and the size varies and depend on the media content. 
The encoding delay of the Turbo code is modeled by adding a delay to the link between 
the wireless_lan_mac process and the transmitter process within the workstation node 
model.  The decoding delay is modeled by adding a delay to the link between the receiver 
process and the wireless_lan_mac process. (Figure 6) 
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Figure 6 Wireless LAN Workstation Node Model 

 
On the receiver side, the error allocation stage also calculates the actual BER base on the 
number of error bits in the packet.  In the error correction stage (stage 13), when turbo 
code is used, the model accept all the packets with actual BER lower than the turbo code 
BER threshold, and reject otherwise. 
 
In our simulations, besides the wireless LAN workstation node model, we also used the 
wireless LAN server node model and the wireless LAN router node model.  We applied 
the above modification to the other two models as well.   
 
The source code of the custom pipeline stage models is located in the appendix A.  
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6. Simulation Scenarios 
 
We use trace driven simulation in the Opnet to give more realistic simulation result.  The 
trace we are using is the Starwars MPEG trace download from the ENSC835 course web 
page.  The data of trace file is in number bits per 1/24 seconds, while the OPNET 
requires the number of bytes.  We had to write a simple script to convert the bit 
information into byte information. 
 

6.1. Simple Topology 
 

802.11b Wireless
Workstations  

Figure 7 Simple Topology Implementation 
 
 
First we implemented a simple topology to demonstrate the proof of concept and as the 
development platform of our custom models. (Figure 7) The simple scenario has two 
wireless lan workstation, a trace traffic is sent from one workstation to another.  Since 
this simulation is focused on TCP performance, we use the default value in most of the 
parameters.  The following are the list of parameters that we had changed to yield the 
best simulation result. 
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TCP Protocol: 
We choose TCP Reno with TCP segment size of 2272 bytes.  Reno has the fast re-
transmit feature that lacks in other TCP implement.  The 2272 byte segment size is the 
default TCP over WLAN value in OPNET.  In a noise channel, a smaller segment size 
reduces packet lost due to bit errors. 
 
WLAN parameters: 
We turned off the re-transmission in the WLAN layer.  When a WLAN packet is 
corrupted by bit error, the OPNET WLAN model has there are built function to 
retransmit the corrupted packet.  Without the physical layer retransmission, all 
retransmission has to be done by the TCP layer, this can further highlight the impact of 
FEC to TCP preformance. 
 
The WLAN 802.11b standard is operated in DSS mode with 4 different data rate.  We 
simply picked the highest data rate available 11Mbps due to the Starwars trace is a 
streaming video which require higher bandwidth. 
 
Bit Error Rate: 
We set the BER is 10e-6, which is the BER of a typical in door wireless environment 
such as an office building. 
 
Reed Solomon Code: 
We chose the commonly used RS(255,231) code.  Where the length of codeword is 255 
bits, in which contains 231 bits of data.  This code can correct up to 12 bits of error. 
 
Turbo Code: 
We chose to model turbo code with 4 iterations, which on average can correct BER up to 
10e-4.  With assumption the calculation is carry out in generic 100MHz processor, and 
each iteration requires 1000 instruction, the processing delay of the turbo code is 0.4us.  
Please keep in mind that in real world BER threshold and the process delay may varies 
and depends on the processor speed and the media content.  
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6.2. Complex Topology 
 

 
Figure 8 Complex Topology Implementation 

 
 
With successful result from the simple topology, a complex topology was created with 
the same settings as the simple topology (Figure 8). Here the scenario is enhanced by the 
existence of a wired network, which interconnects the two wireless subnets.  In each 
subnet, there are a WLAN access point, a wireless server and two workstations.  Each 
server has two outgoing data stream, one goes to a workstation within the same subnet, 
while the other one destine a workstation on the other subnet.  This complex interaction 
between the server and workstation create more a realistic simulation environment with 
the possible of channel conflict and congestion.   
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7. Results Discussion 
 

7.1. Simple Topology 
 
The results of simulation are shown in Figure 9. The results show that for RS code and 
Turbo coding the TCP delay is significantly reduced, which is the expected behavior of 
the algorithm implementation.  It is because the uses of RS code and Turbo code reduce 
the number of packet retransmission in the WLAN layer and hence reduce the upper layer 
TCP delay.  Also as shown in the figure, RS code has a shorter TCP delay compared to 
Turbo code because Turbo code requires extra processing delay.  In our implementation, 
the extra processing delay added by the use of Turbo code is 
 

 
Figure 9 Simple Topology: TCP Delay 

 



13 

The TCP window size results are shown in Figure 10.  This is the expected result because 
TCP Reno continues to increase its congestion window size by one during each round trip 
time until a packet is lost.  Therefore, it results in a periodic oscillation of congestion 
window size in all of the three cases.  The results indicate that the window size for the RS 
code and Turbo code are much larger than without FEC.  Without FEC, errors in the 
WLAN layer cause frequent packet losses in the TCP layer, and TCP Reno reduces its 
window size to one half of the current window size when it experiences a packet loss.  
With FEC, errors are corrected in the WLAN layer, thus less packet losses cause TCP 
Reno to increase its congestion window size.  Also because the rate at which each 
connection updates its window size depends on the round trip delay of the connection.  
Hence, the connections with shorter delays can update their window sizes faster than 
other connections with longer delays.  Therefore, RS code, which has a shorter delay as 
shown in the figure, has larger congestion window size. 
 

 
Figure 10 Simple Topology: TCP Window Size 
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7.2. Complex Topology 
 
The results from the complex topology implementation show that the trends for the 
simple topology still hold. This is seen in Figure 11, Figure 12, and Figure 13. The 
conclusions reached for the simple topology case apply equally well for the complex 
topology case.  In Figure 11, the results show that without FEC the data drop rate in the 
WLAN layer is the highest, and RS code has a higher data drop rate than Turbo code.  It 
is because in this complex topology implementation, simultaneous transmission and 
reception cause higher chance of collision in the WLAN layer.  As RS code requires extra 
overhead bits and has a larger packet size, the chance of collision increases, and 
consequently, more data is dropped. 
 

 
Figure 11 Complex Topology: TCP Delay 
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Since collisions in the WLAN layer cause packet retransmissions in the TCP layer, RS 
code, which has a higher data drop rate, has a longer TCP delay than Turbo code.  The 
results are shown in Figure 12. 
 
 

 
Figure 12 Complex Topology: TCP Delay 
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Similarly when compared to Turbo code, the more frequent collisions in the WLAN 
delay resulted by the additional overhead bits cause RS code to have more packet 
retransmissions, and consequently, smaller congestion window size in the TCP layer.  
The results are shown in Figure 13. 
 

 
Figure 13 Complex Topology: Window Size 
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8. Conclusions 
 
• In this project, we performed investigation on how FEC can be applied to IEEE 

802.11b Wireless LAN standard to improve TCP performance. 
 
• We implemented the behavior of two FEC codes: Reed Solomon Code & Turbo Code.  

For the RS Code, we calculated the extra parity bits required based on the attributes 
chosen by the user and then added the extra bits to the packet length on the 
transmitting side.  On the receiving side, we only rejected packets with number of bit 
error larger than the number of bit error that can be corrected.  For the Turbo Code, 
we modeled the encoding/decoding delay by adding additional user-defined 
processing delay to the link between the WLAN MAC layer and the 
transmitter/receiver.  Then we rejected packets with actual BER higher than the user-
defined Turbo code BER threshold 

 
• We evaluated the performance of Reed Solomon Code and Turbo Code on improving 

reliable end-to-end connection provided by the TCP layer.  Our simulation results 
show that both the FEC codes reduce packet retransmissions in the TCP delay, and 
hence reduce the TCP end-to-end delay and increase the TCP congestion window size. 

 
• We compared the overall advantages and disadvantages of Reed Solomon Code and 

Turbo Code.  RS Code is easier to model and has determined processing time; Turbo 
Code is more difficult to model accurately, but it is possible to increase the channel 
capacity to the Shannon limit.  RS Code has smaller TCP delay and larger TCP 
congestion window size compared to Turbo code when the network topology is 
simple and the chance of data collision in the WLAN layer is low.  However, Turbo 
Code has a better performance when the network topology is complex and the chance 
of data collision in the WLAN layer is high. 

 
• For further enhancement, we recommend to model the Turbo Code 

encoding/decoding delay more accurately, and to investigate other FEC codes, such 
as Low Density Parity Check (LDPC) code.  
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10. Appendix A – Code Listing 
 
“e835_txdel_rs.ps.c” 
 
#include "opnet.h" 
#include "math.h" 
 
#if defined (__cplusplus) 
extern "C" 
#endif 
void 
e835_txdel_rs (Packet * pkptr) 
 { 
 int   pklen, ecc_n, ecc_k; 
 double  tx_drate, tx_delay; 
 Objid       tx_objid, node_objid; 
 
 /** Compute the transmission delay associated with the **/ 
 /** transmission of a packet over a radio link.   **/ 
 FIN (dra_txdel (pkptr)); 
 
 /* Obtain the transmission rate of that channel. */ 
 tx_drate = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_DRATE); 
 
 /* Obtain the error correction parameter of the receiver. */ 
 tx_objid = op_td_get_int (pkptr, OPC_TDA_RA_TX_OBJID); 
 node_objid = op_topo_parent(tx_objid); 
 op_ima_obj_attr_get(node_objid, "ecc_n", &ecc_n); 
 op_ima_obj_attr_get(node_objid, "ecc_k", &ecc_k); 
  
 /* Obtain length of packet. */ 
 pklen = op_pk_total_size_get (pkptr); 
  
 if (ecc_k > 0) 
  { 
  pklen += ceil((double)pklen / (double)ecc_k) * (ecc_n - 
ecc_k); 
  op_pk_total_size_set(pkptr, pklen); 
  } 
 
 /* Compute time required to complete transmission of packet. */ 
 tx_delay = pklen / tx_drate; 
 
 /* Place transmission delay result in packet's */ 
 /* reserved transmission data attribute. */ 
 op_td_set_dbl (pkptr, OPC_TDA_RA_TX_DELAY, tx_delay); 
 
 FOUT; 
 } 
 



20 

“e835_ber.ps.c” 
 
#include "opnet.h" 
 
#if defined (__cplusplus) 
extern "C" 
#endif 
void 
e835_ber (Packet * pkptr) 
 { 
 double  ber; 
 Objid       rx_objid, node_objid; 
   
 /** Calculate the average bit error rate affecting given packet. 
**/ 
 FIN (dra_ber (pkptr)); 
 
 /* Get BER from the Receiver model */ 
 rx_objid = op_td_get_int (pkptr, OPC_TDA_RA_RX_OBJID); 
    node_objid = op_topo_parent(rx_objid); 
 op_ima_obj_attr_get(node_objid, "ber", &ber); 
   
 /* Place the BER in the packet's transmission data. */ 
 op_td_set_dbl (pkptr, OPC_TDA_RA_BER, ber); 
 
 FOUT; 
 } 
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“e835_ecc.ps.c” 
 
#include <opnet.h> 
 
#if defined (__cplusplus) 
extern "C" 
#endif 
void 
e835_ecc (Packet * pkptr) 
    { 
 int   pklen, num_errs, accept; 
 Objid  rx_ch_obid, rx_objid, node_objid;  
 int   ecc_n, ecc_k, ecc_t, threshold; 
 double      pe, turbo_ber; 
  
 /** Determine acceptability of given packet at receiver. **/ 
 FIN (wlan_ecc (pkptr)); 
 
 /* Do not accept packets that were received */ 
 /* when the node was disabled.    */ 
 if (op_td_is_set (pkptr, OPC_TDA_RA_ND_FAIL)) 
  accept = OPC_FALSE; 
 else 
  { 
   
  /* Obtain length of packet. */ 
  pklen = op_pk_total_size_get (pkptr); 
 
  /* Obtain number of errors in packet. */ 
  num_errs = op_td_get_int (pkptr, OPC_TDA_RA_NUM_ERRORS); 
   
  /* Obtain the error correction threshold of the receiver. */ 
  rx_objid = op_td_get_int (pkptr, OPC_TDA_RA_RX_OBJID); 
  node_objid = op_topo_parent(rx_objid); 
 
  /* RS code */ 
  op_ima_obj_attr_get(node_objid, "ecc_n", &ecc_n); 
  op_ima_obj_attr_get(node_objid, "ecc_k", &ecc_k); 
  ecc_t = (ecc_n - ecc_k) / 2; 
   
  if (ecc_n > 0)  
   threshold = ecc_t * ((double)pklen / (double)ecc_n); 
  else 
   threshold = 0; 
   
  /* Turbo code */ 
  pe = op_td_get_dbl (pkptr, OPC_TDA_RA_BER); 
  op_ima_obj_attr_get(node_objid, "turbo ber", &turbo_ber); 
    
   
  if (pe < turbo_ber) 
   threshold = num_errs; 
     
  /* Test if bit errors exceed threshold. */ 
  if (pklen == 0) 
   accept = OPC_TRUE; 
  else 
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   accept = (num_errs <= threshold) ? OPC_TRUE : 
OPC_FALSE; 
  } 
 
 /* Place flag indicating accept/reject in the data packet control 
field. */ 
 op_pk_nfd_set (pkptr, "Accept", accept); 
     
 /* Force the simulation kernel to always accpet the packet. The  
  */ 
 /* actual discarding of the packet will take place at the MAC 
layer of the  */ 
 /* receiving node receiving this packet.                                  
 */ 
 op_td_set_int (pkptr, OPC_TDA_RA_PK_ACCEPT, OPC_TRUE); 
 
 /* In either case the receiver channel is no longer locked. */ 
 rx_ch_obid = op_td_get_int (pkptr, OPC_TDA_RA_RX_CH_OBJID); 
 op_ima_obj_attr_set (rx_ch_obid, "signal lock", 
OPC_BOOLINT_DISABLED); 
 
 
 FOUT; 
 } 


