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Abstract 
 
As technology advances, the demand for new services like real-time applications has increased 
dramatically, creating a constant push-and-pull effect between real-time applications and higher 
bandwidth [12].  As transmission of large amounts of traffic increases [13], so too does the need 
to use available bandwidth more efficiently. 
 
Real-time Transport Protocol (RTP) provides a mechanism for sending real-time data such as 
video and multimedia.  Compressing the RTP data packets and coupling the result with 
Asynchronous Transfer Mode (ATM) technology provides a means to deliver real-time 
application data over a network. 
 
This project is focused on modeling the compression of RTP/UDP/IP packets and their 
transmission over an ATM network, based on a paper “Encapsulation of Real-Time Data 
Including RTP Streams over ATM” by AT&T Labs [6].  The resulting OPNET model generates 
user-defined RTP/UDP/IP packets, performs header compression as described in RFC 1889 [3], 
and modifies the ATM encapsulation to compensate for omitted capabilities and to provide 
additional information. 
 
Successful modeling of the RTP component and basic ATM functionality (modified from 
existing OPNET models) provide a good basis on which a complete implementation of the 
paper's proposed work can be achieved with a few additional enhancements. 
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1. Abbreviations 
 

Abbreviation Definition 
AAL ATM Adaptation Layer 
AAL5 ATM Adaptation Layer Type 5 
ATM Asynchronous Transfer Mode 
CID (Session) Context Identification 
CPCS Common Part Convergence Sublayer 
CRC Cyclic Redundancy Check 
IHL IP Header Length 
IP Internet Protocol 
IPv4 IP version 4 
ITU International Telecommunications Union 
MBZ Must Be Zero 
MSB Most Significant Bit 
PDU Protocol Data Unit 
PPP Point-to-Point Protocol 
RTP Real-Time Transport Protocol 
SAP Service Access Point 
SAR Segmentation and Reassembly 
SDU Service Data Unit 
SEAL Simple and Efficient Adaptation Layer 
SIP Session Initiation Protocol 
SSRC Synchronization Source 
TOS Type Of Service 
TTL Time To Live 
UNI User-to-Network Interface 
VC Virtual Channel 
VCI Virtual Channel Identifier 
VPI Virtual Path Identifier 
VoIP Voice-over-IP 
UDP User Datagram Protocol 
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2. Introduction 
 
Prompted by an age of multimedia, considerable efforts have been expended on researching the 
ability to send audio and video real-time media efficiently over different types of networks.  The 
concepts of sending real-time media over IP with RTP and streaming such media over ATM are 
far from new; however the implications of these technologies are important when considering the 
increased emergence of real-time audio and video applications.  Large amounts of real-time 
traffic, as well as other bandwidth-consuming traffic such as file transfers demand the 
investigation of bandwidth conservation and efficiency.  Through certain techniques, RTP 
packets sent over UDP/IP can be compressed to conserve a considerable amount of bandwidth.  
These compressed packets can be encapsulated and transported to the destination over a network 
such as ATM. 
 

2.1 Background Material 
 
Real-Time Transfer Protocol and Asynchronous Transfer Mode will be explored in detail, as they 
are the underlying standards and protocols in our project.  This section describes the basics of 
each of these standards to provide the reader with a bit of technical understanding before 
proceeding. 
 

2.1.1 Real-Time Transport Protocol 
 
Real-Time Transport Protocol (RTP) is an Internet standard used for conveying real-time 
media streams between interactive participants, and is specified in RFC 1889.  This protocol 
typically runs end-to-end on top of User Datagram Protocol (UDP) over Internet Protocol (IP), 
and has received a significant amount of industry support [14].  RTP neither addresses the 
reservation of resources, nor does it guarantee quality-of-service and timely delivery [1]. 
 
Applications using Real-Time Transport Protocol include Voice-over-IP (VoIP) telephony, 
multimedia conferencing, which includes audio, video, and data streaming, and video and 
audio mixers and translators (see Glossary). 
 
RTP packets are sent within an RTP session, defined as an association among a set of 
participants communicating with RTP.  These associations may be set-up through various 
protocols (see Section 4.3.1), and can consist of multiple session contexts, which are defined 
uniquely by the source and destination IP addresses, source and destination UDP ports, and 
RTP synchronization source (SSRC) [3]. 
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2.1.1.1 RTP Packet Format 

 
The packet format for RTP is illustrated in Figure 1, where V is the RTP version number, P is 
the padding flag, X is an extension bit, CC is the number of contribution sources, and M is a 
first and last packet marker. 
 

Timestamp

Contributing Source (CSRC) Identifiers [ optional ]

Synchronization Source (SSRC) Identifier

X CC Sequence NumberV P M Payload Type

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1 2 30

... RTP Payload ...  
Figure 1: RTP Packet Format 

 
For more detailed information about the RTP header fields and their use, refer to RFC 1889 
[1]. 
 
A technique for compressing the RTP, UDP, and IP headers into a single header has been 
devised, removing the transfer of extraneous and repetitive header information.  While the 
motivation to compress RTP packets was spawned from the desire to send audio and video 
over the low-speed connections of 14.4 and 28.8 kbps modems [3], it is universally applicable 
to conserve bandwidth over any network, particularly when RTP payloads are small.  This 
compression technique is capable, in many instances, of compressing a 40-byte RTP/UDP/IP 
packet header into a 2-byte packet header.  The technique is extracted from RFC 2508 [3] and 
will be explained in Section 3.1 and implemented in an OPNET model in Section 4.1.3. 
 

2.1.2 Asynchronous Transfer Mode (ATM) 
 
Asynchronous Transfer Mode (ATM) is a widely-deployed network technology, standardized 
by the International Telecommunications Union- Telecommunication Standardization Sector 
(ITU-T), described in Recommendation I.361 [9].  Its cell relay technology is used for the 
high-speed communication for the transmission of voice, video, data and images. 
 

2.1.2.1 ATM Adaptation Layer Type 5 

 
The ATM adaptation layer (AAL) enhances the service provided by ATM to support functions 
required by the next higher layer.  Among the functions provided by the AAL are mapping 
between ATM and higher layers, and segmentation of data into 48-byte frames. 
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Type 5 AAL (AAL5), described in ITU-T Recommendation I.363.5 [8], is the most common 
AAL used for data and supports both connection-oriented and connectionless data [4].  AAL5 
is also known as the simple and efficient adaptation layer (SEAL) since very little overhead is 
added to the user data.  This type of AAL supports the non-assured transmission of user data 
frames: it assumes that higher layers will provide error recovery. 
 

2.1.2.2 Framework of AAL5 

 
User data is passed from higher (application) layers to the ATM adaptation layer in units of 
frames or AAL service data units (SDUs).  Between the AAL and the ATM service access 
points (SAPs), the data frame passes through a number of sublayers that perform various 
operations. 
 

AAL SAP

ATM SAP

Service Specific CS
(SSCS)

Common Part CS
(CPCS)

SAR
SA

R
C

S

C
om

m
on

 P
ar

tAA
L

Primitives
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Figure 2: Structure of Type 5 AAL 
 
As seen in Figure 2, the AAL5 framework breaks down into a convergence sublayer (CS) and 
segmentation and reassembly sublayer (SAR).  The convergence sublayer further divides into 
a service-specific convergence sublayer (SSCS) and a common part convergence sublayer 
(CPCS).  Each layer is responsible for certain functions: SSCS protocols will support specific 
AAL user services if desired; the CPCS appends a trailer to the user data; and the SAR 
sublayer separates the data and CPCS trailer into 48-byte cells, ready for ATM encapsulation. 
 
Defining the SSCS protocol allows different AAL user services to be supported.  Without any 
definition, the SSCS simply maps the AAL-SDU to the CPCS-SDU and vice versa. 
 
As suggested by its name, the CPCS is common to AAL5 implementation, regardless of what 
SSCS protocols may be implemented.  During the encapsulation process, the CPCS appends 2 
fields: a variable-length padding field (PAD) and an 8-byte trailer to form the CPCS protocol 
data unit (PDU) shown in Figure 3.  During decapsulation, the CPCS-PDU is stripped of the 
trailer and padding. 
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CPCS-PDU Payload (CPCS-SDU from SSCS) Padding CPCS-PDU Trailer

8 bytes0-47 bytes40 bytes

CRCLengthCPI

4 bytes1 byte 2 bytes1 byte

CPCS-UU

CPCS-PDU Trailer

CPCS-PDU  
Figure 3: CPCS-PDU Format for AAL5 

 
Like the CPCS, the SAR sublayer is also common to the AAL, regardless of the higher layer 
applications. This sublayer’s concern is segmenting the SAR-SDU (the CPCS-PDU) into 48-
byte data units, the last of which contains the CPCS-PDU trailer.  The 48-byte SAR-PDUs are 
ready for ATM encapsulation. 
 
When the ATM layer receives the 48-byte data cells, it prepends a 5-byte header.  This ATM 
header designates the channel through which the packet will navigate its way through the 
network.  Included in the header information are the virtual path identifier (VPI) and the 
virtual channel identifier (VCI). 
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2.2 Project Objective and Scope 
 
In this project, we will simulate a simple network for bi-directionally transferring RTP packets 
between two packet generators/sinks using the OPNET modeling tools.  Intermediate network 
elements will perform RTP/UDP/IP compression and decompression, as described by RFC 2508 
[3], and encapsulate RTP/UDP/IP compressed or uncompressed packets into ATM cells to be 
transferred over a virtual channel, as described in the ATM Forum contribution SAA_98-0139.  
The end-to-end duplex system is depicted in Figure 4. 
 
 

RTP/UDP/IP
Generator/

Sink

RTP/UDP/IP
Header

Compressor/
Decompressor

RTP-ATM
encapsulator/
decapsulator

RTP/UDP/IP
Generator/

Sink

RTP/UDP/IP
Header

Compressor/
Decompressor

RTP-ATM
encapsulator/
decapsulator

ATM Network

IP Network

 
Figure 4: RTP Stream over AAL5 Network Overview 

 
Our main objective is to correctly model the algorithms for compression and decompression of 
RTP/UDP/IP headers as well as the ATM encapsulation and decapsulation of the RTP streams. 
 
In a realistic network environment, there are many factors present that would complicate our 
model and require a large amount of additional consideration and effort.  To help us focus on our 
objectives, we have made additional assumptions, which are described in more detail in Section 
4.3. 
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3. Theory and Methodology 
 
This section describes the technique used to compress RTP/UDP/IP headers, and the algorithm 
used to encapsulate the compressed packets into ATM AAL5 cells. 
 

3.1 RTP Header Compression/Decompression 
 
The packet header compression technique used in our project, as described in [3], is based upon a 
similar technique used to compress TCP/IP headers.  The technique utilizes the fact that most 
header fields in the TCP and IP encapsulation stay constant or increment by a fixed amount [10].  
In the same light, UDP and RTP header fields also exhibit zero or generally fixed first-order 
differences.  This section will highlight the general algorithm taken to compress and decompress 
the RTP/UDP/IP packet headers.  For a more detailed description of the compression intricacies, 
please refer to [3]. 
 

3.1.1 Method 
 
A typical RTP packet over IP is composed of the IP and UDP headers, shown in Figure 5 and 
Figure 6 respectively, as well as the RTP packet header in Figure 1.  Their relationship within 
the packet is illustrated in Figure 7. 
 

Identification

Options and Padding [ optional ]

Source IP Address

IHL Total LengthVersion TOS

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1 2 30

Fragment OffsetFlags

TTL Header ChecksumProtocol

Destination IP Address

... IP Payload ...  
Figure 5: IP Packet Format 

 

Destination PortSource Port

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1 2 30

ChecksumLength

... UDP Payload ...  
Figure 6: UDP Packet Format 
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IP PayloadIP Header

UDP PayloadUDP Header

RTP PayloadRTP Header

20 bytes

8 bytes

12 bytes

 
 

Figure 7: RTP/UDP/IP Packet Breakdown 
 
Within these RTP/UDP/IPv4 packet headers, only a certain number of fields are constantly 
changing, whilst the other fields never or rarely change.  Furthermore, many of changing 
fields increment by constants, a statistic that is taken advantage of in this compression 
technique. 
 
The header fields that constantly change are summarized in Table 1. 
 

Table 1: Changing IP, UDP, and RTP Fields 

Packet Format Field Name 
IP Packet Identification 

Total Length 
Header checksum 

UDP Length 
Checksum 

RTP Sequence Number 
Timestamp 
Marker 
CSRC Count 
CSRC List 

 
 
In the IPv4 header, the total length of the IP packet may be derived from the link layer, and 
error detection may rely on the error detection of the Layer 2. A requirement of the 
compression technique used in this project is that the link layer provides adequate error 
detection towards packet transfers.  The IPv4 packet ID is only used for IP fragmentation, but 
is transmitted for lossless compression. 
 
As with the IP case, the UDP header can also rely on the Layer 2 protocol to handle its length 
field.  The UDP checksum is transmitted for lossless compression, and will contain the value 
zero if it is not used. 
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The RTP header sequence number and timestamp fields usually change between packets, with 
the sequence number typically incrementing by one for each packet and the timestamp 
incrementing by a fixed duration depending on the payload carried (e.g. audio packets, video 
packets).  When set, the RTP marker (M) bit indicates that a packet is either the first or the 
last of an RTP stream.  Finally, if packets flow through an RTP mixer, then the CSRC list and 
CC count may also change. 
 
Amongst the identified changing fields, the IPv4 packet ID, RTP sequence number, and RTP 
timestamp fields are the most likely to change by a constant value (i.e. constant first-order 
difference, and second-order difference of zero).  If any of these fields should change by a new 
increment, the new first-order difference is sent with the compressed packet. 
 
An RTP session, as described in Section 2.1.1 may transmit RTP packets from several session 
contexts. Each session context is identified through a unique 8- or 16-bit context identifier 
(CID) depending on the number of contexts required.  Each packet, whether compressed or 
uncompressed, must carry the CID and 4-bit link sequence number that is used to detect 
packet loss. 
 
For IP version 4, a context shares the following information: 
 

� The full IP, UDP, and RTP headers last sent by the compressor or reconstructed by 
the decompressor 

� The first-order difference for the IPv4 ID field (default 1), RTP sequence number 
(default 1), and RTP timestamp field (default 0) 

� The last value of the 4-bit link sequence number 
 
Three packet formats are used between the header compressor and header decompressor, 
varying in degrees of compression: COMPRESSED_RTP, COMPRESSED_UDP, and 
FULL_HEADER (uncompressed). 
 

3.1.1.1 COMPRESSED_RTP Packet Format 

 
When each of the RTP, UDP, and IP packet headers may be compressed – such that the 
only fields that have changed are the IP identification, RTP timestamp, RTP sequence 
number, the RTP marker bit, and the RTP contributing sources – the COMPRESSED_RTP 
format is used.  This format is shown in Figure 8 with the required fields lightly shaded, 
and the optional fields in white. 
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MSB of CID
(if 16-bit CID)

Contributing Source (CSRC) Identifiers

"RANDOM" fields

I Link Seq

UDP Checksum

M TS

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
10

... RTP Payload ...

LSB of Session
Context ID

Delta IPv4 ID

Delta RTP TimestampDelta RTP Sequence

I' CCT'S'M'

RTP Header Extension

if 16-bit CID

if non-zero in context

if MSTI = 1111

if S or S' = 1 if T or T' = 1

if I or I' = 1

if encapsulated

if MSTI = 1111
and CC non-zero

if X set in context

 
Figure 8: COMPRESSED_RTP Packet Format 

 
The COMPRESSED_RTP format provides maximum compression, possibly reducing a 
40-byte RTP/UDP/IP header to as few as 2 bytes.  Additional header fields are added if the 
RTP session uses 16-bit context identifiers, the UDP checksum, or if either of the RTP 
sequence number, RTP timestamp, IP identification, or CSRCs have changed.  The S, T, I, 
and MSTI (4-bits together) flags indicate whether or not these additional first-order 
differential fields are required. 
 
When using the COMPRESSED_RTP packet format, the original packet shown in Figure 7 
is reduced to the packet illustrated in Figure 9. 
 

RTP PayloadCompressed
RTP Header

12 bytes

 
Figure 9: Compressed RTP Packet 

 

3.1.1.2 COMPRESSED_UDP Packet Format 

 
The COMPRESSED_UDP format is used when an RTP field that normally stays constant 
undergoes a change and the RTP header cannot be compressed.  In this case, the full RTP 
header can be carried in the payload of the COMPRESSED_UDP.  This packet follows the 
format shown in Figure 10. 
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MSB of CID
(if 16-bit CID)

"RANDOM" fields

I Link Seq

UDP Checksum

0 00

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
10

... UDP Payload ...
(which may be RTP)

LSB of Session
Context ID

Delta IPv4 ID

if 16-bit CID

if non-zero in context

if I or I' = 1

if encapsulated

 
Figure 10: COMPRESSED_UDP Packet Format 

 
When the COMPRESSED_UDP packet format is used, the original packet breakdown 
shown in Figure 7 is reduced to the packet illustrated in Figure 11. 
 

UDP PayloadCompressed
UDP / IP Header

RTP PayloadUncompressed
RTP Header

8 bytes

12 bytes

 
Figure 11: Compressed RTP Packet 

 
 

3.1.1.3 FULL_HEADER Packet Format 

 
This uncompressed format is the same as that of the original RTP/UDP/IPv4 packet, with 
the IP total length and UDP length fields used to carry the context identifier and link 
sequence values.  Figure 12 and Figure 13 show the IP and UDP length fields for session 
contexts with 8-bit and 16-bit CIDs respectively. 
 

0 1 Generation

0 link seq

CID (8-bit)IP Total Length

UDP Length

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
10

 
Figure 12: IP and UDP Length Fields in FULL_HEADER (for 8-bit CID) 

 
 



 Transportation of an RTP Packet Stream over an AAL5 Backplane 

 Theory and Methodology 16

1 1 Generation 0 link seq

CID (16-bit)

IP Total Length

UDP Length

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
10

 
Figure 13: IP and UDP Length Fields in FULL_HEADER (for 16-bit CID) 

 
 
A FULL_HEADER packet is sent in two scenarios: as the first packet of a session context, 
and in the infrequent case where neither the UDP or IP headers can be compressed. 
 
As the first packet of a session context, the RTP, UDP, and IP headers are stored by the 
compressor and decompressor; the delta IPv4 ID, delta RTP sequence number, and delta 
RTP timestamp are reset to their defaults (1, 1, 0 respectively); and the link sequence for 
this new context is set to 0.  Thereafter, when a FULL_HEADER packet is transmitted, the 
RTP, UDP, and IP headers stored in the compressor and decompressor are refreshed, and 
the delta values are reset to their defaults. 
 
Although this packet format is uncompressed, for the remainder of this document, the 
FULL_HEADER packet format will be included in the “compressed packet formats”. 
 
 

In a physical system, both the RTP/UDP/IP header compressor and decompressor must store 
context information about the RTP streams it is sending or receiving, as depicted in Figure 14.  
These context states are used by the compressor to determine the level of compression that 
can be done on the headers, as well as which additional fields are required to communicate 
changing first-order differences.  The decompressor uses the context states in conjunction 
with the incoming compressed packet to reconstruct the original packet. 
 
 

Packet
Generator

Packet
Sink

Header
Decompressor

RTP/UDP/IPRTP/UDP/IP Compressed RTP

Header
Compressor

RTP seq num

IP ident

RTP header

UDP header

IP header

IP ident

RTP header

UDP header

IP header

RTP timestamp

RTP seq num

RTP timestamp

last link seq sent last link seq rcv'd

 
 

Figure 14: Context Information Storage in Compressor and Decompressor 
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3.1.2 Flow Chart 
 
The header compressor is responsible for determining the amount of compression that may be 
done on incoming uncompressed RTP/UDP/IP packet headers.  In compressing the headers, 
the compressor also determines which additional fields are required for carrying first-order 
differential (delta) values. 
 
The header compressor follows the flowchart shown in Figure 15. 
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Start
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Context found?
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"last packet"
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Remove
Context from
Compressor
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Figure 15: Flowchart for RTP/UDP/IP Header Compressor 

 
The header decompressor accepts the incoming compressed packets from the compressor, 
creates new RTP/UDP/IP packets based upon the received packets and the delta fields, 
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updates the context state for that particular CID, and sends off the reconstructed packet to the 
IP destination. 
 
The header decompressor follows the flow chart shown in Figure 16. 
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Figure 16: Flowchart for RTP/UDP/IP Header Decompressor 
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3.2 ATM Encapsulation/Decapsulation 
 
Packets from the RTP/UDP/IP header compressor/decompressor must be transported over a 
network to the destination host.  This transmission is performed by an ATM network.  The ATM 
device at the User-to-Network Interface (UNI) must support RTP/UDP/IP packet formats, and 
recognize the other two formats associated with the RTP compression scheme used.  The unit 
responsible for the ATM layer encapsulation and decapsulation of these RTP (compressed and 
uncompressed) packets will be referred to as the ATM module. 
 
To avoid implementing an entirely new ATM adaptation layer, an existing one was chosen to 
best suit the needs of transporting real-time data over ATM.  Although an AAL1 encapsulated 
cell includes a 3-bit sequence number and a 4-bit checksum, allowing 47 bytes of payload, it is 
more suited to PBX-PBX communication [6]. 
 
The AAL5 trailer lacks a sequence number field that would be much desired for packet loss and 
mis-ordering detection, but the CPCS-UU byte is available for transparently transferring 
information between users, so it has been customized to house an extension bit and a 7-bit 
sequence number field (see Figure 17).  The resulting Real-Time AAL5 encapsulation format 
was devised in Voice over ATM to the Desktop work [6].  Additionally, the length field permits 
variable length payloads such as RTP packets.  However, a 40-byte payload is preferred for 
optimization purposes: this payload can be transmitted in a single ATM cell. 
 

Payload (RTP/UDP/IP packet) AAL5 Trailer

40 bytes 8 bytes

4 bytes1 byte 2 bytes

7 bits1 bit

CRCLengthMBZCPCS-UU

1 byte

Seq #X

 
Figure 17: Real-Time AAL5 Encapsulation 

 

3.2.1 Method 
 
The assignment of AAL5 field values is based largely on field values extracted from the 
higher layer data packet.  As mentioned in the previous section, the CPCS User-to-User field 
in the AAL5 trailer was split into an extension bit and a 7-bit sequence number.  The AAL5 
sequence number takes on the value of the incoming IP packet’s 4-bit sequence number (right-
justified and left-padded with zeros). 
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If the AAL5 encapsulation discerns the SDU as an uncompressed packet (FULL_HEADER 
format, described in Section 3.1.1.3), the extension bit is assigned the value 1.  For either of 
the compressed packet formats – COMPRESSED_RTP (Figure 8) and COMPRESSED_UDP 
(Figure 10) – the extension bit takes on value 0. 
 
During the decapsulation process, the ATM module must also detect context state packets.  
When the receiving-end RTP layer detects a corrupted packet, or one whose link sequence 
number changed by more than 1 from the previous packet received (indicating a lost packet), a 
context state packet is sent to inform the source of the packet loss or corruption.  The ATM 
module on the receiving end must understand not to modify any field values from normal 
operation when the context state packet is sent; the packet should be passed to the AAL5 and 
ATM layers as is. 
 
An RTP session may contain more than one RTP stream (each with its own unique SSRC 
value), but does not have any field dedicated to identifying itself uniquely.  Thus, the ATM 
module cannot create or assign virtual circuits at the ATM UNI based on the RTP session to 
which a packet belongs.  Moreover, the source and destination IP addresses are not readily 
available in the compressed packet formats. 
 
To circumvent this issue, the ATM module keeps a list of RTP context ids in use, and all the 
information associated with that particular id (IP addresses, UDP ports, etc.).  This list allows 
the ATM module to look up the destination address for a packet without knowing the 
decompression scheme in use and to map the appropriate outgoing VC, as shown in Figure 18.  
At the receiving UNI, the ATM module refers to the CID list again to deliver the compressed 
packet to the correct IP address. 
 
 

ATM
Network

IP addr: 100.100.100.100
RTP session 1: port 100

    stream 1: CID=1
    stream 2: CID=4

RTP session 2: port 101
    stream 1: CID=2
    stream 2: CID=3

IP addr: 201.201.201.201
RTP session 2: port 201
    stream 1: CID=2
    stream 2: CID=3

VPI/VCI=0/32

CID=1 = destn=200.200.200.200
           => VC=0/32
CID=3 =  destn=201.201.201.201
           => VC=0/32

CID=1? => IP=200.200.200.200
CID=3? => IP=201.201.201.201

IP addr: 200.200.200.200
RTP session 1: port 200

    stream 1: CID=1
    stream 2: CID=4

 
 

Figure 18: Virtual Circuit Assignment for Multiple RTP Sessions 
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3.2.2 Flow Chart 
 
The flow charts of Figure 15 and Figure 16 show the logic followed by the ATM 
encapsulator/decapsulator. 
 

Clear AAL5
extension bit

Extract
destination IP

address

START
(Non-ATM cell arrival)

N Set AAL5
extension bit

Extract CID

END

AA
L5

 E
nc

ap
su

la
tio

n
A

TM
 E

nc
ap

su
la

tio
n

Y N

Segment frame
into 48-byte
data chunks

Context state
packet?

Compressed
packet?

Discard
(for now)

Extract link
sequence

Assign link
sequence to

AAL5 sequence

Find
corresponding
destination IP

address

Existing
CID?

N

Y

Y

Create new CID
entry in table; set
"new CID" flag

Assign destination
IP address

"new CID"
flag set?

Y
Set up VC

for new CID

N

Assign VC
to CID

Transmit packet
over network

 
Figure 19: Flowchart for ATM Encapsulator 
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Figure 20: Flowchart for ATM Decapsulator 
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4. OPNET Implementation 
 
Three main components constitute our end-to-end system: an RTP/UDP/IP generator and sink, an 
RTP/UDP/IP header compressor/decompressor, and an ATM encapsulator/decapsulator. 
 
The remaining sections of this project will describe our OPNET project, and the node and 
process models that construct these three components. 
 
A complete OPNET project would consists of the following elements: 

� 2 RTP/UDP/IP generators and sinks 
� 2 RTP/UDP/IP header compressor/decompressors 
� 2 ATM encapsulator/decapsulators 
� 2 ATM switches 

 
These network elements are logically arranged in the organization seen in Figure 21. 
 

 
Figure 21: OPNET Project 

 
This project can be regarded as two identical data paths, traveling in opposite directions.  Each 
data path is seen in Figure 22. 
 
 

Header
Compre-

ssion

ATM
Encap-
sulation

ATM
Switch 0

ATM
Decap-
sulation

Header
Decomp
-ssion

RTP
Sources

ATM
Switch 1

Packet
Sink

Header
Compre-

ssion

ATM
Encap-
sulation

ATM
Decap-
sulation

Header
Decomp
-ssion

RTP
Sources

Packet
Sink

 
Figure 22: Single Direction Data Path 

 
Each data path consists of three traffic sources, each sending a unique RTP/UDP/IP traffic stream 
to an aggregator.  The aggregator combines the packet streams from the three generators into a 
single point-to-point link, which is connected to the RTP/UDP/IP header compressor.  The 
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RTP/UDP/IP header compressor compresses the packet headers as necessary and sends each 
packet towards the ATM encapsulator.  Upon receiving the compressed packet, the ATM 
encapsulator encapsulates the packet into an ATM cell, and transmits the cell over a virtual 
channel to the ATM decapsulator through two ATM switches.  The decapsulator removes the 
compressed packet from the ATM cell and sends the packet to the RTP/UDP/IP header 
decompressor.  The decompressor reconstructs the packets based upon its stored context state 
information and transmits the uncompressed packet to the packet sink. 
 
The same data transfer process takes place in the opposite direction, using the counterparts of the 
same components used in the first direction of data transfer. 
 
Due to time constraints, our project was implemented in two separate subnetworks, which would 
be integrated together to form the end-to-end system shown in Figure 21.  The first subnetwork 
consists of the RTP stream generation, header compression, header decompression, and packet 
sink.  The second subnetwork includes the ATM encapsulation, switching, and decapsulation.  
These two subnetworks are described in Sections 4.1 and 4.2. 
 

4.1 RTP Subnetwork 
 
The RTP subnetwork handles all of the RTP-related responsibilities: generating traffic, 
compressing packets, decompressing packets, sinking and verifying the data.  The node model 
for this subnetwork is shown in Figure 23. 
 

 
Figure 23: RTP Subnetwork 

 

4.1.1 RTP Simple Sources 
 
Three RTP Simple Sources are used in each direction to simulate different RTP streams 
starting at different times, and sending a different number of packets (this will be discussed in 
further detail in the Verification section in 4.4). 
 
The RTP Simple Source process model is based on the predefined OPNET process model 
“simple_src”.  The process model of the RTP/UDP/IP Simple Source contains the same states 
and state transitions as the simple_src process model; however, modifications have been made 
to the packet generation code such that only RTP/UDP/IP packets are created, and that their 
header fields are filled with predefined values based upon those in a fixed array of packet 
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headers.  The header values have been selected to test the compression algorithm used in the 
RTP/UDP/IP header compressor (refer to Section 4.4 for more details about the header 
values). 
 

4.1.2 Aggregator and Sink 
 
The Aggregation and Sink Processor combines multiple RTP streams (from RTP Simple 
Sources) into a single output stream.  The xmt state is responsible for this aggregation.  The 
number of input streams is scalable, requiring only simple modifications to add new streams.  
This process model is also used for sinking packets that have been sent from the far end of our 
end-to-end system.  In the rcv state, packets are disassembled, and their header contents are 
stored in an array for verification purposes (see Section 4.4).  The process model for the 
Aggregator and Sink is shown in Figure 24. 
 

 
Figure 24: Aggregator and Sink Process Model 

 

4.1.3 Header Compressor/Decompressor 
 
The Header Compressor/Decompressor process model is shown in Figure 25.  The 
Compressor state handles incoming RTP/UDP/IP packets, compressing them to the degree 
possible before sending them off.  The Decompressor state receives compressed packets and 
reconstructs a packet with the full packet headers.  This process model contains two separate 
dynamic tables of context states to store information about the RTP streams sent/received by 
the compressor/decompressor. 
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Figure 25: Compressor/Decompressor Process Model 

 

4.2 ATM Subnetwork 
 
ATM has been in the network industry for many years now, and OPNET provides a complete 
model suite; therefore the ATM implementation portion started with an investigation of what 
models and features were available in ATM Model Suite. 
 
To concentrate on the focus of the project, the ATM network “cloud” was simplified to two 
switches connecting the user-to-network devices seen in Figure 26 below. 
 

 
Figure 26: ATM Subnetwork Components 

 

4.2.1 ATM Encapsulator/Decapsulator 
 
Normally, both the encapsulator and decapsulator would be contained within the ATM 
encapsulator/decapsulator unit.  However, to work on the functionality, they were left as 
separate components, to be integrated at a later time. 
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4.2.2 Encapsulator 
 
The uni_source node in Figure 27 is based on OPNET’s atm_uni_src_adv node, which 
generates raw unformatted packets, processes them through the AAL and ATM layers and 
transmits them over the network. 
 

 
Figure 27: ATM uni_source Node 

 
Instead of unformatted packets, the traffic generation function within uni_source node has 
been modified to generate traffic of the three packet formats produced by the RTP/UDP/IP 
header compressor: FULL_HEADER, COMPRESSED_UDP, COMPRESSED_RTP.  In 
order to simplify verification of the changes made at the AAL, simple field values are set such 
that outcome is predictable. 
 
For data packets coming into the ATM adaptation layer, the CPCS user-to-user indication is 
overridden, as described in Section 3.2.1.  This modification is accomplished in the 
ams_aal5_conn_v3 process model (Figure 28), a child process of ams_aal_disp_v3 (called 
from within the to_atm state “enter” execs).  Once created, a packet format cannot be 
changed, so the CPCS-UU is calculated and set to 
 

CPCS_UU = (extension_bit) * 128 + link_sequence 
 
so that the extension bit indicating a compressed or uncompressed packet resides in the most 
significant bit of the one-byte field.  The extension bit is determined by the incoming packet 
format, and the link sequence is extracted from its header fields.  The RTP session context 
identification is also collected at this layer.  For uncompressed RTP/UDP/IP packets, the IP 
packet’s length field and that of its encapsulated payload are used to store the CID and link 
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sequence number; these length fields are processed according to the formats for an 8-bit or 16-
bit CIDs, shown in Figure 12 and Figure 13, respectively.  While this portion has been 
implemented for both 8-bit and 16-bit CIDs, only the 8-bit CID is used in this project. 
 

 
Figure 28: ams_aal5_conn_v3 Process Model 

 
The CID was to determine the virtual channel on which to send the packet; however, due to 
various reasons outlined in Section 5.2 (Difficulties), the CID-to-VC mapping was not 
implemented. 
 

4.2.3 Decapsulator 
 
The uni_destn node shown in Figure 29 is based on OPNET’s atm_uni_dest_adv node, which 
sinks incoming packets, after their ATM header and AAL trailer have been removed and the 
segments reassembled. 
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Figure 29: Process Model for uni_destn Node 

 
Before sinking the packets (or, when fully integrated, passing the packets to the RTP/UDP/IP 
header decompressor), the destination node checks the link sequence number of the packet, 
noting if it has changed by more than one since the previous packet for that particular RTP 
stream (distinguished by the CID).  If the link sequence number has increased by more one, 
the occurrence is flagged, indicating a probable lost packet. 
 
Minor changes to this process model included verifying reception of the correct packet type 
and CPCS-UU field. 
 

4.3 Assumptions 
 
In order to keep focused on our objectives and to keep the scope of this project reasonable, we 
have made a number of assumptions with regards to the environment in which we intend to send 
our RTP/UDP/IP.  The assumptions described in this section are only those that we have made 
for the purposes of simplifying our project’s implementation in OPNET, and are not necessarily 
stated by the documents describing compression algorithm and ATM encapsulation (RFC 2508 
and ATM Forum/SAA-98-0139 respectively). 
 
Our assumptions include an already established RTP session between our RTP session endpoints, 
and ideal IP and ATM environments.  We also decided to begin with the use of only one RTP 
session, which may contain multiple RTP streams.  Lastly, we have made certain requirements 
on the packet characteristics and contents. 
 

4.3.1 Establishing RTP Sessions 
 
Before RTP stream packets are sent between users, an RTP session must be set up.  These 
sessions may be established through a number of protocols including Session Initiation 
Protocol (SIP) and H.323.  We also rely on the session-establishing protocol to terminate and 
teardown the session when it is no longer used. 
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SIP is an application-layer control protocol defined in RFC 2543 that can be used to establish, 
maintain, and terminate calls between two or more end points.  H.323 is an ITU standard that 
incorporates multiple protocols, including H.245 for negotiation and Registration Admission 
and Status (RAS) for session control [5]. 
 
As there is an ATM component to our network, we also assume that the appropriate VCs have 
been established in the ATM network to transport data between the ATM encapsulator and 
decapsulator, since these must already be set up in order for the RTP session to be established. 
 

4.3.2 Link Layer Requirements 
 
As mentioned in Section 3.1.1, the link layer must provide adequate error detection and must 
also be capable of indicating lengths of packets being sent via its protocol.  An example of 
acceptable error detection is the Point-to-Point Protocol’s (PPP’s) Cyclic Redundancy Check 
(CRC) as described in RFC 1661 [3]. 
 
These requirements are in place such that their respective fields may be excluded or replaced 
in the compressed packets. 
 
Because we are not dealing with the link layer in our simulation, the total packet lengths will 
be transmitted along with the packet between the two Header Compressors/Decompressors via 
an OPNET Interface Control Information (ICI).  The ICI will also contain the IP header 
checksum. 
 

4.3.3 Ideal Network Environment 
 
As a starting point, the network environment, in the IP and ATM domains, are assumed to be 
ideal.  This assumption includes, but is not limited to, the following: no dropped packets, no 
transmission errors, no packet collisions, and no delay of transmission. 
 

4.3.4 RTP Session and Streams 
 
We have decided that in order to prove the function of our end-to-end system, that we do not 
need more than one RTP session set up (see assumption stated in Section 4.6.1).  The RTP 
session will, however, have multiple RTP streams/contexts – identified by the source and 
destination IP addresses, UDP ports, and RTP SSRC. 
 
Our implementation also assumes that each RTP stream contains more than one packet, as the 
RTP Marker bit is used to indicate the first and last packets of the stream.  Having only one 
packet in a stream will cause confusion, as there will be no indication of the stream’s end.  We 
believe that this is a fair assumption in the practical world as well. 
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4.3.5 Packet and Payload 
 
We have assumed that only the IP version 4 protocol will be used.  Future work may include 
incorporating IPv6 header compression into our process model.  While the ATM 
Encapsulator/Decapsulator implementation allows it, the RTP Compressor/Decompressor 
assumes that only one IP header is present – as opposed to having IP packets encapsulated in 
IP packets. 
 
Furthermore, we have decided not to utilize the UDP checksum field for our testing.  
Accounting for the UDP checksum would be a small task, and would only require that 
additional fields be included in the compressed packets. 
 

4.4 Verification Method 
 
Verification of our models has been done both manually and automatically.  When programming 
each process model, the expected behavior of the model was verified through printouts.  These 
printouts were used to confirm proper header compression and ATM encapsulation had been 
done. 
 
In order to verify the end-to-end system, after each RTP stream had finished sending its packets, 
the receiving end sink would compare the array of received header values with the array of 
header values sent from the RTP Simple Source.  Any discrepancy would be reported; otherwise 
a “Success” message would be printed (see Section 5.1.1). 
 
The details of each RTP Simple Source packet stream are as follows: 
 

Table 2: RTP Simple Source Packet Streams 
Source Source IP 

Address 
Destination IP 
Address 

Source 
UDP Port 

Destination 
UDP Port 

RTP 
SSRC 

Number of 
packets 

Start time 
(sec) 

Rtp_src_0 100.100.100.100 175.175.175.175 100 175 246248 2000 0.0 
Rtp_src_1 200.200.200.200 175.175.175.175 200 175 1191 1000 100.4 
Rtp_src_2 200.200.200.200 175.175.175.175 2000 175 75930 3000 250.3 
Rtp_src_3 150.150.150.150 225.225.225.225 150 225 91122 2000 20.0 
Rtp_src_4 150.150.150.150 225.225.225.225 150 2250 8286 1000 140.3 
Rtp_src_5 250.250.250.250 225.225.225.225 250 225 788128 3000 75.0 
 
 
Within each RTP stream, header field values of certain packets are modified such that the 
compression algorithm can be tested. 
 
Verification of the ATM subsystem was less involved, since the mapping was easily verified by 
inspection.  The packet formats generated were assigned fixed values (that is, hard-coded) to 
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distinguish easily the different packet types and wrongly mapped field values.  The following 
table shows field values that affect AAL data collection. 
 

Table 3: Hard-Coded Field Values for AAL Mapping (IPv4 Packet) 
 8-bit CID 16-bit CID 
length 1 (IPv4) 4096+111 (CID=111) 4096+6 (link seq = 6) 
length 2 (encapsulated IP) 1024+1 (link seq = 1) 2222 (CID = 2222) 
length 2 (encapsulated UDP) 1024+2 (link seq = 2) 2222 (CID = 2222) 
Expected UU Value (IP/IP) 1*128+1=129 1*128+6=134 
Expected UU Value (UDP/IP) 1*128+2=130 1*128+6=134 

 

Table 4: Hard-Coded Field Values for AAL Mapping (Compressed Packets) 
 COMPRESSED_UDP Packet COMPRESSED_RTP Packet 
session_context_id 117 75 
link_sequence 3 5 
Expected CPCS-UU Value 0*128+3=3 0*128+5=5 

 
Printouts show which nodes have been visited and the processing that was done at that node.  A 
sample of the ATM output is provided in Section 5.1.2. 
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5. Discussion 
 
This section analyzes the results achieved through our simulations and explains difficulties that 
were encountered during the implementation of our end-to-end network.  Some potential future 
enhancements are also included 
 

5.1 Results 
 
Sections 5.1.1 and 5.1.2 describe the results from the RTP Subnetwork and ATM Subnetwork 
respectively. 
 

5.1.1 RTP Subnetwork Results 
 
The RTP Subnetwork was successfully implemented with simulations showing expected 
behaviour by the compressors and decompressors.  When errors were manually inserted, they 
were correctly reported; likewise when no errors were expected, none were reported.  After 
running a simulation with the RTP streams specified in Section 4.4, the following output 
printed: 
 

Aggregator 3: Initialized.
Aggregator 4: Initialized.
Source 5: Initialized.
Header Comp/Decomp 6: Initialized.
Header Comp/Decomp 7: Initialized.
Source 8: Initialized.
Source 9: Initialized.
Source 10: Initialized.
Source 11: Initialized.
Source 12: Initialized.

Compressor 6: CID 0 assigned to source with SSRC 246248.
Decompressor 7: CID 0 (SSRC 246248) added to Context State Table.

Compressor 7: CID 0 assigned to source with SSRC 91122.
Decompressor 6: CID 0 (SSRC 91122) added to Context State Table.

Compressor 7: CID 1 assigned to source with SSRC 788128.
Decompressor 6: CID 1 (SSRC 788128) added to Context State Table.

Compressor 6: CID 1 assigned to source with SSRC 1191.
Decompressor 7: CID 1 (SSRC 1191) added to Context State Table.

Compressor 7: CID 2 assigned to source with SSRC 8286.
Decompressor 6: CID 2 (SSRC 8286) added to Context State Table.

Compressor 6: CID 2 assigned to source with SSRC 75930.
Decompressor 7: CID 2 (SSRC 75930) added to Context State Table.

STREAM 1 SUCCESS: All header field values match original values (1000 packets).
Decompressor 7: Removing CID 1 (SSRC 1191) from Context State Table... DONE.
Compressor 6: Removing CID 1 (SSRC 1191) from Context State Table... DONE.

STREAM 4 SUCCESS: All header field values match original values (1000 packets).
Decompressor 6: Removing CID 2 (SSRC 8286) from Context State Table... DONE.
Compressor 7: Removing CID 2 (SSRC 8286) from Context State Table... DONE.
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STREAM 0 SUCCESS: All header field values match original values (2000 packets).
Decompressor 7: Removing CID 0 (SSRC 246248) from Context State Table... DONE.
Compressor 6: Removing CID 0 (SSRC 246248) from Context State Table... DONE.

STREAM 3 SUCCESS: All header field values match original values (2000 packets).
Decompressor 6: Removing CID 0 (SSRC 91122) from Context State Table... DONE.
Compressor 7: Removing CID 0 (SSRC 91122) from Context State Table... DONE.

STREAM 5 SUCCESS: All header field values match original values (3000 packets).
Decompressor 6: Removing CID 1 (SSRC 788128) from Context State Table... DONE.
Decompressor 6: That was the last element of contextStateRcvList.
Compressor 7: Removing CID 1 (SSRC 788128) from Context State Table... DONE.
Compressor 7: That was the last element of contextStateXmtList.

STREAM 2 SUCCESS: All header field values match original values (3000 packets).
Decompressor 7: Removing CID 2 (SSRC 75930) from Context State Table... DONE.
Decompressor 7: That was the last element of contextStateRcvList.
Compressor 6: Removing CID 2 (SSRC 75930) from Context State Table... DONE.
Compressor 6: That was the last element of contextStateXmtList.

Figure 30: RTP/UDP/IP Header Compressor/Decompressor Output 
 
The output above indicates that a context state entry is inserted into the dynamic context state 
tables of the compressor and decompressor each time the first packet of a new RTP stream is 
received.  When the last packet of the stream is received, the header fields of the received 
packets are compared to the header fields of the original/sent packets – the result of these 
comparisons is Success (i.e. matching header fields).  Finally, the context state entry for an 
ended stream is removed from the context state tables of the compressor and decompressor. 
 
Our simulation was run with a fixed RTP payload of 40 bytes.  Looking at the number of 
received and sent bytes at the Header Compressor/Decompressor node hdr_c/d_0, we may 
observe the conservation of bandwidth.  Figure 31, Figure 32, and Figure 33 compare the 
traffic received against the traffic sent for Compressor 0, Compressor 1, and Decompressor 1 
respectively.  It is noted that the Compressor 0 Sent traffic is the same as the Decompressor 1 
Received traffic, as expected. 
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Compressor 0: Traffic Sent vs Received
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Figure 31: Bytes Sent Versus Bytes Received at Compressor 0 

 
 

Compressor 1: Traffic Sent vs Received
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Figure 32: Bytes Sent Versus Bytes Received at Compressor 1 
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Decompressor 1: Traffic Received and Sent
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Figure 33: Bytes Sent Versus Bytes Received at Decompressor 1 

 
From the three previous figures, we can see where the COMPRESSED_RTP format is used, 
with packet sizes of 42 bytes or slightly higher when a delta header field is sent; the 
COMPRESSED_UDP format is used, with packet sizes of 54 bytes or slightly more; and the 
FULL_HEADER format is used, with 80-byte packets.  With different RTP payload sizes, the 
graphs will change only slightly.  The difference between the bytes received and bytes sent 
will stay constant (given the same header values), however the graph may be offset by a 
different amount (instead of 40 bytes).  As such, the percent of bandwidth savings due to 
header compression is dependent on the RTP payload size. 
 
With 40-byte RTP payloads, the total number of bytes received and sent from each 
compressor are shown in Figure 34 and Figure 35.  Again with larger payloads, the gap 
between the total traffic received and total traffic sent will stay constant, however both lines 
would rise faster. 
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Compressor 0 - Cumulative Traffic Received and Sent
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Figure 34: Total Bytes Sent Versus Total Bytes Received at Compressor 0 
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Figure 35: Total Bytes Sent Versus Total Bytes Received at Compressor 1 
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5.1.2 ATM Subnetwork Results 
 
Because the ATM subnetwork is not concerned with any measures of performance or network 
behaviours, mapping are verified simply by comparing output values.  A sample of the ATM 
Encapsulator/Decapsulator’s output for each type of incoming packet format is listed in the 
following figure. 
 

IPv4 packet fields set! (IP encapped)

encapsulating CPCS PDU (original UU = 0)
packet format : ams_aal5_cpcs_pdu

field 0: payload
field 1: UU
field 2: CPI
field 3: Length
field 4: CRC

payload format : ip_v4_pkt
field 0: version
field 1: ihl
field 2: tos
field 3: length
field 4: ident
field 5: flags
field 6: frag_offset
field 7: ttl
field 8: protocol
field 9: header_checksum
field 10: src_addr
field 11: dest_addr
field 12: data

yay, let's go set the CPCS-UU field now!

(Using 8-bit CID)
length1 = 4207
CID = 111
length2 = 1025
link_seq = 1

extension_bit = 1
new user-to-user = 129

extension bit = 1 (ip_v4_pkt)
link sequence = 1

atm_switch_1
atm_switch_2
uni_destn :

cell is for this node!
arriving user_to_user = 129

[ip_v4_pkt]
-------------------
compressed RTP fields set!

encapsulating CPCS PDU (original UU = 0)
packet format : ams_aal5_cpcs_pdu

field 0: payload
field 1: UU
field 2: CPI
field 3: Length
field 4: CRC

payload format : crtp_main_hdr
field 0: session_context_id
field 1: M
field 2: S
field 3: T
field 4: I
field 5: link_seq
field 6: data

yay, let's go set the CPCS-UU field now!

CID = 75
link_seq = 5
extension_bit = 0
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new user-to-user = 5
extension bit = 0 (crtp_main_hdr)
link sequence = 5

atm_switch_1
atm_switch_2
uni_destn :

cell is for this node!
atm_switch_1
atm_switch_2
uni_destn :

cell is for this node!
arriving user_to_user = 5

[crtp_main_hdr]
-------------------
compressed UDP fields set!

encapsulating CPCS PDU (original UU = 0)
packet format : ams_aal5_cpcs_pdu

field 0: payload
field 1: UU
field 2: CPI
field 3: Length
field 4: CRC

payload format : cudp_main_hdr
field 0: session_context_id
field 1: M
field 2: S
field 3: T
field 4: I
field 5: link_seq
field 6: data

yay, let's go set the CPCS-UU field now!

CID = 117
link_seq = 3
extension_bit = 0
new user-to-user = 3

extension bit = 0 (cudp_main_hdr)
link sequence = 3

atm_switch_1
atm_switch_2
uni_destn :

cell is for this node!
atm_switch_1
atm_switch_2
uni_destn :

cell is for this node!
arriving user_to_user = 3

[cudp_main_hdr]
-------------------

Figure 36: ATM Encapsulator/Decapsulator Output 
 
For some packets, atm_switch_1 and atm_switch_2 (and uni_destn) are traversed multiple 
times, indicating that the original packet was segmented into several ATM cells. 
 
Comparison of these output values with those assigned in the traffic generation node 
demonstrate that the CPCS-UU mapping was done correctly. 
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5.2 Difficulties 
 
Throughout the development of our project, we encountered various roadblocks, largely due to 
OPNET.  Complications arising from the OPNET software libraries resulted in many frustrations 
and lost programming time.  It was no surprise that a good amount of time was spent learning to 
use OPNET’s kernel procedures as well.  
 
Errors were encountered when trying to join nodes with generic links, causing us to put the 
different processors (RTP Simple Source, Aggregator/Sink, Header Compressor/Decompressor) 
into a single node model, instead of different node models – which is more logical. 
 
Because the COMPRESSED_UDP and COMPRESSED_RTP packet formats require additional 
fields when sending new delta values is necessary, it was important to find a way to give this 
kind of flexibility.  Our solution was to create additional packet formats to simulate these 
individual optional fields.  If a particular optional field were required, then our packet would be 
encapsulated by an additional header (which would be the single field). 
 
OPNET has an undesirable habit of changing a packet, or its contents sometimes, even when that 
packet is not the object of focus.  For example, the command 
 

op_pk_nfd_set (the_pdu, “payload”, sdu)
 
not only changes the_pdu, but also releases the contents of sdu.  As a result, sdu’s format was 
still provided but OPNET, but any fields that were previously present were no longer accessible 
and generated an error during simulation.  An attempt to circumvent this issue involved accessing 
the field values via C’s memory operations and bit-shifting the values to obtain the field of 
interest; however, C's bit operators require knowledge of variable length, and MSBs shifted off a 
value cannot be retrieved.  It would be desirable to have an OPNET command that forces an 
existing packet into a format, mapping binary bits regardless of field boundaries. 
 
The ATM models installed with OPNET are read-only, and highly dependent on each other.  Any 
small changes had to be locally saved, often meaning changing the name a header file: Because 
of the interdependent models, changing the name of a header file forced the user to change the 
name is every other process model used (new names for all other models!).  Much time was spent 
trying to work around the interdependencies and duplicating editing models to avoid redundant 
declarations and the such. 
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5.3 Future Enhancements 
 
Due to time constraints, we decided on simplifying our implementation.  For a more complete 
project, we believe that some additional future work is required. 
 
RFC 2508 also describes a CONTEXT_STATE packet format, sent from a decompressor to a 
compressor when dropped packets are detected (identified using the link sequence values).  This 
would be a necessary addition to our implementation in order to satisfy the RFC’s specification. 
 
The current RTP compressor/decompressor implementation removes a context entry from the 
context state tables when the last packet has been received and forwarded (from the compressor 
and the decompressor).  Future work would include adding an acknowledgement from the RTP 
destination to indicate to the compressor and decompressor that the last packet has successfully 
arrived. 
 
In order not to restrain the position of a UNI device on a network, two-way ATM communication 
would be necessary.  Currently, the traffic source and destination sink are implemented using 
separate nodes; ideally these would be combined so that a UNI device could transmit and receive 
the compressed RTP packets. 
 
The traffic coming into the ATM end devices would more realistically come from a local area 
network or from another computer.  So an enhancement to our project would be to deliver traffic 
via packet streams (from another LAN device), instead of generating it internally at the UNI. 
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6. Conclusion 
 
As Internet traffic increases with demand, demand for better bandwidth usage also increases.  
The ATM Forum Contribution by AT&T Labs researchers Alexander Fraser, Peter Onufryk, and 
K.K. Ramakrishnan, describes the ATM encapsulation of compressed RTP packets, saving 
bandwidth for real-time applications like voice and video. 
 
A simplified version of the proposed encapsulation scheme was successfully implemented in 
OPNET Modeler.  Certain assumptions were placed in order to accomplish the main focus of the 
paper – the encapsulation of compressed and uncompressed RTP/UDP/IP packets. 
 
Results show that the compression of packet headers before ATM encapsulation saves on the 
transmission of much repetitive information that can be stored at the source and destination..  
The new packet formats introduced into the system must be recognized and processed by the 
ATM encapsulation/decapsulation module, to accommodate for assumptions made by 
implementing the header compression scheme. 
 
To fully implement a model as proposed in the research paper, several future enhancements have 
been presented.  These suggestions include the initiation and setup of the RTP session and the 
ATM virtual channel, consideration of multiple concurrent RTP sessions, and two-way ATM 
communication.  We feel these works are necessary to fully benefit from the advantages offered 
by the RTP over ATM encapsulation method in a more realistic environment. 
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Appendix A – Glossary 
 
Mixer [RFC 1889]: An intermediate system that receives RTP packets from one or more 
sources, possibly changes the data format, combines the packets in some manner and then 
forwards a new RTP packet. Since the timing among multiple input sources will not generally be 
synchronized, the mixer will make timing adjustments among the streams and generate its own 
timing for the combined stream. Thus, all data packets originating from a mixer will be identified 
as having the mixer as their synchronization source. 
 
Translator [RFC 1889]: An intermediate system that forwards RTP packets with their 
synchronization source identifier intact. Examples of translators include devices that convert 
encodings without mixing, replicators from multicast to unicast, and application- level filters in 
firewalls. 
 
 


