Generating Internet Topologies with Highly Optimized
Tolerance

Hao Chen and Wei Liu
April 16, 2002

1 Abstract

Due to the complexity of today’s network, simulation tools are often used to evaluate new systems
and protocols. In order to better analyze the performance, the topology models used in these
tools are required to be as realistic as possible. Recent empirical studies have shown that Internet
topologies exhibit power law statistics [6]. One theory which tries to explain this phenomenon
is “self organized criticality” (SOC) [2]. Jean Carlson and John Doyle proposed another theory,
called highly optimized tolerance (HOT) [4], which is a new mechanism used to generate power
law distributions. Compared with SOC, HOT focuses on systems which are optimized, either
through natural selection or engineering design, to provide robust performance despite uncertain
environments. In this project, we will implement a topology generator based on HOT theory and
verify that HOT can indeed generate topology with power-law distributions.

2 Introduction

Today simulation tools are widely used to test network protocols. These tools need network
topologies as input data. In order to better evaluate the performance, the topology models used in
these tools are required to be as realistic as possible. However, due to the lack of any centralized
administration, it is very difficult to obtain complete topological descriptions of even a modest
portion of the Internet. In fact, for reasons of security, some administrations take great effort to
hide the topology of their networks from outside world. Modeling Internet topologies has become
a major challenge for network researchers.

The Internet topology is usually modeled by an undirected graph where the network devices
are modeled by the nodes of the graph and the communication links are modeled by the edges
of the graph. One of the earliest and most famous topology models was designed by Waxman in
1988 [8]. This generator is a variant of the classical Erdos-Renyi random graph [5]; the nodes are
randomly placed on an Euclidean plane and the links between each pair of nodes are created with
probabilities calculated biased on the Euclidean distance between the link endpoints.

In a recent paper, Faloutsos et al. [6] discovered that the Internet topologies exhibit power laws
of the form y o ¢, where « is a constant, £ and y are the measures of interest, and o stands for

“proportional to ”. This discovery has brought the arrival of a new kind of topology model, the
power law model. As the name suggests, this model tries to use power laws to generate network
topologies.

While various evidences showed the existence of power law statistics in the network topologies,
it is not clear that what are the causes of this property. One theory which tries to explain this phe-
nomenon is “self organized criticality” (SOC). Albert-Laszlo Barabasi and Reka Albert explained
in their paper [2] that the scale free power law distributions found in many large networks are due
to the following reasons (i) networks expand continuously by the addition of new vertices, and (ii)
new vertices attach preferentially to sites that are already well connected. However, Chen et al [3]
re-examined experimental results in BA model and found that the historical data does not support
the results in [2]. At the end, they pointed out that criticality might not be the only possible origin
of pow law distributions. The Internet topology might have developed over time following a very
different set of growth processes, i.e., the Highly Optimized Tolerance (HOT) [4].

In this project, we will generate the WWW Web site topology using H.O.T. model and verify
that H.O.T. model can indeed generate topology with power law distributions. This report is
organized as follows: in section 3, we will briefly introduce the concept of the Highly Optimized
Tolerance (HOT) model. In section 4, we will present the procedure of generating the Internet
topology using HOT. In section 5, we will show some experimental results and finally, in section 6,
we will summarize the project and point out the possible future work.

3 The Highly Optimized Tolerance (HOT) Model

The HOT model was introduced by Jean Carlson and John Doyle [4]. It was motivated by
biological organisms and advanced engineering technologies. The HOT model focuses on systems
which are optimized, either through natural selection or engineering design, to provide robust
performance despite uncertain environments. Today’s Internet is a prime example of a large-scale,
highly engineered, yet highly complex system. This makes it a good candidate for analysis as a
HOT system. The characteristic features of HOT systems include: (1) high efficiency, performance,
and robustness to designed-for uncertainties, (2) hypersensitivity to design flaws and unanticipated
perturbations, (3) nongeneric, specialized, structured configurations, and (4) power laws. These
features arise as a consequence of optimizing a “design” objective in the presence of uncertainty
and specified constrains.

The simplest example of HOT is Probability-Loss-Resource (PLR) problem. In the PLR prob-
lem, resources are allocated to limit average loss. For a set of abstract events with index i,
1 < i < N, such as the occurrence of source symbols (DC), file accesses (WWW), and fire ig-
nition and propagation (FF), we assume there is a relationship I; = f(r;), with [; oc r; g , which
describes how the allocation of resources r; limits the sizes/cost of events, I;. Each event is assumed
to be independent and initiated with probability p; during some time interval of observation. There
is an overall constraint on the resource availability: >~ 7; < R. The objective is to minimize the
expected cost

J={>_pili | li= f(r:),Y_ri <R} (1)

Assuming that the one-parameter resource vs loss function /; = fg(r;) is of the form:

- log(ri), :6 = 0;

fﬂ(”):{ (r;?—1), >0 @)

The optimal solution minimizing J [equation (1) and (2)] is obtained using Lagrange multipliers
and is given by:

1

-1
1
ri = Rp; " (Zpﬁﬂ) (3)
j

and from (2) we get

- log(Rlpi) + log(zjlpj), B=0:
Y Sl@®BeT) AP -], B>

reverting (4) yields the (noncumulative) probabilities of events of size [;

where

Note that ¢; and co can be treated as two arbitrary constants. As we can see, after the
optimization, the relationship between p; and /; exhibits power-law statistics. In the next section,
we will simulate the optimization process and verify the conjecture that heavy-tailed distributions
result naturally from the tradeoff between the design objective and limited resources.

4 Generating Internet Topology Using HOT

Zhu et al. [9] proposed an algorithm of generating the WWW graph using HOT model. In
this model, the Web topology is modeled by an undirected graph in which nodes represent Web
pages and the edge between node ¢ and node j represents the hyperlink between page V; and V;.
The design objective in the Web layout model is to minimize the delay in download times and
latency. Given a distribution of user interest, and a constraint on the total number of files, the
average download times can be minimized by having the high hits be small files, allowing larger
files for rarely requested portions of the Web site. The initial graph was generated using random
graph model and the user navigation pattern was modeled as Markov chains. The optimization
was done through a sequence of file splitting and merging processes, with a tradeoff between ease
of navigation, which would favor fewer files, and having small files to download.

4.1 Generating Random Graph

The initial graph was generated using Waxman’s random graph model. In this method, a (fixed)
set of nodes is uniformly distributed in a 10 x 10 plane at random. A link is added between each
pair of nodes with a probability given by:

where « and 3 are parameters in (0,1), d is the Euclidean distance (in the plane) between nodes
u and v and L is the maximum distance between any two nodes in the plane.

4.2 The Markov Chain Model

A discrete-time Markov chain is used to model the behavior of network traffic, where all the
nodes in the graph are considered as possible states for the random process, and the probability
of going from node V; to node V; defines the transition probability p;;. Let M = [p;;] be the
transition probability matrix, then M"™ = [p;;(n)] gives the n-step transition probabilities. The
following theorem is from the standard theory of Markov chains.

Theorem 4.1 [7] For an irreducible, aperiodic, and positive recurrent Markov chain,

lim p;j(n) = pj, forallj,

n—oo

Theorem 4.1 tells us that, after a long time, the Markov chain is going to settles down, and
(independent of the initial state) there is a probability P; that we are in state j. The vector
P =[p; py ... ps]is often called the steady-state distribution.

For a given chain with transition probability matrix M = [p;;], the steady-state distribution p;s
can be found by solving the following equations:

Pi =Y Pi * Djis (6)
i

sz' =1 (7)

The initial transition probability matrix is set up as follows: the page Vi is set as the entry
point of every user’s navigation, that is, we assume that a user starts from the front page and
then proceeds to subsequent pages through hyperlinks. After downloading page V;, the user follows
hyperlinks E;; to visit page V; with probability p;;. All p;1(i > 1) are viewed as probability of
exiting the Web site from page V;, which means that the user either stops navigating or goes on
to other Web sites. For each node V; simply assume that there is one common exiting probability
pe except for Vi, i.e., pj1 = pe(? > 1). The remaining probability 1 — p, will be evenly distributed
among all the outgoing links E;;(j > 1). Set p;; = 0 if there is no link between nodes V; and Vj.
Note that the particular Markov chains defined here do not have self-loops, i.e. p; = 0. After

uniquely determining the entire transition probability matrix M, the access probabilities p; can be
computed through solving equation (6) and (7).

4.3 Optimization through Splitting and Merging

The heuristic optimization algorithm goes as follows:

e Splitting Pick node V;, with the highest p;l;. Cut the node in the middle to produce two new
nodes Vi and Vj» with file size Iy = l;» = [;/2. Any outgoing link E;; becomes E;; and E;n;
without changing the outgoing probabilities, i.e., py; = p;yv; = p;;. Meanwhile, any incoming
link E;; becomes E;y and Ej» with half incoming probability, i.e., pji# = pji» = pji/2. The
access probability vector p remains almost the same except that py = p;» = p;/2.

e Merging After splitting one node, find node Vi, with the lowest p; and its least popular
neighbor Vi,,. Combine them into one node Vi with file size I, = Ik + lk4x- Copy all the
outgoing links and incoming links for Vi, and Vi, into the new node, then merge redundant
links and combine probabilities, i.e., pjr = Djks +Pjkxxr, and pgj = pk*’i@k** P+ pkfi}*k**pk**j'
The self-loops produced by merging should be removed and all py;, 7 # k need to be adjusted
appropriately so that each row of M still sums up to 1. Recompute the access probability
vector p.

e Iteration Update J =) ,p;l;. Repeat the above splitting-merging procedure until the
improvement of J is within a certain tolerance level or the number of iterations reaches a
present maximum.

The flow chart of HOT simulation is shown in figure 4.1.

Generate initial topology
using Waxman Model

h 4
Setup the user navigation pattern based on the initia graph:
i)setp il=p_e andset p_ij = p_e/(degree of V_i)

i) set p_ii =0,

iii) if thereisno link betweenV_iandV_j, setp ij =0

%

Calculate n—step transition
probabilities for Vi

i

Let thefilesizel i be
uniformly distributed
between [I_max, |_min]

Calculate total cost
sum(p_i * 1_i)

Splitting: pick page V_i* withthe highest p_i |_i,

i). cut and produce two new page V_i’ and V_i" withsizel i’ =1_i" =1_i/2.

ii). Any outgoing link E_ij becomes E_i’j and E_i"j without changing the
outgoing probability, i.ep_i’'j = p_i"j = p_ij

iii). Any incoming link E_ji becomes E_ji’ and E_ji" with half incoming
probability, i.e.p ji' =p ji"=p ji/ 2

4
Merging: pick page V_k* with the lowest p_k and its |east popular
neighbor V_k**, combine them into one page V_k with
i). filesizel_k=1_k* +1_k**.
ii). Copy al the outgoing links and combine probabilities, .
iii). Remove self loop
iv). Adjust probabilities so that each row of M still sumsupto 1.

Figure 4.1 Flow chart for HOT simulation

6

5 Experimental Results

The simulation process is programmed using Java programming language. After user specifies
the number of nodes required in the graph, the program generates the random graph using Waxman
model. The random topology is going to be optimized using HOT mechanism and more specifically
through a sequence of splitting and merging operations. And finally, after the total cost reaches
the steady state, i.e., stop decreasing, the program stops. The output of the program include (i)
the topology graph after optimization, (ii) the total cost at each iteration and (iii) the cumulative
frequencies vs. file sizes before and after the optimization.

The simulation results with N, .43 = 100 are shown in figure 5.1, 5.2, 5.3, and 5.4. These results
are very similar to the results given in [9]. Figure 5.3 illustrates the effectiveness of the splitting-
merging process in reducing the cost J iteration by iteration. The improvement is quite dramatic
at the beginning, then it slows down and finally reaches some steady state after 20 iterations.

In order to verify the relationship between cumulative frequencies and file sizes is power law
distribution, i.e.

P,L-t = Ci(li + Cz)_l/ﬁ (8)

We calculate the logarithms of both sides of (8)

log(P!) = log(c1(l; + c2) " '/7)

log(P;) = log(c1) + (—1/1) log(l; + ¢2) (9)

Let y = log(P!), z = log(l; + c2), a = log(c1) and b= —1/f, (9) becomes

y=a+bz (10)

as we can see, (10) is a linear equation with variables z, y and constants a, b, in which a
represents the y-interception and b represents the slop. To determine whether the relationship
between two sets of data is linear, we can apply a statistical treatment known as linear regression

1.

Given two sets of data (z;,y;) with n data points, the slope and y-interception can be determined
using the following:

y_ X)) ~ToTy
ny(a?) — (X x)?

_xy—byz
a==2 "4

n

It is also possible to determine the correlation coefficient, r, which gives us a measure of the
reliability of the linear relationship between the z and y values. A value of » = 1 indicates an exact
linear relationship between x and y. Value of r close to 1 indicates excellent linear reliability. If the
correlation coefficient is relatively far away from 1, the predictions based on the linear relationship,
y = mz + b, will be less reliable. The correlation coefficient, r, can be determined by

_ ny(ey) -y ¥y
VInX(@?) — (2 2)%lln %) — (X v)?]

r

Figure 5.4 shows plot of file sizes vs the cumulative frequencies. We applied the linear regression
processes on both initial data sets generated by Waxman model and the data sets after the HOT
optimization. The resulting model (the gray line in figure 5.4) with ¢l = 1.034 x 10°, ¢2 = 318.28,
B = 0.41 well approximates the simulation results. For initial random graph the correlation coeffi-
cient is 0.67, which means that the relationship between log scale values of file sizes vs cumulative
frequencies is not quite linear, so the relationship between original data, i.e., file sizes vs cumula-
tive frequencies is not power law. After the optimization, the correlation coefficient is 0.96, which
verifies that the distribution after the optimization displays power law statistics.

Graph model of random Web Sites

Figure5.1 Initial random topology generated by Waxman model.

Graph model of random Web Sites

107

Figure 5.2 Theinternet topology after the optimization.

il IZI3 Cost functien J vs. no of iterations

B&[]
54 .
S 1
521 iy
511 .
Oy

44
481]
471 .
46 . .
451 *s .

4.4 LTS .
st te0r000000000

10 15 20 25 30
no. of iterations

=
o

Figure 5.3 Cost function Jvs. no of iterations,
N_node = 100.

Probability vs. file size

0-4;.._._,,,_* Before »
1200 g After
Fitted «
80 |)
1a-01 L d
P
8.0
a0z |)
S0 L)
B
I’ 1 1 i
50 el 50 fedd

Figure 5.4 File size vs. cumulative probability for Web file transfers
before optimization and after 20 iterations, N_node = 100.

10

6

Conclusions and future work

In this project, we verified that HOT mechanism can indeed generate power law distributions.

However, the parameters used in this project are purely random. Verifying the truthfulness of this
simulation model against the real Web site topology is still open to research.

References

[1] http://physicsnt.clemson.edu/chriso/tutorials/regression/. April 2002.

[2] R. Albert and A. L Barabasi. “Topology of Evolving Networks: Local Events and Universality”.
Physical Review Letters, 85, 2000.

[3] Q. Chen, H. Chang, R. Govindan, S. Jamin, S. J. Shenker, and W. Willinger. “The Origin of
Power Laws in Internet Topologies Revisited”. Proc. of IEEE Infocom, 2002.

[4] J. Doyle and J. M. Carlson. “Highly Optimized Tolerance: A Mechanism for Power-Laws in
Designed Systems. Physical Review Letters, 1999.

[5] P. Erdos and A. Renyi. “On the Evolution of Random Graphs”. Publications of the Mathematical
Institute of the Hungarian Academy of Sciences, 5, 1960.

[6] M. Faloutsos, P. Faloutsos, and C. Faloutsos. “On Power-Law Relationships of the Internet
Topology”. In ACM SIGCOMM, Cambridge, MA, September 1999.

[7] A. Leon-Garcia. Probability and Random Processes for Electrical Engineering. Addison-Wesley,
1994.

[8] B. M. Waxman. “Routing of Multipoint Connection”. IEEE Journal of Selected Areas in
Communication, 6(9), December 1988.

[9] X. Zhu, J. Yu, and J. Doyle. “Heavy-Tailed Distributions, Generalized Source Coding and

Optimal Web Layout Design”. Technical Memorandu CIT CDS 00-001, California Institute of
Technology, Pasadena, CA 91125, 2000.

11

