

ENSC 835-3: NETWORK PROTOCOLS AND PERFORMANCE

Transportation of a Real-Time Transport Protocol Packet

Stream Over an ATM Adaptation Layer 5 Backplane

April 2002

FINAL PROJECT REPORT

Kevin Ko (kkoa@sfu.ca)

Naomi Ko (nko@sfu.ca)

www.sfu.ca/~kkoa/Ensc835/

Abstract

As technology advances, the demand for new services like real-time applications has increased
dramatically, creating a constant push-and-pull effect between real-time applications and higher
bandwidth [12]. As transmission of large amounts of traffic increases [13], so too does the need
to use available bandwidth more efficiently.

Real-time Transport Protocol (RTP) provides a mechanism for sending real-time data such as
video and multimedia. Compressing the RTP data packets and coupling the result with
Asynchronous Transfer Mode (ATM) technology provides a means to deliver real-time
application data over a network.

This project is focused on modeling the compression of RTP/UDP/IP packets and their
transmission over an ATM network, based on a paper “Encapsulation of Real-Time Data
Including RTP Streams over ATM” by AT&T Labs [6]. The resulting OPNET model generates
user-defined RTP/UDP/IP packets, performs header compression as described in RFC 1889 [3],
and modifies the ATM encapsulation to compensate for omitted capabilities and to provide
additional information.

Successful modeling of the RTP component and basic ATM functionality (modified from
existing OPNET models) provide a good basis on which a complete implementation of the
paper's proposed work can be achieved with a few additional enhancements.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Table of Contents ii

Table Of Contents

List of Figures .. iii
List of Tables.. iv
1. Abbreviations .. 5
2. Introduction ... 6

2.1 Background Material ... 6
2.1.1 Real-Time Transport Protocol... 6
2.1.2 Asynchronous Transfer Mode (ATM)... 7

2.2 Project Objective and Scope ... 10
3. Theory and Methodology .. 11

3.1 RTP Header Compression/Decompression... 11
3.1.1 Method .. 11
3.1.2 Flow Chart... 17

3.2 ATM Encapsulation/Decapsulation .. 20
3.2.1 Method .. 20
3.2.2 Flow Chart... 22

4. OPNET Implementation.. 24
4.1 RTP Subnetwork ... 25

4.1.1 RTP Simple Sources ... 25
4.1.2 Aggregator and Sink.. 26
4.1.3 Header Compressor/Decompressor... 26

4.2 ATM Subnetwork.. 27
4.2.1 ATM Encapsulator/Decapsulator .. 27
4.2.2 Encapsulator .. 28
4.2.3 Decapsulator.. 29

4.3 Assumptions.. 30
4.3.1 Establishing RTP Sessions.. 30
4.3.2 Link Layer Requirements .. 31
4.3.3 Ideal Network Environment .. 31
4.3.4 RTP Session and Streams.. 31
4.3.5 Packet and Payload.. 32

4.4 Verification Method .. 32
5. Discussion ... 34

5.1 Results ... 34
5.1.1 RTP Subnetwork Results .. 34
5.1.2 ATM Subnetwork Results... 39

5.2 Difficulties... 41
5.3 Future Enhancements .. 42

6. Conclusion... 43
7. References ... 44
Appendix A – Glossary ... 45

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Table of Contents iii

List of Figures

Figure 1: RTP Packet Format.. 7
Figure 2: Structure of Type 5 AAL ... 8
Figure 3: CPCS-PDU Format for AAL5... 9
Figure 4: RTP Stream over AAL5 Network Overview... 10
Figure 5: IP Packet Format.. 11
Figure 6: UDP Packet Format ... 11
Figure 7: RTP/UDP/IP Packet Breakdown ... 12
Figure 8: COMPRESSED_RTP Packet Format.. 14
Figure 9: Compressed RTP Packet.. 14
Figure 10: COMPRESSED_UDP Packet Format ... 15
Figure 11: Compressed RTP Packet.. 15
Figure 12: IP and UDP Length Fields in FULL_HEADER (for 8-bit CID) 15
Figure 13: IP and UDP Length Fields in FULL_HEADER (for 16-bit CID) 16
Figure 14: Context Information Storage in Compressor and Decompressor 16
Figure 15: Flowchart for RTP/UDP/IP Header Compressor... 18
Figure 16: Flowchart for RTP/UDP/IP Header Decompressor ... 19
Figure 17: Real-Time AAL5 Encapsulation.. 20
Figure 18: Virtual Circuit Assignment for Multiple RTP Sessions .. 21
Figure 19: Flowchart for ATM Encapsulator.. 22
Figure 20: Flowchart for ATM Decapsulator.. 23
Figure 21: OPNET Project .. 24
Figure 22: Single Direction Data Path .. 24
Figure 23: RTP Subnetwork.. 25
Figure 24: Aggregator and Sink Process Model.. 26
Figure 25: Compressor/Decompressor Process Model ... 27
Figure 26: ATM Subnetwork Components ... 27
Figure 27: ATM uni_source Node .. 28
Figure 28: ams_aal5_conn_v3 Process Model.. 29
Figure 29: Process Model for uni_destn Node.. 30
Figure 30: RTP/UDP/IP Header Compressor/Decompressor Output ... 35
Figure 31: Bytes Sent Versus Bytes Received at Compressor 0 ... 36
Figure 32: Bytes Sent Versus Bytes Received at Compressor 1 ... 36
Figure 33: Bytes Sent Versus Bytes Received at Decompressor 1 ... 37
Figure 34: Total Bytes Sent Versus Total Bytes Received at Compressor 0 38
Figure 35: Total Bytes Sent Versus Total Bytes Received at Compressor 1 38
Figure 36: ATM Encapsulator/Decapsulator Output .. 40

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Table of Contents iv

List of Tables

Table 1: Changing IP, UDP, and RTP Fields.. 12
Table 2: RTP Simple Source Packet Streams ... 32
Table 3: Hard-Coded Field Values for AAL Mapping (IPv4 Packet)... 33
Table 4: Hard-Coded Field Values for AAL Mapping (Compressed Packets)........................... 33

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Abbreviations 5

1. Abbreviations

Abbreviation Definition
AAL ATM Adaptation Layer
AAL5 ATM Adaptation Layer Type 5
ATM Asynchronous Transfer Mode
CID (Session) Context Identification
CPCS Common Part Convergence Sublayer
CRC Cyclic Redundancy Check
IHL IP Header Length
IP Internet Protocol
IPv4 IP version 4
ITU International Telecommunications Union
MBZ Must Be Zero
MSB Most Significant Bit
PDU Protocol Data Unit
PPP Point-to-Point Protocol
RTP Real-Time Transport Protocol
SAP Service Access Point
SAR Segmentation and Reassembly
SDU Service Data Unit
SEAL Simple and Efficient Adaptation Layer
SIP Session Initiation Protocol
SSRC Synchronization Source
TOS Type Of Service
TTL Time To Live
UNI User-to-Network Interface
VC Virtual Channel
VCI Virtual Channel Identifier
VPI Virtual Path Identifier
VoIP Voice-over-IP
UDP User Datagram Protocol

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Introduction 6

2. Introduction

Prompted by an age of multimedia, considerable efforts have been expended on researching the
ability to send audio and video real-time media efficiently over different types of networks. The
concepts of sending real-time media over IP with RTP and streaming such media over ATM are
far from new; however the implications of these technologies are important when considering the
increased emergence of real-time audio and video applications. Large amounts of real-time
traffic, as well as other bandwidth-consuming traffic such as file transfers demand the
investigation of bandwidth conservation and efficiency. Through certain techniques, RTP
packets sent over UDP/IP can be compressed to conserve a considerable amount of bandwidth.
These compressed packets can be encapsulated and transported to the destination over a network
such as ATM.

2.1 Background Material

Real-Time Transfer Protocol and Asynchronous Transfer Mode will be explored in detail, as they
are the underlying standards and protocols in our project. This section describes the basics of
each of these standards to provide the reader with a bit of technical understanding before
proceeding.

2.1.1 Real-Time Transport Protocol

Real-Time Transport Protocol (RTP) is an Internet standard used for conveying real-time
media streams between interactive participants, and is specified in RFC 1889. This protocol
typically runs end-to-end on top of User Datagram Protocol (UDP) over Internet Protocol (IP),
and has received a significant amount of industry support [14]. RTP neither addresses the
reservation of resources, nor does it guarantee quality-of-service and timely delivery [1].

Applications using Real-Time Transport Protocol include Voice-over-IP (VoIP) telephony,
multimedia conferencing, which includes audio, video, and data streaming, and video and
audio mixers and translators (see Glossary).

RTP packets are sent within an RTP session, defined as an association among a set of
participants communicating with RTP. These associations may be set-up through various
protocols (see Section 4.3.1), and can consist of multiple session contexts, which are defined
uniquely by the source and destination IP addresses, source and destination UDP ports, and
RTP synchronization source (SSRC) [3].

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Introduction 7

2.1.1.1 RTP Packet Format

The packet format for RTP is illustrated in Figure 1, where V is the RTP version number, P is
the padding flag, X is an extension bit, CC is the number of contribution sources, and M is a
first and last packet marker.

Timestamp

Contributing Source (CSRC) Identifiers [optional]

Synchronization Source (SSRC) Identifier

X CC Sequence NumberV P M Payload Type

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1 2 30

... RTP Payload ...
Figure 1: RTP Packet Format

For more detailed information about the RTP header fields and their use, refer to RFC 1889
[1].

A technique for compressing the RTP, UDP, and IP headers into a single header has been
devised, removing the transfer of extraneous and repetitive header information. While the
motivation to compress RTP packets was spawned from the desire to send audio and video
over the low-speed connections of 14.4 and 28.8 kbps modems [3], it is universally applicable
to conserve bandwidth over any network, particularly when RTP payloads are small. This
compression technique is capable, in many instances, of compressing a 40-byte RTP/UDP/IP
packet header into a 2-byte packet header. The technique is extracted from RFC 2508 [3] and
will be explained in Section 3.1 and implemented in an OPNET model in Section 4.1.3.

2.1.2 Asynchronous Transfer Mode (ATM)

Asynchronous Transfer Mode (ATM) is a widely-deployed network technology, standardized
by the International Telecommunications Union- Telecommunication Standardization Sector
(ITU-T), described in Recommendation I.361 [9]. Its cell relay technology is used for the
high-speed communication for the transmission of voice, video, data and images.

2.1.2.1 ATM Adaptation Layer Type 5

The ATM adaptation layer (AAL) enhances the service provided by ATM to support functions
required by the next higher layer. Among the functions provided by the AAL are mapping
between ATM and higher layers, and segmentation of data into 48-byte frames.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Introduction 8

Type 5 AAL (AAL5), described in ITU-T Recommendation I.363.5 [8], is the most common
AAL used for data and supports both connection-oriented and connectionless data [4]. AAL5
is also known as the simple and efficient adaptation layer (SEAL) since very little overhead is
added to the user data. This type of AAL supports the non-assured transmission of user data
frames: it assumes that higher layers will provide error recovery.

2.1.2.2 Framework of AAL5

User data is passed from higher (application) layers to the ATM adaptation layer in units of
frames or AAL service data units (SDUs). Between the AAL and the ATM service access
points (SAPs), the data frame passes through a number of sublayers that perform various
operations.

AAL SAP

ATM SAP

Service Specific CS
(SSCS)

Common Part CS
(CPCS)

SAR
SA

R
C

S

C
om

m
on

 P
ar

tAA
L

Primitives

Primitives

Figure 2: Structure of Type 5 AAL

As seen in Figure 2, the AAL5 framework breaks down into a convergence sublayer (CS) and
segmentation and reassembly sublayer (SAR). The convergence sublayer further divides into
a service-specific convergence sublayer (SSCS) and a common part convergence sublayer
(CPCS). Each layer is responsible for certain functions: SSCS protocols will support specific
AAL user services if desired; the CPCS appends a trailer to the user data; and the SAR
sublayer separates the data and CPCS trailer into 48-byte cells, ready for ATM encapsulation.

Defining the SSCS protocol allows different AAL user services to be supported. Without any
definition, the SSCS simply maps the AAL-SDU to the CPCS-SDU and vice versa.

As suggested by its name, the CPCS is common to AAL5 implementation, regardless of what
SSCS protocols may be implemented. During the encapsulation process, the CPCS appends 2
fields: a variable-length padding field (PAD) and an 8-byte trailer to form the CPCS protocol
data unit (PDU) shown in Figure 3. During decapsulation, the CPCS-PDU is stripped of the
trailer and padding.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Introduction 9

CPCS-PDU Payload (CPCS-SDU from SSCS) Padding CPCS-PDU Trailer

8 bytes0-47 bytes40 bytes

CRCLengthCPI

4 bytes1 byte 2 bytes1 byte

CPCS-UU

CPCS-PDU Trailer

CPCS-PDU
Figure 3: CPCS-PDU Format for AAL5

Like the CPCS, the SAR sublayer is also common to the AAL, regardless of the higher layer
applications. This sublayer’s concern is segmenting the SAR-SDU (the CPCS-PDU) into 48-
byte data units, the last of which contains the CPCS-PDU trailer. The 48-byte SAR-PDUs are
ready for ATM encapsulation.

When the ATM layer receives the 48-byte data cells, it prepends a 5-byte header. This ATM
header designates the channel through which the packet will navigate its way through the
network. Included in the header information are the virtual path identifier (VPI) and the
virtual channel identifier (VCI).

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Introduction 10

2.2 Project Objective and Scope

In this project, we will simulate a simple network for bi-directionally transferring RTP packets
between two packet generators/sinks using the OPNET modeling tools. Intermediate network
elements will perform RTP/UDP/IP compression and decompression, as described by RFC 2508
[3], and encapsulate RTP/UDP/IP compressed or uncompressed packets into ATM cells to be
transferred over a virtual channel, as described in the ATM Forum contribution SAA_98-0139.
The end-to-end duplex system is depicted in Figure 4.

RTP/UDP/IP
Generator/

Sink

RTP/UDP/IP
Header

Compressor/
Decompressor

RTP-ATM
encapsulator/
decapsulator

RTP/UDP/IP
Generator/

Sink

RTP/UDP/IP
Header

Compressor/
Decompressor

RTP-ATM
encapsulator/
decapsulator

ATM Network

IP Network

Figure 4: RTP Stream over AAL5 Network Overview

Our main objective is to correctly model the algorithms for compression and decompression of
RTP/UDP/IP headers as well as the ATM encapsulation and decapsulation of the RTP streams.

In a realistic network environment, there are many factors present that would complicate our
model and require a large amount of additional consideration and effort. To help us focus on our
objectives, we have made additional assumptions, which are described in more detail in Section
4.3.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Theory and Methodology 11

3. Theory and Methodology

This section describes the technique used to compress RTP/UDP/IP headers, and the algorithm
used to encapsulate the compressed packets into ATM AAL5 cells.

3.1 RTP Header Compression/Decompression

The packet header compression technique used in our project, as described in [3], is based upon a
similar technique used to compress TCP/IP headers. The technique utilizes the fact that most
header fields in the TCP and IP encapsulation stay constant or increment by a fixed amount [10].
In the same light, UDP and RTP header fields also exhibit zero or generally fixed first-order
differences. This section will highlight the general algorithm taken to compress and decompress
the RTP/UDP/IP packet headers. For a more detailed description of the compression intricacies,
please refer to [3].

3.1.1 Method

A typical RTP packet over IP is composed of the IP and UDP headers, shown in Figure 5 and
Figure 6 respectively, as well as the RTP packet header in Figure 1. Their relationship within
the packet is illustrated in Figure 7.

Identification

Options and Padding [optional]

Source IP Address

IHL Total LengthVersion TOS

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1 2 30

Fragment OffsetFlags

TTL Header ChecksumProtocol

Destination IP Address

... IP Payload ...
Figure 5: IP Packet Format

Destination PortSource Port

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1 2 30

ChecksumLength

... UDP Payload ...
Figure 6: UDP Packet Format

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Theory and Methodology 12

IP PayloadIP Header

UDP PayloadUDP Header

RTP PayloadRTP Header

20 bytes

8 bytes

12 bytes

Figure 7: RTP/UDP/IP Packet Breakdown

Within these RTP/UDP/IPv4 packet headers, only a certain number of fields are constantly
changing, whilst the other fields never or rarely change. Furthermore, many of changing
fields increment by constants, a statistic that is taken advantage of in this compression
technique.

The header fields that constantly change are summarized in Table 1.

Table 1: Changing IP, UDP, and RTP Fields

Packet Format Field Name
IP Packet Identification

Total Length
Header checksum

UDP Length
Checksum

RTP Sequence Number
Timestamp
Marker
CSRC Count
CSRC List

In the IPv4 header, the total length of the IP packet may be derived from the link layer, and
error detection may rely on the error detection of the Layer 2. A requirement of the
compression technique used in this project is that the link layer provides adequate error
detection towards packet transfers. The IPv4 packet ID is only used for IP fragmentation, but
is transmitted for lossless compression.

As with the IP case, the UDP header can also rely on the Layer 2 protocol to handle its length
field. The UDP checksum is transmitted for lossless compression, and will contain the value
zero if it is not used.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Theory and Methodology 13

The RTP header sequence number and timestamp fields usually change between packets, with
the sequence number typically incrementing by one for each packet and the timestamp
incrementing by a fixed duration depending on the payload carried (e.g. audio packets, video
packets). When set, the RTP marker (M) bit indicates that a packet is either the first or the
last of an RTP stream. Finally, if packets flow through an RTP mixer, then the CSRC list and
CC count may also change.

Amongst the identified changing fields, the IPv4 packet ID, RTP sequence number, and RTP
timestamp fields are the most likely to change by a constant value (i.e. constant first-order
difference, and second-order difference of zero). If any of these fields should change by a new
increment, the new first-order difference is sent with the compressed packet.

An RTP session, as described in Section 2.1.1 may transmit RTP packets from several session
contexts. Each session context is identified through a unique 8- or 16-bit context identifier
(CID) depending on the number of contexts required. Each packet, whether compressed or
uncompressed, must carry the CID and 4-bit link sequence number that is used to detect
packet loss.

For IP version 4, a context shares the following information:

� The full IP, UDP, and RTP headers last sent by the compressor or reconstructed by
the decompressor

� The first-order difference for the IPv4 ID field (default 1), RTP sequence number
(default 1), and RTP timestamp field (default 0)

� The last value of the 4-bit link sequence number

Three packet formats are used between the header compressor and header decompressor,
varying in degrees of compression: COMPRESSED_RTP, COMPRESSED_UDP, and
FULL_HEADER (uncompressed).

3.1.1.1 COMPRESSED_RTP Packet Format

When each of the RTP, UDP, and IP packet headers may be compressed – such that the
only fields that have changed are the IP identification, RTP timestamp, RTP sequence
number, the RTP marker bit, and the RTP contributing sources – the COMPRESSED_RTP
format is used. This format is shown in Figure 8 with the required fields lightly shaded,
and the optional fields in white.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Theory and Methodology 14

MSB of CID
(if 16-bit CID)

Contributing Source (CSRC) Identifiers

"RANDOM" fields

I Link Seq

UDP Checksum

M TS

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
10

... RTP Payload ...

LSB of Session
Context ID

Delta IPv4 ID

Delta RTP TimestampDelta RTP Sequence

I' CCT'S'M'

RTP Header Extension

if 16-bit CID

if non-zero in context

if MSTI = 1111

if S or S' = 1 if T or T' = 1

if I or I' = 1

if encapsulated

if MSTI = 1111
and CC non-zero

if X set in context

Figure 8: COMPRESSED_RTP Packet Format

The COMPRESSED_RTP format provides maximum compression, possibly reducing a
40-byte RTP/UDP/IP header to as few as 2 bytes. Additional header fields are added if the
RTP session uses 16-bit context identifiers, the UDP checksum, or if either of the RTP
sequence number, RTP timestamp, IP identification, or CSRCs have changed. The S, T, I,
and MSTI (4-bits together) flags indicate whether or not these additional first-order
differential fields are required.

When using the COMPRESSED_RTP packet format, the original packet shown in Figure 7
is reduced to the packet illustrated in Figure 9.

RTP PayloadCompressed
RTP Header

12 bytes

Figure 9: Compressed RTP Packet

3.1.1.2 COMPRESSED_UDP Packet Format

The COMPRESSED_UDP format is used when an RTP field that normally stays constant
undergoes a change and the RTP header cannot be compressed. In this case, the full RTP
header can be carried in the payload of the COMPRESSED_UDP. This packet follows the
format shown in Figure 10.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Theory and Methodology 15

MSB of CID
(if 16-bit CID)

"RANDOM" fields

I Link Seq

UDP Checksum

0 00

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
10

... UDP Payload ...
(which may be RTP)

LSB of Session
Context ID

Delta IPv4 ID

if 16-bit CID

if non-zero in context

if I or I' = 1

if encapsulated

Figure 10: COMPRESSED_UDP Packet Format

When the COMPRESSED_UDP packet format is used, the original packet breakdown
shown in Figure 7 is reduced to the packet illustrated in Figure 11.

UDP PayloadCompressed
UDP / IP Header

RTP PayloadUncompressed
RTP Header

8 bytes

12 bytes

Figure 11: Compressed RTP Packet

3.1.1.3 FULL_HEADER Packet Format

This uncompressed format is the same as that of the original RTP/UDP/IPv4 packet, with
the IP total length and UDP length fields used to carry the context identifier and link
sequence values. Figure 12 and Figure 13 show the IP and UDP length fields for session
contexts with 8-bit and 16-bit CIDs respectively.

0 1 Generation

0 link seq

CID (8-bit)IP Total Length

UDP Length

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
10

Figure 12: IP and UDP Length Fields in FULL_HEADER (for 8-bit CID)

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Theory and Methodology 16

1 1 Generation 0 link seq

CID (16-bit)

IP Total Length

UDP Length

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
10

Figure 13: IP and UDP Length Fields in FULL_HEADER (for 16-bit CID)

A FULL_HEADER packet is sent in two scenarios: as the first packet of a session context,
and in the infrequent case where neither the UDP or IP headers can be compressed.

As the first packet of a session context, the RTP, UDP, and IP headers are stored by the
compressor and decompressor; the delta IPv4 ID, delta RTP sequence number, and delta
RTP timestamp are reset to their defaults (1, 1, 0 respectively); and the link sequence for
this new context is set to 0. Thereafter, when a FULL_HEADER packet is transmitted, the
RTP, UDP, and IP headers stored in the compressor and decompressor are refreshed, and
the delta values are reset to their defaults.

Although this packet format is uncompressed, for the remainder of this document, the
FULL_HEADER packet format will be included in the “compressed packet formats”.

In a physical system, both the RTP/UDP/IP header compressor and decompressor must store
context information about the RTP streams it is sending or receiving, as depicted in Figure 14.
These context states are used by the compressor to determine the level of compression that
can be done on the headers, as well as which additional fields are required to communicate
changing first-order differences. The decompressor uses the context states in conjunction
with the incoming compressed packet to reconstruct the original packet.

Packet
Generator

Packet
Sink

Header
Decompressor

RTP/UDP/IPRTP/UDP/IP Compressed RTP

Header
Compressor

RTP seq num

IP ident

RTP header

UDP header

IP header

IP ident

RTP header

UDP header

IP header

RTP timestamp

RTP seq num

RTP timestamp

last link seq sent last link seq rcv'd

Figure 14: Context Information Storage in Compressor and Decompressor

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Theory and Methodology 17

3.1.2 Flow Chart

The header compressor is responsible for determining the amount of compression that may be
done on incoming uncompressed RTP/UDP/IP packet headers. In compressing the headers,
the compressor also determines which additional fields are required for carrying first-order
differential (delta) values.

The header compressor follows the flowchart shown in Figure 15.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Theory and Methodology 18

Start
(Received Uncompressed Packet)

Context found?

Search memory
for same

session context

Dynamically create
and initialize

session context
state on

compressor

N
(first packet)

Y

Compare packet
to context state in

compressor

Last packet?
Set context

"last packet"
flag

Y

N

Create packet,
adding header

fields as required.
Update deltas,
increment link

sequence

Create packet,
adding header

fields as required.
Update deltas,
increment link

sequence

Update deltas,
increment link

sequence

N
(UDP/IP only)

N
(none)

Y

Can
RTP/UDP/IP
 header be

compressed
?

Transmit Packet

End

"last packet"
flag set?

Remove
Context from
Compressor

Context Table

N

Y

Figure 15: Flowchart for RTP/UDP/IP Header Compressor

The header decompressor accepts the incoming compressed packets from the compressor,
creates new RTP/UDP/IP packets based upon the received packets and the delta fields,

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Theory and Methodology 19

updates the context state for that particular CID, and sends off the reconstructed packet to the
IP destination.

The header decompressor follows the flow chart shown in Figure 16.

Start
(Received Un/compressed Packet)

CID found?

Search memory
for CID

Dynamically create
and initialize

session context
state on

decompressor

N
(first packet)

Y
Last packet?

Set context
"last packet"

flag

Y

N

Update deltas.
Create

uncompressed
packet, filling

header fields as
required

Is header
compressed?

Update deltas.
Create

uncompressed
packet, filling

header fields as
required

Update deltas

Y
(UDP/IP only)

N
(none)

Transmit Packet

End

Y
(RTP/UDP/IP)

"last packet"
flag set?

Remove
Context from

Decompressor
Context Table

N

Y

Ensure no
packet loss

Figure 16: Flowchart for RTP/UDP/IP Header Decompressor

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Theory and Methodology 20

3.2 ATM Encapsulation/Decapsulation

Packets from the RTP/UDP/IP header compressor/decompressor must be transported over a
network to the destination host. This transmission is performed by an ATM network. The ATM
device at the User-to-Network Interface (UNI) must support RTP/UDP/IP packet formats, and
recognize the other two formats associated with the RTP compression scheme used. The unit
responsible for the ATM layer encapsulation and decapsulation of these RTP (compressed and
uncompressed) packets will be referred to as the ATM module.

To avoid implementing an entirely new ATM adaptation layer, an existing one was chosen to
best suit the needs of transporting real-time data over ATM. Although an AAL1 encapsulated
cell includes a 3-bit sequence number and a 4-bit checksum, allowing 47 bytes of payload, it is
more suited to PBX-PBX communication [6].

The AAL5 trailer lacks a sequence number field that would be much desired for packet loss and
mis-ordering detection, but the CPCS-UU byte is available for transparently transferring
information between users, so it has been customized to house an extension bit and a 7-bit
sequence number field (see Figure 17). The resulting Real-Time AAL5 encapsulation format
was devised in Voice over ATM to the Desktop work [6]. Additionally, the length field permits
variable length payloads such as RTP packets. However, a 40-byte payload is preferred for
optimization purposes: this payload can be transmitted in a single ATM cell.

Payload (RTP/UDP/IP packet) AAL5 Trailer

40 bytes 8 bytes

4 bytes1 byte 2 bytes

7 bits1 bit

CRCLengthMBZCPCS-UU

1 byte

Seq #X

Figure 17: Real-Time AAL5 Encapsulation

3.2.1 Method

The assignment of AAL5 field values is based largely on field values extracted from the
higher layer data packet. As mentioned in the previous section, the CPCS User-to-User field
in the AAL5 trailer was split into an extension bit and a 7-bit sequence number. The AAL5
sequence number takes on the value of the incoming IP packet’s 4-bit sequence number (right-
justified and left-padded with zeros).

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Theory and Methodology 21

If the AAL5 encapsulation discerns the SDU as an uncompressed packet (FULL_HEADER
format, described in Section 3.1.1.3), the extension bit is assigned the value 1. For either of
the compressed packet formats – COMPRESSED_RTP (Figure 8) and COMPRESSED_UDP
(Figure 10) – the extension bit takes on value 0.

During the decapsulation process, the ATM module must also detect context state packets.
When the receiving-end RTP layer detects a corrupted packet, or one whose link sequence
number changed by more than 1 from the previous packet received (indicating a lost packet), a
context state packet is sent to inform the source of the packet loss or corruption. The ATM
module on the receiving end must understand not to modify any field values from normal
operation when the context state packet is sent; the packet should be passed to the AAL5 and
ATM layers as is.

An RTP session may contain more than one RTP stream (each with its own unique SSRC
value), but does not have any field dedicated to identifying itself uniquely. Thus, the ATM
module cannot create or assign virtual circuits at the ATM UNI based on the RTP session to
which a packet belongs. Moreover, the source and destination IP addresses are not readily
available in the compressed packet formats.

To circumvent this issue, the ATM module keeps a list of RTP context ids in use, and all the
information associated with that particular id (IP addresses, UDP ports, etc.). This list allows
the ATM module to look up the destination address for a packet without knowing the
decompression scheme in use and to map the appropriate outgoing VC, as shown in Figure 18.
At the receiving UNI, the ATM module refers to the CID list again to deliver the compressed
packet to the correct IP address.

ATM
Network

IP addr: 100.100.100.100
RTP session 1: port 100

 stream 1: CID=1
 stream 2: CID=4

RTP session 2: port 101
 stream 1: CID=2
 stream 2: CID=3

IP addr: 201.201.201.201
RTP session 2: port 201
 stream 1: CID=2
 stream 2: CID=3

VPI/VCI=0/32

CID=1 = destn=200.200.200.200
 => VC=0/32
CID=3 = destn=201.201.201.201
 => VC=0/32

CID=1? => IP=200.200.200.200
CID=3? => IP=201.201.201.201

IP addr: 200.200.200.200
RTP session 1: port 200

 stream 1: CID=1
 stream 2: CID=4

Figure 18: Virtual Circuit Assignment for Multiple RTP Sessions

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Theory and Methodology 22

3.2.2 Flow Chart

The flow charts of Figure 15 and Figure 16 show the logic followed by the ATM
encapsulator/decapsulator.

Clear AAL5
extension bit

Extract
destination IP

address

START
(Non-ATM cell arrival)

N Set AAL5
extension bit

Extract CID

END

AA
L5

 E
nc

ap
su

la
tio

n
A

TM
 E

nc
ap

su
la

tio
n

Y N

Segment frame
into 48-byte
data chunks

Context state
packet?

Compressed
packet?

Discard
(for now)

Extract link
sequence

Assign link
sequence to

AAL5 sequence

Find
corresponding
destination IP

address

Existing
CID?

N

Y

Y

Create new CID
entry in table; set
"new CID" flag

Assign destination
IP address

"new CID"
flag set?

Y
Set up VC

for new CID

N

Assign VC
to CID

Transmit packet
over network

Figure 19: Flowchart for ATM Encapsulator

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Theory and Methodology 23

Extract
destination IP

address

START
(ATM cell arrival)

N Allow normal
processing

END

AT
M

 D
ec

ap
su

la
tio

n
AA

L5
 D

ec
ap

su
la

tio
n

Y Y

Reassemble
segments into

frame

Context state
packet?

Data
packet?

Discard
(for now)

N

Last packet of
RTP stream?

Y Remove CID
entry from list

N

Extract link
sequence

Set flag if link
sequence

changed by
more than one
from previous
link sequence

Last packet of
RTP stream?

N

Y Initiate VC
teardown

Figure 20: Flowchart for ATM Decapsulator

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 OPNET Implementation 24

4. OPNET Implementation

Three main components constitute our end-to-end system: an RTP/UDP/IP generator and sink, an
RTP/UDP/IP header compressor/decompressor, and an ATM encapsulator/decapsulator.

The remaining sections of this project will describe our OPNET project, and the node and
process models that construct these three components.

A complete OPNET project would consists of the following elements:

� 2 RTP/UDP/IP generators and sinks
� 2 RTP/UDP/IP header compressor/decompressors
� 2 ATM encapsulator/decapsulators
� 2 ATM switches

These network elements are logically arranged in the organization seen in Figure 21.

Figure 21: OPNET Project

This project can be regarded as two identical data paths, traveling in opposite directions. Each
data path is seen in Figure 22.

Header
Compre-

ssion

ATM
Encap-
sulation

ATM
Switch 0

ATM
Decap-
sulation

Header
Decomp
-ssion

RTP
Sources

ATM
Switch 1

Packet
Sink

Header
Compre-

ssion

ATM
Encap-
sulation

ATM
Decap-
sulation

Header
Decomp
-ssion

RTP
Sources

Packet
Sink

Figure 22: Single Direction Data Path

Each data path consists of three traffic sources, each sending a unique RTP/UDP/IP traffic stream
to an aggregator. The aggregator combines the packet streams from the three generators into a
single point-to-point link, which is connected to the RTP/UDP/IP header compressor. The

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 OPNET Implementation 25

RTP/UDP/IP header compressor compresses the packet headers as necessary and sends each
packet towards the ATM encapsulator. Upon receiving the compressed packet, the ATM
encapsulator encapsulates the packet into an ATM cell, and transmits the cell over a virtual
channel to the ATM decapsulator through two ATM switches. The decapsulator removes the
compressed packet from the ATM cell and sends the packet to the RTP/UDP/IP header
decompressor. The decompressor reconstructs the packets based upon its stored context state
information and transmits the uncompressed packet to the packet sink.

The same data transfer process takes place in the opposite direction, using the counterparts of the
same components used in the first direction of data transfer.

Due to time constraints, our project was implemented in two separate subnetworks, which would
be integrated together to form the end-to-end system shown in Figure 21. The first subnetwork
consists of the RTP stream generation, header compression, header decompression, and packet
sink. The second subnetwork includes the ATM encapsulation, switching, and decapsulation.
These two subnetworks are described in Sections 4.1 and 4.2.

4.1 RTP Subnetwork

The RTP subnetwork handles all of the RTP-related responsibilities: generating traffic,
compressing packets, decompressing packets, sinking and verifying the data. The node model
for this subnetwork is shown in Figure 23.

Figure 23: RTP Subnetwork

4.1.1 RTP Simple Sources

Three RTP Simple Sources are used in each direction to simulate different RTP streams
starting at different times, and sending a different number of packets (this will be discussed in
further detail in the Verification section in 4.4).

The RTP Simple Source process model is based on the predefined OPNET process model
“simple_src”. The process model of the RTP/UDP/IP Simple Source contains the same states
and state transitions as the simple_src process model; however, modifications have been made
to the packet generation code such that only RTP/UDP/IP packets are created, and that their
header fields are filled with predefined values based upon those in a fixed array of packet

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 OPNET Implementation 26

headers. The header values have been selected to test the compression algorithm used in the
RTP/UDP/IP header compressor (refer to Section 4.4 for more details about the header
values).

4.1.2 Aggregator and Sink

The Aggregation and Sink Processor combines multiple RTP streams (from RTP Simple
Sources) into a single output stream. The xmt state is responsible for this aggregation. The
number of input streams is scalable, requiring only simple modifications to add new streams.
This process model is also used for sinking packets that have been sent from the far end of our
end-to-end system. In the rcv state, packets are disassembled, and their header contents are
stored in an array for verification purposes (see Section 4.4). The process model for the
Aggregator and Sink is shown in Figure 24.

Figure 24: Aggregator and Sink Process Model

4.1.3 Header Compressor/Decompressor

The Header Compressor/Decompressor process model is shown in Figure 25. The
Compressor state handles incoming RTP/UDP/IP packets, compressing them to the degree
possible before sending them off. The Decompressor state receives compressed packets and
reconstructs a packet with the full packet headers. This process model contains two separate
dynamic tables of context states to store information about the RTP streams sent/received by
the compressor/decompressor.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 OPNET Implementation 27

Figure 25: Compressor/Decompressor Process Model

4.2 ATM Subnetwork

ATM has been in the network industry for many years now, and OPNET provides a complete
model suite; therefore the ATM implementation portion started with an investigation of what
models and features were available in ATM Model Suite.

To concentrate on the focus of the project, the ATM network “cloud” was simplified to two
switches connecting the user-to-network devices seen in Figure 26 below.

Figure 26: ATM Subnetwork Components

4.2.1 ATM Encapsulator/Decapsulator

Normally, both the encapsulator and decapsulator would be contained within the ATM
encapsulator/decapsulator unit. However, to work on the functionality, they were left as
separate components, to be integrated at a later time.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 OPNET Implementation 28

4.2.2 Encapsulator

The uni_source node in Figure 27 is based on OPNET’s atm_uni_src_adv node, which
generates raw unformatted packets, processes them through the AAL and ATM layers and
transmits them over the network.

Figure 27: ATM uni_source Node

Instead of unformatted packets, the traffic generation function within uni_source node has
been modified to generate traffic of the three packet formats produced by the RTP/UDP/IP
header compressor: FULL_HEADER, COMPRESSED_UDP, COMPRESSED_RTP. In
order to simplify verification of the changes made at the AAL, simple field values are set such
that outcome is predictable.

For data packets coming into the ATM adaptation layer, the CPCS user-to-user indication is
overridden, as described in Section 3.2.1. This modification is accomplished in the
ams_aal5_conn_v3 process model (Figure 28), a child process of ams_aal_disp_v3 (called
from within the to_atm state “enter” execs). Once created, a packet format cannot be
changed, so the CPCS-UU is calculated and set to

CPCS_UU = (extension_bit) * 128 + link_sequence

so that the extension bit indicating a compressed or uncompressed packet resides in the most
significant bit of the one-byte field. The extension bit is determined by the incoming packet
format, and the link sequence is extracted from its header fields. The RTP session context
identification is also collected at this layer. For uncompressed RTP/UDP/IP packets, the IP
packet’s length field and that of its encapsulated payload are used to store the CID and link

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 OPNET Implementation 29

sequence number; these length fields are processed according to the formats for an 8-bit or 16-
bit CIDs, shown in Figure 12 and Figure 13, respectively. While this portion has been
implemented for both 8-bit and 16-bit CIDs, only the 8-bit CID is used in this project.

Figure 28: ams_aal5_conn_v3 Process Model

The CID was to determine the virtual channel on which to send the packet; however, due to
various reasons outlined in Section 5.2 (Difficulties), the CID-to-VC mapping was not
implemented.

4.2.3 Decapsulator

The uni_destn node shown in Figure 29 is based on OPNET’s atm_uni_dest_adv node, which
sinks incoming packets, after their ATM header and AAL trailer have been removed and the
segments reassembled.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 OPNET Implementation 30

Figure 29: Process Model for uni_destn Node

Before sinking the packets (or, when fully integrated, passing the packets to the RTP/UDP/IP
header decompressor), the destination node checks the link sequence number of the packet,
noting if it has changed by more than one since the previous packet for that particular RTP
stream (distinguished by the CID). If the link sequence number has increased by more one,
the occurrence is flagged, indicating a probable lost packet.

Minor changes to this process model included verifying reception of the correct packet type
and CPCS-UU field.

4.3 Assumptions

In order to keep focused on our objectives and to keep the scope of this project reasonable, we
have made a number of assumptions with regards to the environment in which we intend to send
our RTP/UDP/IP. The assumptions described in this section are only those that we have made
for the purposes of simplifying our project’s implementation in OPNET, and are not necessarily
stated by the documents describing compression algorithm and ATM encapsulation (RFC 2508
and ATM Forum/SAA-98-0139 respectively).

Our assumptions include an already established RTP session between our RTP session endpoints,
and ideal IP and ATM environments. We also decided to begin with the use of only one RTP
session, which may contain multiple RTP streams. Lastly, we have made certain requirements
on the packet characteristics and contents.

4.3.1 Establishing RTP Sessions

Before RTP stream packets are sent between users, an RTP session must be set up. These
sessions may be established through a number of protocols including Session Initiation
Protocol (SIP) and H.323. We also rely on the session-establishing protocol to terminate and
teardown the session when it is no longer used.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 OPNET Implementation 31

SIP is an application-layer control protocol defined in RFC 2543 that can be used to establish,
maintain, and terminate calls between two or more end points. H.323 is an ITU standard that
incorporates multiple protocols, including H.245 for negotiation and Registration Admission
and Status (RAS) for session control [5].

As there is an ATM component to our network, we also assume that the appropriate VCs have
been established in the ATM network to transport data between the ATM encapsulator and
decapsulator, since these must already be set up in order for the RTP session to be established.

4.3.2 Link Layer Requirements

As mentioned in Section 3.1.1, the link layer must provide adequate error detection and must
also be capable of indicating lengths of packets being sent via its protocol. An example of
acceptable error detection is the Point-to-Point Protocol’s (PPP’s) Cyclic Redundancy Check
(CRC) as described in RFC 1661 [3].

These requirements are in place such that their respective fields may be excluded or replaced
in the compressed packets.

Because we are not dealing with the link layer in our simulation, the total packet lengths will
be transmitted along with the packet between the two Header Compressors/Decompressors via
an OPNET Interface Control Information (ICI). The ICI will also contain the IP header
checksum.

4.3.3 Ideal Network Environment

As a starting point, the network environment, in the IP and ATM domains, are assumed to be
ideal. This assumption includes, but is not limited to, the following: no dropped packets, no
transmission errors, no packet collisions, and no delay of transmission.

4.3.4 RTP Session and Streams

We have decided that in order to prove the function of our end-to-end system, that we do not
need more than one RTP session set up (see assumption stated in Section 4.6.1). The RTP
session will, however, have multiple RTP streams/contexts – identified by the source and
destination IP addresses, UDP ports, and RTP SSRC.

Our implementation also assumes that each RTP stream contains more than one packet, as the
RTP Marker bit is used to indicate the first and last packets of the stream. Having only one
packet in a stream will cause confusion, as there will be no indication of the stream’s end. We
believe that this is a fair assumption in the practical world as well.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 OPNET Implementation 32

4.3.5 Packet and Payload

We have assumed that only the IP version 4 protocol will be used. Future work may include
incorporating IPv6 header compression into our process model. While the ATM
Encapsulator/Decapsulator implementation allows it, the RTP Compressor/Decompressor
assumes that only one IP header is present – as opposed to having IP packets encapsulated in
IP packets.

Furthermore, we have decided not to utilize the UDP checksum field for our testing.
Accounting for the UDP checksum would be a small task, and would only require that
additional fields be included in the compressed packets.

4.4 Verification Method

Verification of our models has been done both manually and automatically. When programming
each process model, the expected behavior of the model was verified through printouts. These
printouts were used to confirm proper header compression and ATM encapsulation had been
done.

In order to verify the end-to-end system, after each RTP stream had finished sending its packets,
the receiving end sink would compare the array of received header values with the array of
header values sent from the RTP Simple Source. Any discrepancy would be reported; otherwise
a “Success” message would be printed (see Section 5.1.1).

The details of each RTP Simple Source packet stream are as follows:

Table 2: RTP Simple Source Packet Streams
Source Source IP

Address
Destination IP
Address

Source
UDP Port

Destination
UDP Port

RTP
SSRC

Number of
packets

Start time
(sec)

Rtp_src_0 100.100.100.100 175.175.175.175 100 175 246248 2000 0.0
Rtp_src_1 200.200.200.200 175.175.175.175 200 175 1191 1000 100.4
Rtp_src_2 200.200.200.200 175.175.175.175 2000 175 75930 3000 250.3
Rtp_src_3 150.150.150.150 225.225.225.225 150 225 91122 2000 20.0
Rtp_src_4 150.150.150.150 225.225.225.225 150 2250 8286 1000 140.3
Rtp_src_5 250.250.250.250 225.225.225.225 250 225 788128 3000 75.0

Within each RTP stream, header field values of certain packets are modified such that the
compression algorithm can be tested.

Verification of the ATM subsystem was less involved, since the mapping was easily verified by
inspection. The packet formats generated were assigned fixed values (that is, hard-coded) to

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 OPNET Implementation 33

distinguish easily the different packet types and wrongly mapped field values. The following
table shows field values that affect AAL data collection.

Table 3: Hard-Coded Field Values for AAL Mapping (IPv4 Packet)
 8-bit CID 16-bit CID
length 1 (IPv4) 4096+111 (CID=111) 4096+6 (link seq = 6)
length 2 (encapsulated IP) 1024+1 (link seq = 1) 2222 (CID = 2222)
length 2 (encapsulated UDP) 1024+2 (link seq = 2) 2222 (CID = 2222)
Expected UU Value (IP/IP) 1*128+1=129 1*128+6=134
Expected UU Value (UDP/IP) 1*128+2=130 1*128+6=134

Table 4: Hard-Coded Field Values for AAL Mapping (Compressed Packets)
 COMPRESSED_UDP Packet COMPRESSED_RTP Packet
session_context_id 117 75
link_sequence 3 5
Expected CPCS-UU Value 0*128+3=3 0*128+5=5

Printouts show which nodes have been visited and the processing that was done at that node. A
sample of the ATM output is provided in Section 5.1.2.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Discussion 34

5. Discussion

This section analyzes the results achieved through our simulations and explains difficulties that
were encountered during the implementation of our end-to-end network. Some potential future
enhancements are also included

5.1 Results

Sections 5.1.1 and 5.1.2 describe the results from the RTP Subnetwork and ATM Subnetwork
respectively.

5.1.1 RTP Subnetwork Results

The RTP Subnetwork was successfully implemented with simulations showing expected
behaviour by the compressors and decompressors. When errors were manually inserted, they
were correctly reported; likewise when no errors were expected, none were reported. After
running a simulation with the RTP streams specified in Section 4.4, the following output
printed:

Aggregator 3: Initialized.
Aggregator 4: Initialized.
Source 5: Initialized.
Header Comp/Decomp 6: Initialized.
Header Comp/Decomp 7: Initialized.
Source 8: Initialized.
Source 9: Initialized.
Source 10: Initialized.
Source 11: Initialized.
Source 12: Initialized.

Compressor 6: CID 0 assigned to source with SSRC 246248.
Decompressor 7: CID 0 (SSRC 246248) added to Context State Table.

Compressor 7: CID 0 assigned to source with SSRC 91122.
Decompressor 6: CID 0 (SSRC 91122) added to Context State Table.

Compressor 7: CID 1 assigned to source with SSRC 788128.
Decompressor 6: CID 1 (SSRC 788128) added to Context State Table.

Compressor 6: CID 1 assigned to source with SSRC 1191.
Decompressor 7: CID 1 (SSRC 1191) added to Context State Table.

Compressor 7: CID 2 assigned to source with SSRC 8286.
Decompressor 6: CID 2 (SSRC 8286) added to Context State Table.

Compressor 6: CID 2 assigned to source with SSRC 75930.
Decompressor 7: CID 2 (SSRC 75930) added to Context State Table.

STREAM 1 SUCCESS: All header field values match original values (1000 packets).
Decompressor 7: Removing CID 1 (SSRC 1191) from Context State Table... DONE.
Compressor 6: Removing CID 1 (SSRC 1191) from Context State Table... DONE.

STREAM 4 SUCCESS: All header field values match original values (1000 packets).
Decompressor 6: Removing CID 2 (SSRC 8286) from Context State Table... DONE.
Compressor 7: Removing CID 2 (SSRC 8286) from Context State Table... DONE.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Discussion 35

STREAM 0 SUCCESS: All header field values match original values (2000 packets).
Decompressor 7: Removing CID 0 (SSRC 246248) from Context State Table... DONE.
Compressor 6: Removing CID 0 (SSRC 246248) from Context State Table... DONE.

STREAM 3 SUCCESS: All header field values match original values (2000 packets).
Decompressor 6: Removing CID 0 (SSRC 91122) from Context State Table... DONE.
Compressor 7: Removing CID 0 (SSRC 91122) from Context State Table... DONE.

STREAM 5 SUCCESS: All header field values match original values (3000 packets).
Decompressor 6: Removing CID 1 (SSRC 788128) from Context State Table... DONE.
Decompressor 6: That was the last element of contextStateRcvList.
Compressor 7: Removing CID 1 (SSRC 788128) from Context State Table... DONE.
Compressor 7: That was the last element of contextStateXmtList.

STREAM 2 SUCCESS: All header field values match original values (3000 packets).
Decompressor 7: Removing CID 2 (SSRC 75930) from Context State Table... DONE.
Decompressor 7: That was the last element of contextStateRcvList.
Compressor 6: Removing CID 2 (SSRC 75930) from Context State Table... DONE.
Compressor 6: That was the last element of contextStateXmtList.

Figure 30: RTP/UDP/IP Header Compressor/Decompressor Output

The output above indicates that a context state entry is inserted into the dynamic context state
tables of the compressor and decompressor each time the first packet of a new RTP stream is
received. When the last packet of the stream is received, the header fields of the received
packets are compared to the header fields of the original/sent packets – the result of these
comparisons is Success (i.e. matching header fields). Finally, the context state entry for an
ended stream is removed from the context state tables of the compressor and decompressor.

Our simulation was run with a fixed RTP payload of 40 bytes. Looking at the number of
received and sent bytes at the Header Compressor/Decompressor node hdr_c/d_0, we may
observe the conservation of bandwidth. Figure 31, Figure 32, and Figure 33 compare the
traffic received against the traffic sent for Compressor 0, Compressor 1, and Decompressor 1
respectively. It is noted that the Compressor 0 Sent traffic is the same as the Decompressor 1
Received traffic, as expected.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Discussion 36

Compressor 0: Traffic Sent vs Received

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (seconds)

Tr
af

fic
 (B

yt
es

)

Traffic Sent (Bytes)
Traffic Received (Bytes)

Figure 31: Bytes Sent Versus Bytes Received at Compressor 0

Compressor 1: Traffic Sent vs Received

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (seconds)

Tr
af

fic
 (B

yt
es

)

Traffic Sent (Bytes)
Traffic Received (Bytes)

Figure 32: Bytes Sent Versus Bytes Received at Compressor 1

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Discussion 37

Decompressor 1: Traffic Received and Sent

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (seconds)

Tr
af

fic
 (B

yt
es

)

Traffic Sent (Bytes)
Traffic Received (Bytes)

Figure 33: Bytes Sent Versus Bytes Received at Decompressor 1

From the three previous figures, we can see where the COMPRESSED_RTP format is used,
with packet sizes of 42 bytes or slightly higher when a delta header field is sent; the
COMPRESSED_UDP format is used, with packet sizes of 54 bytes or slightly more; and the
FULL_HEADER format is used, with 80-byte packets. With different RTP payload sizes, the
graphs will change only slightly. The difference between the bytes received and bytes sent
will stay constant (given the same header values), however the graph may be offset by a
different amount (instead of 40 bytes). As such, the percent of bandwidth savings due to
header compression is dependent on the RTP payload size.

With 40-byte RTP payloads, the total number of bytes received and sent from each
compressor are shown in Figure 34 and Figure 35. Again with larger payloads, the gap
between the total traffic received and total traffic sent will stay constant, however both lines
would rise faster.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Discussion 38

Compressor 0 - Cumulative Traffic Received and Sent

0

100000

200000

300000

400000

500000

600000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (seconds)

Tr
af

fic
 (B

yt
es

)

Total Traffic Sent (Bytes)
Total Traffic Received (Bytes)

Figure 34: Total Bytes Sent Versus Total Bytes Received at Compressor 0

Compressor 1 - Cumulative Traffic Received and Sent

0

100000

200000

300000

400000

500000

600000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (seconds)

Tr
af

fic
 (B

yt
es

)

Total Traffic Sent (Bytes)
Total Traffic Received (Bytes)

Figure 35: Total Bytes Sent Versus Total Bytes Received at Compressor 1

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Discussion 39

5.1.2 ATM Subnetwork Results

Because the ATM subnetwork is not concerned with any measures of performance or network
behaviours, mapping are verified simply by comparing output values. A sample of the ATM
Encapsulator/Decapsulator’s output for each type of incoming packet format is listed in the
following figure.

IPv4 packet fields set! (IP encapped)

encapsulating CPCS PDU (original UU = 0)
packet format : ams_aal5_cpcs_pdu

field 0: payload
field 1: UU
field 2: CPI
field 3: Length
field 4: CRC

payload format : ip_v4_pkt
field 0: version
field 1: ihl
field 2: tos
field 3: length
field 4: ident
field 5: flags
field 6: frag_offset
field 7: ttl
field 8: protocol
field 9: header_checksum
field 10: src_addr
field 11: dest_addr
field 12: data

yay, let's go set the CPCS-UU field now!

(Using 8-bit CID)
length1 = 4207
CID = 111
length2 = 1025
link_seq = 1

extension_bit = 1
new user-to-user = 129

extension bit = 1 (ip_v4_pkt)
link sequence = 1

atm_switch_1
atm_switch_2
uni_destn :

cell is for this node!
arriving user_to_user = 129

[ip_v4_pkt]

compressed RTP fields set!

encapsulating CPCS PDU (original UU = 0)
packet format : ams_aal5_cpcs_pdu

field 0: payload
field 1: UU
field 2: CPI
field 3: Length
field 4: CRC

payload format : crtp_main_hdr
field 0: session_context_id
field 1: M
field 2: S
field 3: T
field 4: I
field 5: link_seq
field 6: data

yay, let's go set the CPCS-UU field now!

CID = 75
link_seq = 5
extension_bit = 0

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Discussion 40

new user-to-user = 5
extension bit = 0 (crtp_main_hdr)
link sequence = 5

atm_switch_1
atm_switch_2
uni_destn :

cell is for this node!
atm_switch_1
atm_switch_2
uni_destn :

cell is for this node!
arriving user_to_user = 5

[crtp_main_hdr]

compressed UDP fields set!

encapsulating CPCS PDU (original UU = 0)
packet format : ams_aal5_cpcs_pdu

field 0: payload
field 1: UU
field 2: CPI
field 3: Length
field 4: CRC

payload format : cudp_main_hdr
field 0: session_context_id
field 1: M
field 2: S
field 3: T
field 4: I
field 5: link_seq
field 6: data

yay, let's go set the CPCS-UU field now!

CID = 117
link_seq = 3
extension_bit = 0
new user-to-user = 3

extension bit = 0 (cudp_main_hdr)
link sequence = 3

atm_switch_1
atm_switch_2
uni_destn :

cell is for this node!
atm_switch_1
atm_switch_2
uni_destn :

cell is for this node!
arriving user_to_user = 3

[cudp_main_hdr]

Figure 36: ATM Encapsulator/Decapsulator Output

For some packets, atm_switch_1 and atm_switch_2 (and uni_destn) are traversed multiple
times, indicating that the original packet was segmented into several ATM cells.

Comparison of these output values with those assigned in the traffic generation node
demonstrate that the CPCS-UU mapping was done correctly.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Discussion 41

5.2 Difficulties

Throughout the development of our project, we encountered various roadblocks, largely due to
OPNET. Complications arising from the OPNET software libraries resulted in many frustrations
and lost programming time. It was no surprise that a good amount of time was spent learning to
use OPNET’s kernel procedures as well.

Errors were encountered when trying to join nodes with generic links, causing us to put the
different processors (RTP Simple Source, Aggregator/Sink, Header Compressor/Decompressor)
into a single node model, instead of different node models – which is more logical.

Because the COMPRESSED_UDP and COMPRESSED_RTP packet formats require additional
fields when sending new delta values is necessary, it was important to find a way to give this
kind of flexibility. Our solution was to create additional packet formats to simulate these
individual optional fields. If a particular optional field were required, then our packet would be
encapsulated by an additional header (which would be the single field).

OPNET has an undesirable habit of changing a packet, or its contents sometimes, even when that
packet is not the object of focus. For example, the command

op_pk_nfd_set (the_pdu, “payload”, sdu)

not only changes the_pdu, but also releases the contents of sdu. As a result, sdu’s format was
still provided but OPNET, but any fields that were previously present were no longer accessible
and generated an error during simulation. An attempt to circumvent this issue involved accessing
the field values via C’s memory operations and bit-shifting the values to obtain the field of
interest; however, C's bit operators require knowledge of variable length, and MSBs shifted off a
value cannot be retrieved. It would be desirable to have an OPNET command that forces an
existing packet into a format, mapping binary bits regardless of field boundaries.

The ATM models installed with OPNET are read-only, and highly dependent on each other. Any
small changes had to be locally saved, often meaning changing the name a header file: Because
of the interdependent models, changing the name of a header file forced the user to change the
name is every other process model used (new names for all other models!). Much time was spent
trying to work around the interdependencies and duplicating editing models to avoid redundant
declarations and the such.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Discussion 42

5.3 Future Enhancements

Due to time constraints, we decided on simplifying our implementation. For a more complete
project, we believe that some additional future work is required.

RFC 2508 also describes a CONTEXT_STATE packet format, sent from a decompressor to a
compressor when dropped packets are detected (identified using the link sequence values). This
would be a necessary addition to our implementation in order to satisfy the RFC’s specification.

The current RTP compressor/decompressor implementation removes a context entry from the
context state tables when the last packet has been received and forwarded (from the compressor
and the decompressor). Future work would include adding an acknowledgement from the RTP
destination to indicate to the compressor and decompressor that the last packet has successfully
arrived.

In order not to restrain the position of a UNI device on a network, two-way ATM communication
would be necessary. Currently, the traffic source and destination sink are implemented using
separate nodes; ideally these would be combined so that a UNI device could transmit and receive
the compressed RTP packets.

The traffic coming into the ATM end devices would more realistically come from a local area
network or from another computer. So an enhancement to our project would be to deliver traffic
via packet streams (from another LAN device), instead of generating it internally at the UNI.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Conclusion 43

6. Conclusion

As Internet traffic increases with demand, demand for better bandwidth usage also increases.
The ATM Forum Contribution by AT&T Labs researchers Alexander Fraser, Peter Onufryk, and
K.K. Ramakrishnan, describes the ATM encapsulation of compressed RTP packets, saving
bandwidth for real-time applications like voice and video.

A simplified version of the proposed encapsulation scheme was successfully implemented in
OPNET Modeler. Certain assumptions were placed in order to accomplish the main focus of the
paper – the encapsulation of compressed and uncompressed RTP/UDP/IP packets.

Results show that the compression of packet headers before ATM encapsulation saves on the
transmission of much repetitive information that can be stored at the source and destination..
The new packet formats introduced into the system must be recognized and processed by the
ATM encapsulation/decapsulation module, to accommodate for assumptions made by
implementing the header compression scheme.

To fully implement a model as proposed in the research paper, several future enhancements have
been presented. These suggestions include the initiation and setup of the RTP session and the
ATM virtual channel, consideration of multiple concurrent RTP sessions, and two-way ATM
communication. We feel these works are necessary to fully benefit from the advantages offered
by the RTP over ATM encapsulation method in a more realistic environment.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 References 44

7. References

[1] ATM Forum, “About ATM Technology”,

http://www.atmforum.com/pages/aboutatmtechfs1.html, March 10, 2002.

[2] Casner, S., Frederick, R., Jacobson, V., and Schulzrinne, H., “RTP: A Transport Protocol for

Real-Time Applications”, RFC 1889, GMD Fokus, Precept Software, Inc., Xerox Palo Alto
Research Center, Lawrence Berkeley National Laboratory, January 1996.

[3] Casner, S. and Jacobson, V., “Compressing IP/UDP/RTP Headers for Low-Speed Serial

Links”, RFC 2508, Cisco Systems, February 1999.

[4] Cisco Systems, Inc. “Asynchronous Transfer Mode (ATM) Switching”,

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/atm.pdf, March 14, 2002.

[5] Cisco Systems, Inc. “Guide to Cisco Systems’ VoIP Infrastructure Solution for SIP – Version

1.0”, pp 1-8, 2000.

[6] Fraser, A., Onufryk, P., and Ramakrishnan, K., “Encapsulation of Real-Time Data Including

RTP Streams over ATM”, ATM Forum/SAA-98-0139, AT&T Labs. Research, February 1998.

[7] Heinanen, J., “Multiprotocol Encapsulation over ATM Adaptation Layer 5”, RFC 1483,

Telecom Finland, July 1993.

[8] International Telecommunication Union, “B-ISDN ATM Adaptation Layer specification: Type

5 AAL”, ITU-T Recommendation I.363.5, August 1996.

[9] International Telecommunication Union, “B-ISDN ATM Layer Specification”, ITU-T

Recommendation I.361, November 1995.

[10] Jacobson, V., “Compressing TCP/RTP Headers for Low-Speed Serial Links”, RFC 1144, LBL,

February 1990.

[11] Marshall, Dr. Alan, “ATM Asynchronous Transfer Mode: An Overview”,

http://www.pcc.qub.ac.uk/tec/courses/network/ATM/ATMV1_1.html, March 12, 2002.

[12] Philp, Ian, “Research Directions for the Next Generation Internet: Application-Specific

Network Services”, http://www.cra.org/Policy/NGI/papers/philpWP, March 05, 2002.

[13] Rutkowski, Tony. “Internet Survey Reaches 109 Million Internet Host Level”,

http://www.ngi.org/trends/TrendsPR0102.txt, March 06, 2002.

[14] Webopedia, “RTP”, http://www.pcwebopedia.com/TERM/R/RTP.html, March 14, 2002.

 Transportation of an RTP Packet Stream over an AAL5 Backplane

 Appendix A – Glossary 45

Appendix A – Glossary

Mixer [RFC 1889]: An intermediate system that receives RTP packets from one or more
sources, possibly changes the data format, combines the packets in some manner and then
forwards a new RTP packet. Since the timing among multiple input sources will not generally be
synchronized, the mixer will make timing adjustments among the streams and generate its own
timing for the combined stream. Thus, all data packets originating from a mixer will be identified
as having the mixer as their synchronization source.

Translator [RFC 1889]: An intermediate system that forwards RTP packets with their
synchronization source identifier intact. Examples of translators include devices that convert
encodings without mixing, replicators from multicast to unicast, and application- level filters in
firewalls.

