
CMPT 885-3: SPECIAL TOPICS: HIGH-PERFORMANCE NETWORKS
Spring 2002

Implementation of Start-Time Fair Queuing

Algorithm in Opnet™

FINAL PROJECT REPORT

http://www.cs.sfu.ca/~daryn/personal/school/885/

Daryn Mitchell & Jack Man Shun Yeung
{daryn,yeung}@cs.sfu.ca

Table of Contents

Abstract ..6
1 Introduction...6
2 Background...7

2.1 Congestion Control ..7
2.2 Queuing Schemes...8
2.3 Start-Time Fair Queuing Algorithm...9
2.4 SFQ Details ...10

3 SFQ Implementation ...11
3.1 SFQ ICI ...11
3.2 SFQ Process Model ..11

3.2.1 Algorithm Implementation Design ...12
3.2.2 The init State..13
3.2.3 The arrive State..13
3.2.4 svc_start State ..13
3.2.5 The svc_complete State ..14

3.3 VirtualClock Process Model ...14
3.4 Source Node Process Model ...15
3.5 Receiving Node Process Model...15

4 Performance Evaluation ..16
4.1 Network Configuration ..16
4.2 Unfairness of FIFO ..16
4.3 Flow Protection in SFQ..17

4.3.1 Delaying Only Packets From Misbehaving Sources ..17
4.3.2 Preventing Credit-Store & Burst Misbehaviour...19

4.4 Idle Bandwidth Use: Comparison SFQ vs. VC ...20
4.4.1 Does VC “Punish the Use of Idle Time”?..20

Scenario 1..21
Scenario 2..21

4.4.2 VC Punishes Misbehaviour...22
Misbehaviour: Auxiliary Virtual Clock in Traffic bursts (Scenario 1)...22
Senario 3 …When Congestion Occurs ...22

4.5 Punishing & Bandwidth for VBR flows..25
Scenario 4..26
Scenario 5 – VBR punishing in VC ...27
Scenario 6 – VBR non- punishing in SFQ..28
VBR punishing: Conclusion ..28

5 Discussion and Conclusion ..29
6 References...30

Appendix A: VirtualClock Implementation Details ...32

3.3.1 The init State ..32
3.3.2 The arrive State ..32
3.3.3 The svc_start State..32
3.3.4 The svc_complete State...33

Appendix B: Source Code ...34
FIFO Queue Module (Opnet’s acb_fifo)...34
SFQ Queue Module...36
VC Queue Module ..44
Source Node Module...50
Receving Node Module ...56

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 6

Abstract

 Scheduling or queuing algorithms are used in packet forwarding elements such as routers
or switches [Cis95]. The goal is to minimize transmission delays as well as to help in manage
network congestions. In this project, we study different scheduling algorithms. We examine in
particular Start-Time Fair Queuing [Goy96] which claims to achieve good fairness even with
VBR traffic source present in the network. We implemented the algorithm as an Opnet™ 8.0
model on which simulations are run to verify its different characteristics. Comparisons between
Start-Time Fair Queuing and other scheduling schemes were also done by ways of simulations.

1 Introduction

Routers and switches in packet-switched networks use buffers to manage data, which come from
various sources but are destined to a single shared link. However, the difference between the
packet arrival rate and packet departure rate as well as congestion in the network usually causes
packet to wait in the buffers, and this imposes significant delays in the transmissions. Efficient
buffer managements help to minimize these delays and can even help to resolve congestion in the
network.

The majority of routers deployed in real networks serve packets from various sources in the order
they arrive (First-in, First-out, or ‘FIFO’). This is a simple and thus low cost approach which
generally works. However, with FIFO scheduling, if one source floods the network with packets,
it will appropriate a high proportion of the packets served and thus the bandwidth available to
other well-behaved sources will dramatically decrease, resulting in an unfair allocation of
bandwidth in the view of the well-behaved sources.

A number of different scheduling algorithms (a.k.a. queuing algorithms) with varying levels of
complexity have been introduced over the past 15 years to address this issue. They generally
achieve fairness by allocating a relatively equal share of the bandwidth to each source; under
congestion, each source or incoming packet flow is guaranteed its portion. Flows may transmit
faster than their allocated bandwidth only if there is idle time not being used by other flows.

Many of these fair queuing (FQ) algorithms developed in the old days, however, do not perform
well in the presence of variable bit rate (VBR) traffic source. As VBR traffic becomes very
common in modern networks (e.g. video traffic on the Internet), modern queuing algorithms must
be able to fairly handle a combination of VBR and CBR traffic.

For this CMPT 885 project we decided to study different scheduling algorithms used in routers or
switches, and specially focus on examining and implementing the “Start Time Fair Queuing”
(SFQ), which is a fair queuing algorithm that performs well even in the presence of VBR traffic.
Performance of SFQ will be evaluated with other algorithms. Our evaluation approach follows an

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 7

earlier project by Nazy Alborz in which she implemented and evaluated a different FQ algorithm,
Virtual Clock (VC).

In this report, we give a general description of different scheduling algorithms and present the
SFQ algorithm as the result of our study. We then describe our implementation of SFQ in the
Opnet™ network modeling and simulation environment. Finally, we report the results of a
network simulation that we ran for evaluating the performance of the SFQ algorithm in
comparison to other scheduling schemes.

2 Background

In the section, we first present the role of scheduling or queuing algorithms in the packet-switched
network. Descriptions of different widely adopted queuing algorithms, including Start-Time Fair
Queuing, follow. Then, we describe our implementation of SFQ in Opnet™ 8.0. Finally, we
present the results of the performance evaluation of SFQ with our implementation.

2.1 Congestion Control

In circuit-switched networks where data travels along a fixed path with dedicated bandwidth,
there is no queuing delay at the switches; in packet-switched networks, however, the data rate
varies depending on the packet size and the rate at which packets arrive.

When packets from multiple sources are multiplexed to the same outgoing link at the switch or
router but data arrives faster than it can be routed and transmitted across, congestion may occur.
In this case, the switch must buffer the packets until the outgoing link is free. The time the packet
waits in the buffer adds random delay to the transmission. This added delay can be very large, and
if the capacity of buffer is exceeded packets will be lost. [Wal00]

The simplest way to avoid congestion and delay is to use less than the maximum bandwidth of the
network [Chu02]. However, that would by definition mean an inefficient use of the network.
Instead, the goal is to keep the delay within acceptable limits by using congestion control
algorithms.

Congestion control can be done at the source by limiting the amount of traffic sent, which is also
referred as flow control. A typical example is the window adjustment approach of TCP [Wal00].
On the other hand, congestion can also be controlled at the switch or router by managing the
buffers effectively. Different methods for the latter approach, known as scheduling or queuing
algorithms, are developed and widely adopted by switch and router manufacturers.

One drawback of the controlling-at-the-source approach is that it usually depends on the
responses from other network elements, either the switches or the receiver host, in order to
dynamically adjust how much data should be sent out or how much data should be buffered in the
future. Queuing algorithms instead usually works by only examining the incoming traffic rate, and
thus needs no communications with other network elements.

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 8

2.2 Queuing Schemes

A very simple and basic queuing algorithm is to serve packets in the order they arrive from all
sources, FIFO1. However, the router is susceptible to a serious problem. The flaw, identified
nearly twenty years ago by John Nagle [Nag84], is that a source that ignores flow control and
floods the network with traffic will dominate the FIFO queue - at the expense of the other well-
behaved sources. This ill-behaved source effectively steals bandwidth from the other sources.
Such behaviour could easily take place when people intentionally altering their algorithms in order
to take advantage of the phenomenon [Der90]. But it could also happen unintentionally when a
source has relatively larger packet size, or when network equipment malfunctions. In fact, this
problem can even occur between well-functioning sources that use different congestion control
algorithms, such as the Reno and Vegas versions of TCP [Mo99].

Priority Queuing tries to improve FIFO queuing, by examining priority values of incoming
packets. Incoming packets with higher priorities will always be served before lower priority
packets. So important packets with higher priorities should have smaller delays. However, if an
ill-behaved source keep flooding the network with higher priority packets, the domination
situation occurs as in FIFO.

Another queuing algorithm called Class-Based Queuing tries to improve FIFO by classifying
incoming packets into different pre-defined sub-queues, and then serve the different sub-queues in
a round-robin manner. This ensures fair bandwidth allocation among different “kinds” of packets
(i.e. among different sub-queues). But since packets in the same sub-queues are still being served
in a FIFO manner, the disadvantages of simple FIFO queuing still present.

The solution, known as fair queuing (FQ), is to share the bandwidth of the outgoing link among
sources by guaranteeing each source a minimum bandwidth allocation. In this way, well-behaved
sources can have some protections from ill-behaved sources. More Specifically, the algorithm
“insures that well-behaved hosts receive better service than badly-behaved hosts” [Nag84, RFC].
Each source is served one at a time in a round robin manner. Sources with no incoming packets
are skipped in that round. Nagle’s concept is widely accepted and affects many later queuing
algorithms, such as Virtual Clock Fair Queuing, Weighted Fair Queuing, and Start Time Fair
Queuing.

Weighted Fair Queuing (WFQ) is proposed based on Nagle's simple FQ algorithm in order to
better suit the needs of the real world and at the same time retains the advantages of FQ. WFQ
estimates the time of finishing serving the packet, and use this finish time to determine which
packets to serve first. Moreover, the “weight” concept gives room to implement quality of
services in the network. The algorithm provides good fairness in general for constant bit rate
(CBR) traffic.

Virtual Clock (VC) orders incoming packets by calculating a time stamp for each incoming
packet. The time stamp is created by considering both a finish-serving time, like WFQ, and a time

1 FIFO queuing (i.e. first-in, first-out) is also commonly called “first-come first-serve,” or FCFS

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 9

from a virtual clock system. The packet with the earliest stamped time is served first. VC was
designed to reduce the computational complexity associated with the original FQ method.
However, it increases the maximum delay incurred by packets significantly. Although it is
technically fair, VC does not handle VBR traffic well because it penalizes a source for the use of
idle bandwidth, as stated by Parekh & Gallagher [Par93]
Zhang proposes an interesting scheme called virtual clock multiplexing [21], Virtual clock
multiplexing allows a guaranteed rate and (average) delay for each session, independent of the
behavior of other sessions. However, if a session produces a large burst of data, even while the
system is lightly loaded, that session can be “punished” much later when the other sessions
become active.
This will be examined further in Section 4.4.

2.3 Start-Time Fair Queuing Algorithm

Unlike WFQ, Start Time Fair Queuing (SFQ)2 orders packets by calculating a start-sending time
stamp for each packet. The packet with the earliest starting time will be served first. Similar to
VC, it is designed to reduce computational complexity. SFQ has also been claimed to be the first
queuing algorithm focusing on handling both CBR and VBR traffic, and thus has benefits when
applying on modern networks where VBR traffic is common.

The SFQ algorithm can be summarized as follows:
The router serves packets in order of start time. The basic idea is as follows: a packet arriving in
flow f is assigned a “start tag” as follows:
If there are packets from flow f waiting in the buffer, the new packet should be scheduled as soon
as possible behind them. Thus the start tag is set to be the “finish tag” of the previous packet.
The finish tag is actually pre-assigned based on the size of packet divided by the rate assigned to
the flow.
However, if the start tag of the packet currently being serviced (from any flow) is higher than the
finish tag of the previous packet, use the currently servicing start tag that instead. (i.e. if flow f is
behaving, the packet can go to the front of the line, but it can’t go in front of the line)

Goyal et al additionally refer to setting the first start tag after a non busy period (i.e. server not
serving packets) to the maximum finish time of packets served so far, but note that this was for
proving delay guarantees and that setting it to zero would be equivalent.
The algorithm provides fairness protection between flows because each packet is scheduled
behind the packets from its own flow. If one flow over-transmits, then its packets won’t cut in line
in front of other flows. It also provides sensible fairness during less busy periods (corresponding
to the times when a flow does not have any packets waiting in the buffer): the extra bandwidth is
shared among all flows. When a new packet arrives from the idle flow it goes to the front of the

2 Note that a different queuing algorithm, Stochastic Fairness Queuing, was already referred to as “SFQ” leading
some to suggest the use of “STFQ” for Start-Time Fair Queuing [Vil98]. However, in most citations the acronym
“SFQ” - as used by the authors - persists [Citeseer].

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 10

line and scheduling continues as before, and thus there is no penalty for other flows using the
extra bandwidth.

2.4 SFQ Details
The algorithm uses two variables associated with each data flow to record the state,
maximum_finish_tag_served to store the greatest finish_tag of all packets served so far, and it
uses two values that it calculates and associates with each packet, start_tag and finish_tag.
The algorithm works as follows:
For each packet that arrives from flow f at time t
if (the server is busy)
 virt_time ← the start_tag of the packet in service at time t
else (server not busy)
 virt_time ← maximum_finish_tag_served
prev_finish_tag ← finish_tag of the previous packet in flow f
start_tag ← max{ virt_time , prev_finish_tag }
finish_tag ← start_tag + (length of packet)/weight

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 11

3 SFQ Implementation

In this section we describe our implementation of the SFQ algorithm in Opnet™ 8.0 as a Queue
Model that is a process model in Opnet™ 8.0. The core of the implementation consists of a ‘C’
programming language file sfq.pr.c. With SFQ implemented as a Queue Model, a Queue Node
created in the Node editor can select “sfq” as the queuing scheme.

3.1 SFQ ICI

To support the algorithm, we use the “Interface Control Information” (ICI) system in Opnet™.
This allows us to associate data fields with each arriving packet to the SFQ Queue Model. The
SFQ ICI is found in the file sfq.ic.m., and its configuration is show below:

3.2 SFQ Process Model

We originally planned to implement SFQ as one of the QoS routing options in the IP model of
Opnet™ following what Nazy Alborz did in her implementation of the VirtualClock algorithm
[Alb01]. This was our intention at the time of the progress report in March, 2002. However, after
spending time examining the code for the IP output interface and IP QoS models, we realized that
the complexity of integration was too great for this project and that it would divert our focus from
the implementation and testing of SFQ. Consequently, we determined to implement SFQ as an
Opnet™ process model, and
were able to use the finite state machine (FSM) of Opnet™’s active FIFO queue, acb_fifo, as the
foundation of our SFQ implementation.

Figure 3.1-1 ICI used in SFQ scheduling algorithm

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 12

The Finite State Machine of SFQ Queue Model is arranged as follows:

3.2.1 Algorithm Implementation Design
In FIFO queuing, the arrival state simply queues the packet at the tail of a single queue. At the
time of servicing, the algorithm selects the packet at the head of the queue. The queue is accessed
by using Opnet™ queuing commands like

op_subq_pk_insert (queue_id, pkptr, OPC_QPOS_TAIL)
pkptr = op_subq_pk_access (queue_id, OPC_QPOS_HEAD);

In SFQ, since the packets are served in order of start tag we had the option of
building a single priority queue and inserting packets with start_tag as the priority.
maintaining separate FIFO subqueues for each incoming flow. Then, when it comes to the time to
serve a packet, we examine the head of each queue and serve the packet with the lowest start tag.

Both techniques are suitable to implement SFQ because they both schedule packets in order of
start tags.

In a real router we would likely choose option 1 because it would be adaptable to a large number
of flows and it keeps most of the packet processing actions within the packet insertion stage –
which would often occur while another packet was being served, thus minimizing delay between

Figure 3.2-1 Process model finite state machine of FIFO, SFQ, and VirtualClock queue

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 13

serving packet. (Note: This priority queue concept is the one presented by Lixia Zhang for the
Virtual Clock scheme [Zha90].)

For this simulation, however, we decided to use subqueues for each flow since conceptually it
matched more closely with our mental model. Furthermore, it would be convenient to measure the
size and delay in each subqueue using built-in statistic functions in Opnet™.

3.2.2 The init State
Initialize the variables and statistics.

3.2.3 The arrive State
Step 1: Get the incoming packet
Step 2: Get information about the packet: flow f that it is from, packet length, and arrival time in
queue. Store the arrival time. If the flow has been assigned a weight of 0 then discard the packet.
Step 3: Calculate the start_tag and finish_tag for the packet, and update the
“prev_finish_tag[flow]” variable to use in the next packet arrival from flow f
Step 4: Create an ICI and assign values to the data fields: start_tag, finish_tag (for SFQ) and
“Arrival Time in Queue” and “incoming_flow” (for statistics); attach the ICI to the packet.
Step 5: Attempt to queue the packet in the subqueue corresponding to flow f. If the server is not
busy, go straight to the svc_start state; otherwise return to the idle state.

3.2.4 svc_start State
Step 1: Determine which subqueue to serve. This is performed by the following sequence
of actions:
Cycle through the subqueues, stop when you find the first non-empty queue
Access the packet at the head, get its start_tag from the ICI
Set this start_tag as “min” and the queue as “min_q”
Loop through any remaining subqueues and for each non-empty subqueue repeat (b)
If this start_tag is lower than min, update min and min_q
min_q is the subqueue to serve

Step 2: Get a pointer to the packet and retrieve its start_tag from the ICI. Update the
start_tag_in_service and queue_in_service state variables.
Step 3: Calculate the time it will take to serve the packet (based on packet length) and schedule
an interrupt for the time when service is completed.
Step 4: Update statistics
Step 5: Set the server_busy state variable to true and return to the idle state.

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 14

3.2.5 The svc_complete State
This state is entered by the self-scheduled interrupt from svc_start state, which indicates that the
time required for packet service is completed.
Step 1: Remove the packet from its subqueue
Step 2: Retrieve its finish_tag from the ICI. Update the max_finish_tag state variable if the new
finish_tag is greater.
Step 3: Update statistics
Step 4: Send the packet. If there are packets waiting to be sent, go straight to the svc_start state;
otherwise return to the idle state.

3.3 VirtualClock Process Model
We originally intended to use the Virtual Clock QoS routing option in Opnet™’s IP model that
Nazy Alborz implemented [Alb01]. However, we discovered that it was written for an earlier
version of Opnet™ and did not work in Opnet™ Modeller 8.0. Nevertheless, we desired to
compare SFQ with another fair queuing technique: it was important if we wanted to get more
interesting simulation results. Thus, we decided to implement VC algorithm as a Queue Model,
similar to SFQ.

Our VC process model was primarily built by transforming Nazy Alborz’s VC implementation in
the IP framework into the Opnet™ Process model framework. The functioning of SFQ and VC,
like most Fair Queuing (FQ) algorithms, are very similar except for the scheduling method. We
were able to implement VC with exactly the same structure that we did in implementing SFQ.
start_tag and finish_tag in SFQ are replaced by auxiliary_virtual_clock in VC. Also, a VC ICI is
created to associate time stamps (‘virtual_clock_stamp’ and ‘aux_virtual_clock_stamp’) to each
arriving packet. The FSM for VirtualClock is the same as that of SFQ and acb_fifo. Since the
details of the VC Queue Model are very similar to the SFQ Queue Model, the implementation
details for VC are left to Appendix A.

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 15

3.4 Source Node Process Model
We modified the simple_source process model
in Opnet to allow a more flexible way to
generate different types of traffic flows. Figure
3.4-1 (right) shows the additional options
available to the users in the modified version of
simple source object. They are basically used
to control two new functions:

1) File reading capability
The "Use File Data", "File Location" and the
"File Data Rate" options together allow the
user to tell the source node to read in data
from a file and generate traffic flows based on
the data (e.g. the star wars trace).
2) Multiple packet interarrival time
The second, third, fourth and fifth interarrival
time allow the user to specify up to five
different interarrival times in a traffic flows
over different periods of time. With the
corresponding "Start Time" options, these
different periods of time are controlled.

3.5 Receiving Node Process Model
The receiving node acts as the end point in the network since all the packets from the source
nodes are destined to this receiving node. The receiving node is a completely new implementation,
and it has two functionalities:
1) destroy the incoming packets, and
2) record statistics about the incoming packets.

Figure 3.5-1 (right) shows the Finite State
Machine of its process model. It starts with the
"init" state to initial all the state and temporary
variables, and then it switches to the "idle"
state. When a packet arrives, it switches from
the "idle" state to the "arrival" state to record
statistics, like end-to-end delay of the packets.
Finally, it destroys the packets and returns to
the "idle" state to wait for the next packet to
arrive.

Figure 3.4-1 Source Node Attributes

Figure 3.5-1 Receiving Node Process
Model – Finite State Machine

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 16

4 Performance Evaluation

4.1 Network Configuration

We designed a simple network in order to test the
SFQ queue model and to verify the characteristics
and performances of SFQ. There are four source
nodes (on the left) for generating traffic. All
source nodes are connected to the router (in the
middle). In order to communicate with the
receiving node (on the right), the source nodes
share the same link between the router and the
receiving node. The traffic generation of the
source s and the bandwidth bottleneck of the
router/shared link are customizable. This
arrangement allowed us to create variety of
source traffic situations with a bottleneck at the
router.

We ran a number of simulation scenarios to verify
the performance and characteristics of SFQ. The
results are presented as 4 categories in the
following subsections.

4.2 Unfairness of FIFO

As stated in Section 2.2, FIFO is susceptible to a problem of unfairness in which an ill-behaving
source can easily occupy most of the bandwidth of the outgoing link by using a relatively higher
packet arrival rate at the router, leaving only a small room for the other sources to transmit their
packets. Fair Queuing algorithms protect each flow from other flows’ misbehaviour; in Weighted
Fair Queuing schemes such as SFQ, the algorithm guarantee a certain amount of bandwidth to
each flow according to its allocated ‘weight.’

We created a simple scenario to observe FIFO behaviour and verify that SFQ maintains fair
bandwidth allocation to each flow. The scenario uses two source nodes of our network model to
generate traffic:

Source [0] 1 pkt / 8 seconds
Source [1] 10 pkts / second

The bandwidth of the link is 6 pkts/sec, so Source [1] is deemed to be misbehaving and flooding
the network. We ran the scenario twice, first with FIFO queuing and then with SFQ as the
scheduling algorithm in the router. The throughput of the individual traffic flows were as follows:

Figure 4.1-1 Network Configuration

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 17

Figure 4.1-1 and 4.1-2 above show the throughputs of individual traffic flows at the router, and
we can see that SFQ allowed packet from source 1 to go through at the expected rate of 0.125
packets per second. However, with FIFO, packets from source 1 only have an outgoing rate of
0.075 packets/sec at the router, while packets from source 2 were using most of the bandwidth.

This illustrates the fact that FIFO does not protect bandwidth for flows when there is congestion.
In SFQ, on the other hand, a conforming source has a guarantee throughput even with the
presence of congestion caused by a misbehaving source.

4.3 Flow Protection in SFQ

We further investigated the fairness of SFQ by verifying its ability to protect conforming sources
from misbehaving sources in terms of 1) delay and 2) “credit storing.”

4.3.1 Delaying Only Packets From Misbehaving Sources
A consequence of the fact that Fair Queuing algorithms guarantee bandwidth to behaving flows is
that when a traffic flow misbehaves and causes congestion in the network, packets from that
traffic flow will greater experience delays. To visualize this characteristic, a scenario with 2 traffic
generation nodes was set up as follows:

Time: 0-3 minutes 3-5 minutes 5-10 minute
Source [1] 4 packets/sec
Source [2] 4 packets/sec 6 packets/sec 4 packets/sec

Figure 4.2-2 Throughput of Flow[1] (misbehaving source) Figure 4.2-1 Throughput of Flow[0] (behaving source)

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 18

The outgoing link bandwidth is 8 pkts/sec. The bandwidth guarantee for the flows are:
Flow 1: 4 pkts/sec
Flow 2: 4 pkts/sec
Thus, during the period of 3-5 minutes, source 2 misbehaves and causes congestion. The traffic
generated by the sources and the throughputs for individual traffic flows are shown below
(Figures 4.3-1 and 4.3-2):

Furthermore, the end-to-end (ETE) delays of packets from different flows (Figure 4.3.-3, shown
below) confirms that SFQ protects packets from the behaving source [1] from experiencing larger
delays in the presence of congestion caused by the misbehaving source.

Figure 4.3-1 Source Traffic

Figure 4.3-2 Throughput with SFQ

Figure 4.3-3 ETE Delay of behaving and misbehaving
flows

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 19

Figure 4.3-1 Source Traffic for Flows 1, 2, 3

4.3.2 Preventing Credit-Store & Burst Misbehaviour
A flow (e.g. VBR) should not be allowed to store up credit in a low period and burst later,
because the idle bandwidth that existed during the low period is “gone” [Zha90]. VirtualClock
prevents a source from bursting after credit-storing, as verified by Alborz and Trajkovic [Alb01].
We use the same simulation scenario to verify that SFQ has the same ability.
The scenario is created with the following settings:
 5-20sec 20-141sec 142-391sec 392-455sec 456-555sec
Source 1, CBR – 4 packets/sec
Source 2, CBR – 2 packets/sec 0.5 packets/sec 8 packets/sec –
Source 3,
VBR

Average 4 packets/sec

The outgoing link serves up to 8 packets/sec
The weight agreement is as follows:
Source 1: “4”
Source 2: “2”
Source 3: “4”
Thus even in congestion SFQ should guarantee
bandwidth of:
Source 1: 3.2 pkts/sec
Source 2: 1.6 pkts/sec
Source 3: 3.2 pkts/sec
Source 2 attempts to misbehave by under-
transmitting (during t= 20-141) and then
bursting (during t= 392 – 455). Traffic
generation for each source is shown in
Fig. 4.3-1 (right).

The router throughput for each flow is found in
Fig. 4.3-2 (right). This result shows that as in
VirtualClock, this credit storing strategy does
not work with SFQ. The throughput of flow 2
never exceeds 2 pkts /sec even when it transmits
8 pkts/sec, and the bandwidth guarantees for the
other flows are maintained.
Thus we see that SFQ does not allow a
misbehaving source to store credits in order to
send a traffic burst at a later time.

Figure 4.3-2 Throughput for Flows 1, 2, 3 (SFQ)

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 20

4.4 Idle Bandwidth Use: Comparison SFQ vs. VC

In Section 2.2 we mentioned that Parekh & Gallagher claim that VirtualClock punishes flows for
large bursts of data, even long after the burst [Par93]. Goyal et al cite this, stating that VC
“penalizes a traffic flow for using idle bandwidth” [Goy96]. They designed SFQ to eliminate this
effect, allow a flow to use the idle bandwidth (i.e. bandwidth originally reserved for some other
flows but are not being used at the time) without penalty, in order to achieve an efficient use or an
efficient use of bandwidth.

In this section, we present a number of tests we used to verify this claim.

Our result shows that VC does have a “punish” effect but the claim of “punishing of using idle
time” is not completely true.

4.4.1 Does VC “Punish the Use of Idle Time”?

The claim that VC punishes the use of idle time was surprising to us. We concluded that if this
were true, the consequence would be as follows:

Figure 4.4-1 Source Traffic (Using “Idle Time”) Figure 4.4-2 Expected Throughput In VC

Transmission rate of source 1 and
source 2

Source 1

Source 2

Packet serving under punishing
scheduling scheme
(red indicates actual rate)
Flow 1

Flow 2 (source 2 is ‘punished’)

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 21

Scenario 1
Fig. 4.4-1 defined our first test. We created a simple simulation by using two sources with traffic
to mimic the traffic sources above, as follows:

Time: 0-2 minutes 2-5 minutes 5-15 minutes
Source [1] 4 pkts/sec 1 pkt / sec 4 pkts/sec
Source [2] 4 pkts/sec 6 pkts/sec 4 pkts/sec

The bandwidth of the outgoing link was 8 pkts /sec, so each flow was given 4 pkts/sec.
The input traffic and outgoing throughput are shown below:

Clearly, VC did not punish flow 2 for using idle time!

Scenario 2
It was only when we used the same
source traffic and introduced congestion
into the system by reducing the bandwidth
of the outgoing link to 6 pkts /sec, so
each flow was given 3 pkts/sec (and thus
both were misbehaving), that we saw the
result we expected for the first scenario:

The above two scenarios showed that our
original understanding was not completely
accurate. VirtualClock does not strictly
punish the “use of idle time.”

Figure 4.4-5 Throughput with VC - Scenario 2

Figure 4.4-4 Throughput with VC - Scenario 1 Figure 4.4-3 Source Traffic

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 22

4.4.2 VC Punishes Misbehaviour
What VC actually does punish is misbehaviour, and this punishment is only effected when
congestion occurs. These two principles are shown in the following sections:

Misbehaviour: Auxiliary Virtual Clock in Traffic bursts (Scenario 1)
In 4.4.1 Scenario 1 (no congestion), both flows maintained their throughput (Fig. 4.4-4) and had
no delay (Fig 4.4-6, below left). However, let us examine the Auxiliary Virtual Clock during that
scenario (Fig. 4.4-7, below right):

Note that although Flow 2 appeared to be unaffected by misbehaving because it only used idle
bandwidth, its Auxiliary Virtual Clock is now running fast because it incremented faster than
agreed due to the increased arrival rate from time = 2 – 5 minutes. When the misbehaviour
stopped, both internal clocks will increased at the same rate again; yet source 2’s misbehaviour
had been “remembered” by the values in these clocks.
This occurs whenever a flow misbehaves in VC.

Scenario 3 …When Congestion Occurs

To show the punishing effect that this results in, we will create a new Scenario 3 by extending
Scenario 1, adding another 15 minutes to the original simulation. Recall that because the
bandwidth of the link is 8 pkts/sec there has been no packet delay so far.

For the first 5 minutes both sources continue to behave by transmitting 4 pkts/sec. Now, at time =
20 minutes, source 1 takes a turn at misbehaving, transmitting 8 pkts/sec for 1 minute, causing
congestion in the router. The full source traffic can be seen below in Fig. 4.4-8. We ran the
simulation twice, once with VC and a second time with SFQ.

Figure 4.4-7 Throughput of flows in Scenario 2 (no
congestion) with VC scheduling

Figure 4.4-6 ETE delay in Scenario 2 (no
congestion) with VC scheduling

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 23

The throughput and ETE delay for SFQ (Figs. 4.4-9 and 4.4-10, below) show that flow 1 is
punished for misbehaving at time=20, creating a very large packet queue that delays packets that
follow the burst:

This is fair behaviour according Goyal et al [Goy96], who believe that than bandwidth of each
flow should be protected under all circumstances

Figure 4.4-9 Throughput with SFQ (Scenario 3) Figure 4.4-10 ETE delay with SFQ (Scenario 3)

Figure 4.4-8 Source Traffic (Scenario 3)

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 24

Under VirtualClock scheduling the behaviour is very different, as shown in the throughput and
ETE delay graphs above (Figs. 4.4-11 and 4.4-12). At the time when source 1 misbehaves, it is
actually source 2 that is punished!
Source 2 is actually being punished for its misbehaviour 18 minutes earlier, which can be clearly
seen in a graph of the values of auxiliary clocks of the 2 traffic flows:

As explained previously, source 2 has a higher auxiliary clock value due to an earlier misbehaviour
of sending packets faster than the expected rate. During the time when both sources are
transmitting packets conformingly, the gap between the auxiliary clocks stay the same; in a
sense,VC remembers the misbehaviour of source 2. At the time of congestion, it was source 1 that

Figure 4.4-10 Throughput with VC (Scenario 3) Figure 4.4-11 ETE delay with VC (Scenario 3)

Figure 4.4-12 Auxiliary Virtual Clock of flows (Scenario 3)

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 25

sent packets in a higher rate than usual. However, since its auxiliary clock value is lower than that
of source 2, its packets will generally be scheduled before packets from source 2.
The punishing effect is due to the auxiliary clock value ‘running fast’ during misbehaviour. It does
not take effect until there is congestion.

Thus we verified that VirtualClock does not punish the use of idle time, but it does “remember”
misbehaviours that take place when there was no congestion, and then punishes them when
congestion occurs.
The authors of SFQ believe that this is unfair. Some would not agree, arguing that misbehaviour
should always be punished. The precise definition of fairness must be determined by the reader
according to context of their particular scheduling application.

4.5 Punishing & Bandwidth for VBR flows
In Section 4.2.1 we saw that a consequence of fairness was that misbehaving flows should be
punished, and in Section 4.4.2 we saw that VC punishes all misbehaviour, whereas SFQ does not
punish misbehaviour that takes only idle bandwidth.

In their paper introducing SFQ, Goyal et al recognized the particular significance of VBR flows in
today’s networks and identified the need to extend the notion of fairness in light of VBR
behaviour:
Due to the difficulty in predicting the bit rate requirement of VBR video sources, video channels
may utilize more than the reserved bandwidth. As long as the additional bandwidth used is not at
the expense of other channels (i.e., if the channel utilizes idle bandwidth), it should not be
penalized in the future by reducing its bandwidth allocation. [Goy96]
They relate this issue specifically to the punishing characteristic of VirtualClock and some other
scheduling schemes. Let us examine the VC algorithm to see why they made this association.
Recall from section 4.3 and 4.4 above:
During the low bandwidth times, VC updates the flow’s auxiliary virtual clock to real time so that
it cannot store up credits
During the high bandwidth times, VC allows the flow’s auxiliary virtual clock to go faster and get
ahead of real time
If for a time the VBR source’s bandwidth is higher than the allocated bandwidth its auxiliary
virtual clock will get ahead of real time just like a misbehaving flow. This characteristic can be
verified by running a simple simulation.

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 26

Scenario 4
Source [1] CBR source sending 4 pkts/sec
Source [2] VBR source (Poisson) sending an average of 4 pkts/sec

The shared link has a bandwidth of 8.1 pkts/sec to guarantee no congestion, giving 4 pkts/sec to
each flow (actually 4.05 pkts/sec).

When there is no congestion, the throughput of both flows fair at 4 pkts/sec (Fig 4.5-2, above).
However, the auxiliary virtual clock (Fig. 4.5-3, below) looks surprisingly similar to the
misbehaving flow of Scenario 1 (compare to Fig. 4.4-7). The VBR flow’s auxiliary virtual clock is
‘running fast’.

Figure 4.5-3 Auxiliary Virtual Clock of flows (Scenario 4)

Figure 4.5-1 Source Traffic (Scenario 4) Figure 4.5-2 Throughput of flows (Scenario 4)

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 27

Scenario 5 – VBR punishing in VC
If we introduce some congestion into Scenario 4, the VBR flow should be susceptible to
punishment just like the misbehaving flow in Scenario 3.
We simply make the CBR flow - which was behaving in the above simulation - now intentionally
misbehave by sending 9 pks/sec for a brief period as shown in Fig 4.4-4 (below):
The graphs of auxiliary virtual clock and throughput are included below:

Notice that the throughput of the behaving VBR source (red) drops as soon as there is
congestion, until the auxiliary virtual clock of flow [2] ‘catches up’.

Figure 4.5-4 Source Traffic (Scenario 5)

Figure 4.5-6 Throughput of flows (Scenario 5) Figure 4.5-5 Auxiliary Virtual Clock of flows (Scenario
5)

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 28

Scenario 6 – VBR non- punishing in SFQ
We ran the same setup as Scenario 5 with SFQ
The throughput shows how SFQ does not regard the VBR source (flow 2) as ‘misbehaving’ and
thus does not punish it when congestion is introduces by flow 1.

VBR punishing: Conclusion

Scenario 5 and Scenario 6 illustrate the claim by Goyal et al that VBR sources whose average
bandwidth is ‘behaving’ will be treated as misbehaving by the VirtualClock algorithm, but will not
be punished by SFQ. [Goy96]

Again, the ‘fairness’ evaluation of these scheduling algorithms is left to the reader.

Figure 4.5-6 Auxiliary Virtual Clock of flows (Scenario
4)

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 29

5 Discussion and Conclusion

In this course project, we studied various packet scheduling algorithms with a particular focus on
the Start-Time Fair Queuing (SFQ) algorithm. We implemented SFQ as a Queue Model in
Opnet™ 8.0 Modeller.

We ran simulations to verify the characteristics of SFQ and compared it to FIFO queuing and
another Fair Queuing algorithm that we implemented as an Opnet Queue Model, VirtualClock
(VC).
SFQ was shown

The major implementation contribution of this project was the Opnet™ model of SFQ, which can
be reused in other research or simulation project in the future.

The major analysis contribution of this paper was the comparison of SFQ and VC approaches to
scheduling sources which transmit more than their allotted share of service using idle bandwidth.

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 30

6 References

[Alb01] N. Alborz and L. Trajkovic, “Implementation of VirtualClock scheduling algorithm in
OPNET,” OPNETWORK 2001, Washington, DC, Aug. 2001.
http://www.ensc.sfu.ca/~ljilja/papers/opnetwork01_nazy.pdf (14.Feb.02)

[Chu02] T.A. Chu, “Police Your Packets: Traffic Management Part 1; Keys to Implementation,”
CommsDesign, February 1, 2002.
http://www.commsdesign.com/story/OEG20020201S0007 (14.Feb.02)

[Cis95] “Interface Queue Management,” Cisco Systems White Paper.
http://www.cisco.com/warp/public/614/16.html (14.Feb.02)

[Citeseer] NEC ResearchIndex “Citation details: Start-time fair queuing: A scheduling algorithm
for integrated services packet switching.”
http://citeseer.nj.nec.com/context/23652/340968 (9.Apr.2002)

[Der90] A. Demers, S. Keshav, and S. Shenker, “Analsyis and Simulation of a Fair-queueing
Algorithm,” In Proc. ACM SigComm 89, pp1-12, also to appear in Journal of Internetworking,
Vol. 1, No. 1, 1990.
http://netweb.usc.edu/cs551/papers/Demers.pdf (14.Feb.02)

[Goy96] P. Goyal, H. Vin, and H. Chen. “Start-Time Fair Queueing: A Scheduling Algorithm for
Integrated Services Packet Switching Networks,” In Proceedings IEEE SIGCOMM'96, August
1996.
http://www.cs.columbia.edu/~danr/6762/week4/stfq.pdf (14.Feb.02)

[Mo99] J. Mo, R. J. La, V. Anantharam, and J. Warland, “Analysis and comparison of TCP Reno
and Vegas,” IEEE INFOCOM, New York, May 1999.
http://www.ensc.sfu.ca/~ljilja/ENSC835/Assignments/papers/vegas.pdf (15. Feb.02)

[Nag84] J. Nagle. “Congestion Control in IP/TCP Internetworks,” Computer Communication
Review, 14(4), October 1984.
http://www.acm.org/sigcomm/ccr/archive/1995/jan95/ccr-9501-nagle84.pdf (12.Mar.2002)

[Nag85] J. Nagle, “On packet switches with infinite storage,” RFC970, Dec-01-1985
http://globecom.net/ietf/rfc/rfc970.html (14.Feb.02)

[Par93] A. K. Parekh and R. G. Gallager. “A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: The Single-Node Case,” IEEE/ACM Transactions on
Networking, 1(3):344--357, June 1993.
http://www.stanford.edu/class/ee384x/Papers/parekh.pdf (12.March.2002)

Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung) 31

[Vil98] Curtis Villamizar. Message in the archives of the “Explicit Congestion Notification”
Mailing List, Oct 1, 1998.
http://www-nrg.ee.lbl.gov/ecn-arch/msg00072.html (9.Apr.2002)

[Wal00] J. Walrand and P. Varaiya. High-performance Communication Networks. Second
edition, San Francisco, Morgan Kaufmann, 2000, p. 78.

[Zhang90]] L. Zhang, “VirtualClock: a new traffic control algorithm for packet switching
networks,” in Proc. ACM SIGCOMM, Sept. 1990.
http://portal.acm.org/citation.cfm?id=99525&coll=ACM&dl=ACM&CFID=2308333&CFTOKE
N=23966879 (14.March.02)

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
32

Appendix A: VirtualClock Implementation Details

3.3.1 The init State
Convert the SFQ flow allocation notation, proportional weights, to the VC notation, “arrival rate”
by taking
arrival_rate(flow) = weight(flow) / sum-of-weights-for-all flows
Initialize the variables and statistics.

3.3.2 The arrive State
Step 1: Get the incoming packet
Step 2: Get information about the packet: flow f that it is from, packet length, and arrival time in
queue. Store the arrival time. If the flow has been assigned a weight of 0 then discard the packet.
Step 3: Check if this is the first packet to arrive on flow f, intialize the flow’s variables
(‘virt_clock’ and ‘aux_virtual_clock’, and mark ‘first_packet_flag’ to skip this step in to future.
Step 4: Set the variables used in the VC algorithmx, v_clock, and a_v_clock, and calculate v_tick
Step 5: If a_v_clock is less than the packet arrival time, set it equal. This prevents a flow from
‘storing up credits’ by transmitting under its arrival rate and then sending a burst.
Step 6: Increment and update ‘virt_clock’ and ‘aux_virtual_clock’
Step 7: Create an ICI and assign values to the data fields: ‘virtual_clock_stamp’,
‘aux_virtual_clock_stamp’, and some statistics; attach the ICI to the packet.
Step 8: Attempt to queue the packet in the subqueue corresponding to flow f. If the server is not
busy, go straight to the svc_start state; otherwise return to the idle state.

3.3.3 The svc_start State
Step 1: Determine which subqueue to serve. This is performed as follows:
Cycle through the subqueues, stop when you find the first non-empty queue
Access the packet at the head, get its aux_virtual_clock_stamp from the ICI
Set this stamp as “min” and the queue as “flow”
Loop through any remaining subqueues and for each non-empty subqueue
repeat (b)
If this start_tag is lower than min, update min and flow
flow is the subqueue to serve
Step 2: Get a pointer to the packet and retrieve its aux_virtual_clock_stamp from the ICI.
Update the queue_in_service state variable.
Step 3: Calculate the time it will take to serve the packet (based on packet length) and schedule
an interrupt for the time when service is completed.
Step 4: Update statistics
Step 5: Set the server_busy state variable to true and return to the idle state.

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
33

3.3.4 The svc_complete State
This state is entered by the self-scheduled interrupt from svc_start state, which indicates that the
time required for packet service is completed.
Step 1: Remove the packet from its subqueue
Step 2: Update statistics
Step 3: Send the packet. If there are packets waiting to be sent, go straight to the svc_start state;
otherwise return to the idle state.

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
34

Appendix B: Source Code

FIFO Queue Module (Opnet’s acb_fifo)
/* Process model C form file: yy_acb_fifo.pr.c */
/* codes for the modified acb_fifo process model */

/* ***** State variable definitions ***** */
typedef struct
 {
 /* Internal state tracking for FSM */
 FSM_SYS_STATE
 /* State Variables */
 int server_busy;
 double service_rate;
 Objid own_id;
 /* cmpt885 modification: State Variables for collecting statistics */
 Stathandle In_Traffic_handle[8];
 Stathandle Out_Traffic_handle[8];
 Stathandle Out_Bit_Traffic_handle[4];
 Stathandle In_Bit_Traffic_handle[4];
 } yy_acb_fifo_state;
/* ***** End of State variable definitions ***** */

/* ***** Temporary Variables definitions ***** */
 Packet* pkptr;
 int pk_len;
 double pk_svc_time;
 int insert_ok;

 /* 885 modification */
 int flowID;
 Ici* ici_ptr;
 int i;
/* ***** End Temporary Variables definitions ***** */

/*---*/
/** state (init) enter executives **/

 /* initially the server is idle */
 server_busy = 0;

 /* get queue module's own object id */
 own_id = op_id_self ();

 /* get assigned value of server */
 /* processing rate */
 op_ima_obj_attr_get (own_id, "service_rate", &service_rate);

 /* 885 modification */
 for (i=0; i<8; i++)
 In_Traffic_handle[i]=op_stat_reg("In_Traffic",i,OPC_STAT_LOCAL);

 for (i=0; i<8; i++)
 Out_Traffic_handle[i]=op_stat_reg("Out_Traffic",i,OPC_STAT_LOCAL);

 for (i=0; i<4; i++)
 Out_Bit_Traffic_handle[i]=op_stat_reg("Out_Bit_Traffic",i,OPC_STAT_LOCAL);

 for (i=0; i<4; i++)
 In_Bit_Traffic_handle[i]=op_stat_reg("In_Bit_Traffic",i,OPC_STAT_LOCAL);

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
35

/*---*/

/** state (arrival) enter executives **/

 /* acquire the arriving packet */
 /* multiple arriving streams are supported. */

 /* 885 modification */
 /* pkptr = op_pk_get (op_intrpt_strm ()); */
 flowID = op_intrpt_strm ();
 pkptr = op_pk_get (flowID);

 ici_ptr= op_ici_create("yy_flow_stat_ici");
 op_ici_attr_set(ici_ptr, "incoming_flow", flowID);
 op_pk_ici_set(pkptr, ici_ptr);

 op_stat_write(In_Traffic_handle[flowID], 1.0);
 pk_len = op_pk_total_size_get (pkptr);
 op_stat_write(In_Bit_Traffic_handle[flowID], pk_len);

 /* attempt to enqueue the packet at tail */
 /* of subqueue 0. */
 if (op_subq_pk_insert (0, pkptr, OPC_QPOS_TAIL) != OPC_QINS_OK)
 {
 /* the inserton failed (due to to a */
 /* full queue) deallocate the packet. */
 op_pk_destroy (pkptr);

 /* set flag indicating insertion fail */
 /* this flag is used to determine */
 /* transition out of this state */
 insert_ok = 0;
 }
 else{
 /* insertion was successful */
 insert_ok = 1;
 }

/*---*/

/** state (svc_compl) enter executives **/

 /* extract packet at head of queue; this */
 /* is the packet just finishing service */
 pkptr = op_subq_pk_remove (0, OPC_QPOS_HEAD);

 ici_ptr=op_pk_ici_get(pkptr);
 op_ici_attr_get(ici_ptr, "incoming_flow", &flowID);

 op_stat_write(Out_Traffic_handle[flowID], 1.0);

 pk_len = op_pk_total_size_get (pkptr);
 op_stat_write(Out_Bit_Traffic_handle[flowID], pk_len);

 /* forward the packet on stream 0, causing */
 /* an immediate interrupt at destination. */
 op_pk_send_forced (pkptr, 0);

 /* server is idle again. */
 server_busy = 0;
/*---*/

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
36

SFQ Queue Module

/* Process model C form file: sfq.pr.c */
/* codes for the SFQ Queue Model (Process Model) */

/* ***** Header Block ***** */

#define QUEUE_EMPTY (op_q_empty ())
#define SVC_COMPLETION op_intrpt_type () == OPC_INTRPT_SELF
#define ARRIVAL op_intrpt_type () == OPC_INTRPT_STRM

/* SFQ */
// stdlib.h for max(a,b) function
//#include <stdlib.h>
#define max(a,b) (((a)>(b))?(a):(b))
#define DEBUG 0
#define DEBUG2 1
#define DEBUG3 0
/* ***** End of Header Block ***** */

/* ***** State variable definitions ***** */
typedef struct
 {
 /* Internal state tracking for FSM */
 FSM_SYS_STATE
 /* State Variables */
 int server_busy;
 double service_rate;
 Objid own_id;
 double start_tag_in_service;
 double max_finish_tag;
 double* prev_finish_tag;
 double* flow_weight;
 int queue_in_service;
 int num_subqs;
 Stathandle bits_sent_hndl[4];
 double bits_sent_count[4];
 Stathandle q_delay_hndl[4];
 Stathandle In_Traffic_stathandle[8];
 Stathandle Out_Traffic_stathandle[8];
 Stathandle packets_sent_hndl[4];
 double packets_sent_count[4];
 Stathandle In_Bit_Traffic_stathandle[4];
 Stathandle Out_Bit_Traffic_stathandle[4];
 } sfq_state;

/* ***** End of State variable definitions ***** */

/* ***** Function Block ***** */
// double "virtual_time()" returns the value of SFQ's 'virtual time'
 // Note that according to the authors (Goyal et al, 1996) you could reset
 // the start_tag and finish_tag to zero after a non-busy period

double virtual_time(double arr_time)
 {
 if (server_busy) // "BUSY PERIOD"
 {
 return start_tag_in_service;

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
37

 }
 else // AFTER A NON-BUSY PERIOD
 {
 return max_finish_tag;
 }
 } // end virtual_time()

// double "get_start_tag()" accesses the packet's ICI and returns
// the value of the "start_tag" field

double get_start_tag(int q_index)
 {
 Packet* pkptr;
 double start_tag;
 Ici* ici_ptr;

 /* Get the start_tag of head packet and set variables */
 pkptr = op_subq_pk_access (q_index, OPC_QPOS_HEAD);
 ici_ptr = op_pk_ici_get(pkptr);
 op_ici_attr_get(ici_ptr,"start_tag", &start_tag);

 return start_tag;
 } // end "get_start_tag()"

/* int "q_with_best head()" returns the subqueue id (a numerical
 index starting from 0) of the queue in which the packet with the
 lowest start_tag is found. This is found by examining the value
 of the "start_tag" for the packet at the head of each subqueue. */
/* If two queues have the same start tag, the decision is arbitrary;
 We choose the lower queue number first. */

int q_with_best_head ()
 {
 int q_index;
 double start_tag;
 double min_start_tag;
 int min_q;

 // Find the first non-empty queue and set is as min
 for (q_index = 0; q_index<num_subqs && op_subq_empty(q_index)==OPC_TRUE; q_index++)
 {
 } // end for
 min_start_tag = get_start_tag(q_index);
 min_q = q_index;

 /* Then loop through any remaining subqueues and update min if necessary*/
 for (q_index=q_index+1; q_index < num_subqs; q_index++)
 {
 if (op_subq_empty(q_index) == OPC_FALSE)
 {
 /* Examine start_tag of head packet and update min if new lowest */
 start_tag = get_start_tag(q_index);
 if (start_tag < min_start_tag)
 {
 min_start_tag = start_tag;
 min_q = q_index;
 }
 } // end if subqueue not empty
 } // end for q_index
 return min_q;
 } //end q_with_best_head ()

// This function simply passes Opnet a warning message and ends the
// simulation.

static void sfq_warning_message_print (char* message)
 {
 /** Ends the simulation and print a error message. **/
 FIN (sfq_warning_message_print (message));

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
38

 op_sim_end ("Error in sfq process model\n", message, "", "");
 FOUT;
 }

/* ***** End of Function Block ***** */

/* ***** Temporary Variable definitions ***** */
 Packet* pkptr;
 int pk_len;
 double pk_svc_time;
 int insert_ok;

 /* Added for SFQ */
 int i; // For cycling through for loops!
 double arrival_time;
 int flow;
 Ici* ici_ptr; // The ICI is the information that holds start and
 // finish tags for each packet
 double start_tag;
 double finish_tag;
 double pk_arrival_time; // Used for statistics
 Objid objid; // Used to grab information from the node
 int flowID;
/* ***** End of Temporary Variable definitions ***** */

/*---*/
/** state (init) enter executives **/

 /* Initially the server is idle */
 server_busy = 0;

 /* Get queue module's own object id */
 own_id = op_id_self ();

 /* Get assigned value of server processing rate */
 op_ima_obj_attr_get (own_id, "service_rate", &service_rate);

 /* Get the number of subqueues and flow weights from node properties */
 op_ima_obj_attr_get (op_id_self (), "subqueue", &objid);
 num_subqs = op_topo_child_count (objid, OPC_OBJTYPE_SUBQ);

 /* Allocate memory for the arrays */
 flow_weight = (double*) malloc(num_subqs* sizeof(double));
 prev_finish_tag = (double*) malloc(num_subqs* sizeof(double));

 /* Initialize variables */
 if (op_ima_obj_attr_get (own_id, "weight_flow0", &flow_weight[0]) == OPC_COMPCODE_FAILURE)

flow_weight[0] = 0.0;
 if (op_ima_obj_attr_get (own_id, "weight_flow1", &flow_weight[1]) == OPC_COMPCODE_FAILURE)

flow_weight[1] = 0.0;
 if (op_ima_obj_attr_get (own_id, "weight_flow2", &flow_weight[2]) == OPC_COMPCODE_FAILURE)

flow_weight[2] = 0.0;
 if (op_ima_obj_attr_get (own_id, "weight_flow3", &flow_weight[3]) == OPC_COMPCODE_FAILURE)

flow_weight[3] = 0.0;

 for(i=0; i<num_subqs; i++) prev_finish_tag[i] = 0;
 for(i=0; i<num_subqs; i++) packets_sent_count[i] = 0;
 for(i=0; i<num_subqs; i++) bits_sent_count[i] = 0;
 max_finish_tag = 0;
 start_tag_in_service = 0;

 // Register statistics
 for (i=0; i<4; i++)
 {

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
39

 q_delay_hndl[i] = op_stat_reg ("Queuing Delay for Packets Leaving Flow",i,
OPC_STAT_LOCAL);

 bits_sent_hndl[i] = op_stat_reg ("Throughput of Flow (bits)",i, OPC_STAT_LOCAL);
 packets_sent_hndl[i] = op_stat_reg ("Throughput of Flow (packets)",i,

OPC_STAT_LOCAL);
 In_Traffic_stathandle[i]=op_stat_reg("In_Traffic",i,OPC_STAT_LOCAL);
 Out_Traffic_stathandle[i]=op_stat_reg("Out_Traffic",i,OPC_STAT_LOCAL);
 In_Bit_Traffic_stathandle[i]=op_stat_reg("In_Bit_Traffic",i,OPC_STAT_LOCAL);
 Out_Bit_Traffic_stathandle[i]=op_stat_reg("Out_Bit_Traffic",i,OPC_STAT_LOCAL);
 }

/*---*/

/** state (arrival) enter executives **/

 /* Acquire the arriving packet */
 if ((pkptr = op_pk_get (op_intrpt_strm ())) == OPC_NIL)
 {
 /* Stop the simulation if the packet can not be accessed. */
 sfq_warning_message_print ("Unable to get the packet from interrupt stream");
 }

 /* Determine the flow and the packet length (in bits) */
 flow = op_intrpt_strm();
 if (flow_weight[flow] == 0.0)
 {
 // Packet arrived from a flow not set to be serviced
 /* set flag indicating no packet was queued (for transition out of state) */
 op_pk_destroy (pkptr);
 insert_ok = 0;
 }
 else{
 if (DEBUG3) printf("Arrived on flow %i\n", flow);

 /* Get information about the packet for SFQ algorithm*/
 pk_len = op_pk_total_size_get (pkptr);
 arrival_time = op_sim_time ();

 /* Determine Start time and Finish Time for SFQ algorithm,
 and update finish tag for next packet that arrives */
 start_tag = max (virtual_time(arrival_time), prev_finish_tag[flow]);
 finish_tag = start_tag + pk_len/flow_weight[flow];
 prev_finish_tag[flow] = finish_tag;

 /* Create ICI to store tags and Assign SFQ information to it*/
 ici_ptr = op_ici_create("sfq");
 op_ici_attr_set(ici_ptr,"start_tag", start_tag);
 op_ici_attr_set(ici_ptr,"finish_tag", finish_tag);
 // Add information for statistics too
 op_ici_attr_set(ici_ptr,"Arrival time in queue", arrival_time);
 op_ici_attr_set(ici_ptr,"incoming_flow", flow);
 // Associate ICI with packet
 op_pk_ici_set(pkptr, ici_ptr);

 /* Attempt to enqueue packet at tail of subqueue corresponding to the flow */
 if (op_subq_pk_insert (flow, pkptr, OPC_QPOS_TAIL) != OPC_QINS_OK)
 {
 /* the inserton failed (due to to a */
 /* full queue) deallocate the packet. */
 op_pk_destroy (pkptr);

 /* set flag indicating insertion fail */
 /* this flag is used to determine */
 /* transition out of this state */
 insert_ok = 0;
 }
 else
 {

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
40

 /* insertion was successful */
 insert_ok = 1;
 } // end if() for packet insertion
 } // end if() for empty flow

 /* Write SFQ statistics */

 op_stat_write (In_Traffic_stathandle[flow], 1.0);
 op_stat_write (In_Bit_Traffic_stathandle[flow], pk_len);
/*---*/

/** state (svc_start) enter executives **/

 /* Determine which flow subqueue to service */
 flow = q_with_best_head();

 /* Get a handle on packet at head of the chosen subqueue */
 /* (this does not remove the packet) */
 /* Then get information about packet (Start Tag and packet length) */
 pkptr = op_subq_pk_access (flow, OPC_QPOS_HEAD);
 pk_len = op_pk_total_size_get (pkptr);
 ici_ptr = op_pk_ici_get(pkptr);
 op_ici_attr_get(ici_ptr,"start_tag", &start_tag);

 /* Update state variables */
 start_tag_in_service = start_tag;
 queue_in_service = flow;

 /* Determine the time required to complete service of the packet */
 /* (Depends on the length of the packet and the service rate */
 /* available to the router */
 pk_svc_time = pk_len / service_rate;

 /* Schedule an interrupt for this process at the time where service

ends.*/
 op_intrpt_schedule_self (op_sim_time () + pk_svc_time, 0);

 // Pass statistics for queue throughput
 op_stat_write(bits_sent_hndl[flow], pk_len);
 packets_sent_count[flow] += 1;
 op_stat_write(packets_sent_hndl[flow], 1.0);

 /* Set the server as "busy" */
 server_busy = 1;

/*---*/
/** state (svc_compl) enter executives **/

/* Extract packet at head of queue; this is the packet just finishing service */
 /* (this removes the packet) */
 pkptr = op_subq_pk_remove (queue_in_service, OPC_QPOS_HEAD);

 /* Get SFQ info from packet and update state variable value if necessary */
 ici_ptr = op_pk_ici_get(pkptr);
 op_ici_attr_get(ici_ptr,"finish_tag", &finish_tag);
 if (finish_tag > max_finish_tag)
 {
 max_finish_tag = finish_tag; // maximum of all packets served so far
 }

 // Update Statistics
 op_ici_attr_get(ici_ptr,"incoming_flow", &flowID); // flow ID for outgoing packet
 op_stat_write(Out_Traffic_stathandle[flowID], 1.0);
 pk_len = op_pk_total_size_get (pkptr);
 op_stat_write(Out_Bit_Traffic_stathandle[flowID], pk_len);
 op_ici_attr_get(ici_ptr,"Arrival time in queue", &pk_arrival_time);

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
41

 op_stat_write (q_delay_hndl[queue_in_service], op_sim_time () - pk_arrival_time);

 /* Rorward the packet on stream 0, causing an immediate interrupt at destination. */
 op_pk_send_forced (pkptr, 0);

 /* server is idle again. */
 server_busy = 0;
/*---*/

/* Process model C form file: virtual_clock.pr.c */
/* codes for VC Queue Model (Process Model) */

/* ***** Header Block ***** */

#define QUEUE_EMPTY (op_q_empty ())
#define SVC_COMPLETION op_intrpt_type () == OPC_INTRPT_SELF
#define ARRIVAL op_intrpt_type () == OPC_INTRPT_STRM

/* SFQ */
// stdlib.h for max(a,b) function
//#include <stdlib.h>
#define max(a,b) (((a)>(b))?(a):(b))
#define DEBUG 0
#define DEBUG2 0
#define DEBUG3 0
#define DEBUG4 0

/* ***** End of Header Block ***** */

/* ***** State variable definitions ***** */
typedef struct
 {
 /* Internal state tracking for FSM */
 FSM_SYS_STATE
 /* State Variables */
 int server_busy;
 double service_rate;
 Objid own_id;
 double arrival_rate[4];
 int queue_in_service;
 int num_subqs;
 Stathandle bit_count_stat;
 double bit_count;
 double virt_clock[4];
 double aux_virtual_clock[4];
 int first_packet_flag[4];
 double flow_weight[4];
 Stathandle In_Traffic_stathandle[4];
 Stathandle Out_Traffic_stathandle[4];
 Stathandle vc_stathandle[4];
 Stathandle aux_vc_stathandle[4];
 Stathandle Out_Traffic_bandwidth_handle[4];
 Stathandle In_Bit_Traffic_handle[4];
 Stathandle Out_Bit_Traffic_handle[4];
 } virtual_clock_state;

/* ***** End of State variable definitions ***** */

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
42

/* ***** Function Block **** */

double get_aux_vc_stamp(int q_index)
 {
 double aux_vc_stamp;
 Ici* ici_ptr;
 Packet* pkptr;

 /* Get the start_tag of head packet and set variables */
 pkptr = op_subq_pk_access (q_index, OPC_QPOS_HEAD);
 ici_ptr = op_pk_ici_get(pkptr);
 op_ici_attr_get(ici_ptr,"aux_virtual_clock_stamp", &aux_vc_stamp);

 if (DEBUG3) printf("Queue [%i] aux_VC_stamp = %f\n",q_index, aux_vc_stamp);

 return aux_vc_stamp;
 } // end "get_aux_time_stamp()"

void pk_send_statistics(Ici* ici_ptr)
 {
 /*
 // Statistics are not written when the statistic dimension is exceeded.
 if (1) // @@@@@ should be if statistic_index < stat_index_max) @@@@@
 {
 // Write the statistic for queuing delay.
 op_ici_attr_get (ici_ptr, "arrival_time", &pk_arrival_time);
 stat_info_ptr = op_prg_list_access (stat_info_list_ptr, q_index);
 op_stat_write (stat_info_ptr->queuing_delay_stathandle, op_sim_time () -

pk_arrival_time);

 // Write out a new data point for the "Traffic Sent" statistic
 // under the 'IP Interface' group.
 packet_size = op_pk_total_size_get (sending_packet_ptr);
 op_stat_write (stat_info_ptr->traffic_sent_in_pps_stathandle, 1.0);
 op_stat_write (stat_info_ptr->traffic_sent_in_bps_stathandle, packet_size);

 // Write out a zero value to signal the end of the duration to hold
 // the statistic at the previously written out value.
 op_stat_write (stat_info_ptr->traffic_sent_in_pps_stathandle, 0.0);
 op_stat_write (stat_info_ptr->traffic_sent_in_bps_stathandle, 0.0);
 }

 */
 } // end pk_send_statistics

void register_stats()
 {
 //virtual_clock_stathandle = op_stat_reg ("IP Interface.Virtual Clock (Sec)", stat_index,

OPC_STAT_LOCAL);
 } //end register_stats()

static void sfq_warning_message_print (char* message)
 {
 op_sim_end ("Error in sfq process model\n", message, "", "");
 } // end warning message

/* ***** End of Function Block ***** */

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
43

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
44

VC Queue Module

/* ***** Temporary Variables definitions ***** */

 Packet* pkptr;
 int pk_len;
 double pk_svc_time;
 int insert_ok;

 /* Added for SFQ */
 int i;
 double arrival_time;
 double total_weight;
 int flow;
 Ici* ici_ptr; // The ICI is the information that holds start and
 // finish tags for each packet
 double start_tag;
 double finish_tag;
 Objid objid; // Used to grab information from the node (# and weights of

subqueues(
 char* message;

 /* Variables added to use Nazy's Virtual Clock algorithm */
 int q_index;
 double aux_vc_stamp;
 double min;
 int min_vc_q_index;
 double pk_arrival_time;

 /* Variables borrowed from Nazy's Virtual Clock algorithm */
 double v_clock;
 double a_v_clock = 0;
 double c_v_clock = 0;
 double arr_rate;
 double v_tick = 0;
 int no_eqvc_queues;
 int j;
 int active_q_index[10];
 Packet * packetptr;
 double virtual_clock_stamp;
 double a_virtual_clock_stamp;

 /* 885 modification */
 int flowID;

/* ***** Temporary Variables definitions ***** */

/*---*/
/** state (init) enter executives **/

 /* initially the server is idle */
 server_busy = 0;

 /* get queue module's own object id */
 own_id = op_id_self ();

 /* get assigned value of server */
 /* processing rate */
 op_ima_obj_attr_get (own_id, "service_rate", &service_rate);

 /* Determine the number of subqueues and flow weights from node properties */
 op_ima_obj_attr_get (own_id, "subqueue", &objid);
 num_subqs = op_topo_child_count (objid, OPC_OBJTYPE_SUBQ);

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
45

 if (op_ima_obj_attr_get (own_id, "weight_flow0", &flow_weight[0]) == OPC_COMPCODE_FAILURE)
flow_weight[0] = 0.0;

 if (op_ima_obj_attr_get (own_id, "weight_flow1", &flow_weight[1]) == OPC_COMPCODE_FAILURE)
flow_weight[1] = 0.0;

 if (op_ima_obj_attr_get (own_id, "weight_flow2", &flow_weight[2]) == OPC_COMPCODE_FAILURE)
flow_weight[2] = 0.0;

 if (op_ima_obj_attr_get (own_id, "weight_flow3", &flow_weight[3]) == OPC_COMPCODE_FAILURE)
flow_weight[3] = 0.0;

 /* Convert SFQ flow weights (proportional) to VC arrival rate (absolute) */
 total_weight = flow_weight[0]+flow_weight[1]+flow_weight[2]+flow_weight[3];
 for(i=0; i<4; i++)
 {
 arrival_rate[i] = (service_rate * flow_weight[i]/total_weight);
 } // end for

 /* Notify "weight" (SFQ notation) --> "arrival-rate" (VC notation) conversion */
 printf("For flow weights:\n");
 for(i=0; i<4; i++) printf("\tflow_weight[%i] = %f\n", i, flow_weight[i]);
 printf("And total router service rate = %f\n",service_rate);
 printf("Virtual Clock has been assigned arrival rates of:\n");
 for(i=0; i<4; i++) printf("\tarrival_rate[%i] = %f\n", i, arrival_rate[i]);

 /* Initialize variables */
 for(i=0; i<4; i++)
 {
 first_packet_flag[i] = 0; // Will be set to 1 when the first packet arrives on

that flow
 }

 /* Register statistics */
 for (i=0; i<4; i++)
 {
 vc_stathandle[i]=op_stat_reg("Virtual_Clock",i,OPC_STAT_LOCAL);
 aux_vc_stathandle[i]=op_stat_reg("Aux_Virtual_Clock",i,OPC_STAT_LOCAL);
 In_Traffic_stathandle[i]=op_stat_reg("In_Traffic",i,OPC_STAT_LOCAL);
 Out_Traffic_stathandle[i]=op_stat_reg("Out_Traffic",i,OPC_STAT_LOCAL);

 Out_Traffic_bandwidth_handle[i]=op_stat_reg("Out_Traffic_bandwidth",i,OPC_STAT_LOCAL
);

 In_Bit_Traffic_handle[i]=op_stat_reg("In_Bit_Traffic",i,OPC_STAT_LOCAL);
 Out_Bit_Traffic_handle[i]=op_stat_reg("Out_Bit_Traffic",i,OPC_STAT_LOCAL);
 } // End for() -- statistics registering

/*---*/
/** state (arrival) enter executives **/

 if (DEBUG==1) printf("\t\t\t<--arrival-->\n");

 /* Acquire the arriving packet */
 if ((pkptr = op_pk_get (op_intrpt_strm ())) == OPC_NIL)
 {
 /* Stop the simulation if the packet can not be accessed. */
 sfq_warning_message_print ("Unable to get the packet from interrupt stream");
 }

 /* Determine the flow and the packet length (in bits) */
 flow = op_intrpt_strm();
 if (flow_weight[flow] == 0.0)
 {
 // Packet arrived from a flow not set to be serviced
 /* set flag indicating no packet was queued (for transition out of state) */
 op_pk_destroy (pkptr);
 insert_ok = 0;

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
46

 }
 else{
 if (DEBUG3) printf("Arrived on flow %i\n", flow);

 /* attempt to insert packet*/
 pk_len = op_pk_total_size_get (pkptr);
 arrival_time = op_sim_time ();

 /* If this is the first packt comming into the queue initialize the Virtual Clock */

 if (first_packet_flag[flow] == 0)
 {
 virt_clock[flow] = arrival_time;
 aux_virtual_clock[flow] = arrival_time;
 first_packet_flag[flow] = 1;
 }

 /* initialization of virtual clock and auxilary virtual clock

 */
 //v_tick = 1 / arrival_rate[flow];
 v_tick = pk_len / arrival_rate[flow];
 v_clock = virt_clock[flow];
 a_v_clock = aux_virtual_clock[flow];

 /* Calculation of auxilary virtual clock */
 if (arrival_time > a_v_clock)
 {
 a_v_clock = arrival_time;
 }

 /* Update and store the flow's virt_clock and aux_virtual_clock
 for the next packet arrival */
 v_clock = v_clock + v_tick;
 a_v_clock = a_v_clock + v_tick;
 virt_clock[flow] = v_clock;
 aux_virtual_clock[flow] = a_v_clock;

 /* NOTE: The virt_clock value is used by the Virtual Clock algorithm
 to warn a source if it is transmitting more than its assigned rate.
 In this implementation we use one-way traffic so the virt_clock is
 not needed, but is available as a future resource
 */

 /* The virtual Clock and Auxilary Virtual Clock stamps are inserted in */
 /* the ICI. They are used in the extract state for choosing a queue */
 /* containing a packet with the lowest Auxilary Virtual Clock Value */

 /* Create ICI to store tags and Assign VC information to it*/
 ici_ptr = op_ici_create("virtual_clock");
 op_ici_attr_set (ici_ptr, "virtual_clock_stamp",virt_clock[flow]);
 op_ici_attr_set (ici_ptr, "aux_virtual_clock_stamp",aux_virtual_clock[flow]);
 op_ici_attr_set (ici_ptr, "incoming_flow", flow);
 op_pk_ici_set (pkptr, ici_ptr);

 op_stat_write(In_Traffic_stathandle[flow], 1.0);
 op_stat_write(In_Bit_Traffic_handle[flow], pk_len);
 op_stat_write(vc_stathandle[flow], virt_clock[flow]);
 op_stat_write(aux_vc_stathandle[flow], aux_virtual_clock[flow]);

 /* Attempt to enqueue packet at tail of subqueue corresponding to the flow */
 if (op_subq_pk_insert (flow, pkptr, OPC_QPOS_TAIL) != OPC_QINS_OK)
 {
 /* the inserton failed (due to to a */
 /* full queue) deallocate the packet. */
 op_pk_destroy (pkptr);

 /* set flag indicating insertion fail */

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
47

 /* this flag is used to determine */
 /* transition out of this state */
 insert_ok = 0;
 }
 else
 {
 /* insertion was successful */
 insert_ok = 1;
 } // end if() for packet insertion
 } // end if() for empty flow

/*---*/
/** state (svc_start) enter executives **/

 if (DEBUG==1) printf("\t\t\t<--svc_start-->\n");

 /* Loop through all the queues to find a queue */
 /* with lowest Auxilary Virtual Clock value */

 // Find the first non-empty queue and set is as min
 for (q_index = 0; q_index<num_subqs && op_subq_empty(q_index)==OPC_TRUE; q_index++)
 { // Go until find non-empty queue
 } // end for
 min = get_aux_vc_stamp(q_index);
 min_vc_q_index = q_index;

 /* Then loop through any remaining subqueues and update min if necessary*/
 for (q_index=q_index+1; q_index < num_subqs; q_index++)
 {
 if (op_subq_empty(q_index) == OPC_FALSE)
 {
 /* Examine start_tag of head packet and update min if new lowest */
 aux_vc_stamp = get_aux_vc_stamp(q_index);
 if (aux_vc_stamp < min)
 {
 min = aux_vc_stamp;
 min_vc_q_index = q_index;
 }
 } // end if subqueue not empty
 } // end for q_index

 /* Loop through all the queues to find out if there are more than one queue with */
 /* the same min Auxilary Virtual Clock. Then fill out the array that contains */
 /* the index of the queues with minimum equal Auxilary Virtual Clock */
 /* SFQ NOTE: THIS LOOP WAS WRITTEN BY NAZY AND IT'S NOT CLEAR TO US WHAT IT DOES */

 /* ---SO I'M GETTING RID OF IT AND DOING THE EQUIVALENT, AS FAR AS I CAN SEE ----*/
 /*
 for (q_index=0; q_index < num_subqs; q_index++)
 {
 if (op_subq_empty(q_index) == OPC_FALSE)
 {
 aux_vc_stamp = get_aux_vc_stamp(q_index);
 if (min == aux_vc_stamp)
 {
 j = 0;
 no_eqvc_queues = 0;
 active_q_index[j] = q_index;
 j++;
 no_eqvc_queues++;
 }
 }
 }

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
48

 // Choose the queue to service based on what we've found
 if (no_eqvc_queues>1)
 {
 flow = active_q_index[0];
 }
 else
 {
 flow = min_vc_q_index;
 }
 */
 flow = min_vc_q_index; // Replaced above loop with this line

 /* get a handle on packet at head of subqueue 0 */
 /* (this does not remove the packet) */
 pkptr = op_subq_pk_access (flow, OPC_QPOS_HEAD);

 /* Update state variables */
 queue_in_service = flow;

 /* determine the packets length (in bits) */
 pk_len = op_pk_total_size_get (pkptr);

 /* determine the time required to complete */
 /* service of the packet */
 pk_svc_time = pk_len / service_rate;

 /* schedule an interrupt for this process */
 /* at the time where service ends. */
 op_intrpt_schedule_self (op_sim_time () + pk_svc_time, 0);

 // Pass statistics for queue throughput
 /*
 bit_count = bit_count + pk_len;
 op_stat_write(bit_count_stat, bit_count);
 */

 /* the server is now busy. */
 server_busy = 1;

/*---*/
/** state (svc_compl) enter executives **/

 if (DEBUG==1) printf("\t\t\t<--svc_compl-->\n");

 /* extract packet at head of queue; this */
 /* is the packet just finishing service */
 pkptr = op_subq_pk_remove (queue_in_service, OPC_QPOS_HEAD);

 /* 885 modification */
 ici_ptr = op_pk_ici_get(pkptr);
 op_ici_attr_get(ici_ptr,"incoming_flow", &flowID);
 op_stat_write(Out_Traffic_stathandle[flowID], 1.0);
 op_stat_write(Out_Traffic_bandwidth_handle[flowID], 1.0);
 pk_len = op_pk_total_size_get (pkptr);
 op_stat_write(Out_Bit_Traffic_handle[flowID], pk_len);

 /* forward the packet on stream 0, causing */
 /* an immediate interrupt at destination. */
 op_pk_send_forced (pkptr, 0);

 /* server is idle again. */
 server_busy = 0;

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
49

/*---*/

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
50

Source Node Module
/* Process model C form file: yy_simple_source2.pr.c */
/* codes for the source node process model */

/* ***** State variable definitions ***** */
typedef struct
 {
 /* Internal state tracking for FSM */
 FSM_SYS_STATE
 /* State Variables */
 Objid own_id;
 char format_str [64];
 double start_time;
 double stop_time;
 OmsT_Dist_Handle interarrival_dist_ptr;
 OmsT_Dist_Handle pksize_dist_ptr;
 Boolean generate_unformatted;
 Evhandle next_pk_evh;
 double next_intarr_time;
 Stathandle bits_sent_hndl;
 Stathandle packets_sent_hndl;
 Stathandle packet_size_hndl;
 Stathandle interarrivals_hndl;
 FILE* file_ptr;
 int use_file_data;
 char file_name[128];
 double file_data_rate;
 double base_time;
 double second_int_time;
 double third_int_time;
 int second_start_time;
 int third_start_time;
 double fourth_int_time;
 int fourth_start_time;
 double fifth_int_time;
 int fifth_start_time;
 } yy_simple_source2_state;

/* ***** State variable definitions ***** */

/* ***** Function Block ***** */

static void
ss_packet_generate (void)
 {
 Packet* pkptr;
 SimT_Pk_Size pksize;

 /* 885 modification : variable declaration */
 char tempstr[100];

 /** This function creates a packet based on the packet generation **/
 /** specifications of the source model and sends it to the lower layer. **/
 FIN (ss_packet_generate ());

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
51

 if (use_file_data != 1)
 {
 /* Generate a packet size outcome. */
 pksize = (SimT_Pk_Size) ceil (oms_dist_outcome (pksize_dist_ptr));
 }
 else
 {
 /* 885 modification : reading in the next packet size */
 if (file_ptr != NULL)
 {
 // printf("file pointer not null\n");
 if (feof(file_ptr)==0)
 {
 fscanf(file_ptr, "%d\n", &pksize);
 sprintf(tempstr, "constant (%d)", pksize);
 pksize_dist_ptr = oms_dist_load_from_string (tempstr);
 pksize = (SimT_Pk_Size) ceil (oms_dist_outcome
(pksize_dist_ptr));
 }
 else
 {
 fclose(file_ptr);
 sprintf(tempstr, "constant (0)");
 pksize_dist_ptr = oms_dist_load_from_string (tempstr);
 pksize = (SimT_Pk_Size) ceil (oms_dist_outcome
(pksize_dist_ptr));
 }
 }
 }

 /* Create a packet of specified format and size. */
 if (generate_unformatted == OPC_TRUE)
 {
 /* We produce unformatted packets. Create one. */
 pkptr = op_pk_create (pksize);
 }
 else
 {
 /* Create a packet with the specified format. */
 pkptr = op_pk_create_fmt (format_str);
 op_pk_total_size_set (pkptr, pksize);
 }

 /* Update the packet generation statistics. */
 op_stat_write (packets_sent_hndl, 1.0);
 op_stat_write (packets_sent_hndl, 0.0);
 op_stat_write (bits_sent_hndl, (double) pksize);
 op_stat_write (bits_sent_hndl, 0.0);
 op_stat_write (packet_size_hndl, (double) pksize);
 op_stat_write (interarrivals_hndl, next_intarr_time);

 /* Send the packet via the stream to the lower layer. */
 op_pk_send (pkptr, SSC_STRM_TO_LOW);

 FOUT;
 }

/* ***** End of Function Block ***** */

/* ***** Temporary Variables definitions ***** */

 /* Variables used in the "init" state. */
 char interarrival_str [128];

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
52

 char size_str [128];
 Prg_List* pk_format_names_lptr;
 char* found_format_str;
 int low, high;
 Boolean format_found;
 int i;

 /* 885 modification : variable declaration */
 char temp_interarrival_str [128];

 /* Variables used in state transitions. */
 int intrpt_code;

/* ***** End of Temporary Variables definitions ***** */

/*---*/
/** state (init) enter executives **/

 /* 885 modification : record the simulation start time */
 base_time = op_sim_time();

 /* At this initial state, we read the values of source attributes */
 /* and schedule a selt interrupt that will indicate our start time */
 /* for packet generation.
 */

 /* Obtain the object id of the surrounding module.
 */
 own_id = op_id_self ();

 /* Read the values of the packet generation parameters, i.e. the */
 /* attribute values of the surrounding module.
 */
 op_ima_obj_attr_get (own_id, "Packet Interarrival Time", interarrival_str);
 op_ima_obj_attr_get (own_id, "Packet Size", size_str);
 op_ima_obj_attr_get (own_id, "Packet Format", format_str);
 op_ima_obj_attr_get (own_id, "Start Time", &start_time);
 op_ima_obj_attr_get (own_id, "Stop Time", &stop_time);

 /* Load the PDFs that will be used in computing the packet */
 /* interarrival times and packet sizes.
 */
 interarrival_dist_ptr = oms_dist_load_from_string (interarrival_str);
 pksize_dist_ptr = oms_dist_load_from_string (size_str);

 /* Verify the existence of the packet format to be used for
 */
 /* generated packets.
 */
 if (strcmp (format_str, "NONE") == 0)
 {
 /* We will generate unformatted packets. Set the flag.
 */
 generate_unformatted = OPC_TRUE;
 }
 else
 {
 /* We will generate formatted packets. Turn off the flag. */
 generate_unformatted = OPC_FALSE;

 /* Get the list of all available packet formats.
 */
 pk_format_names_lptr = prg_tfile_name_list_get
(PrgC_Tfile_Type_Packet_Format);

 /* Search the list for the requested packet format.
 */
 format_found = OPC_FALSE;
 for (i = prg_list_size (pk_format_names_lptr); ((format_found ==
OPC_FALSE) && (i > 0)); i--)

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
53

 {
 /* Access the next format name and compare with requested */
 /* format name.
 */
 found_format_str = (char *) prg_list_access
(pk_format_names_lptr, i - 1);
 if (strcmp (found_format_str, format_str) == 0)
 format_found = OPC_TRUE;
 }

 if (format_found == OPC_FALSE)
 {
 /* The requested format does not exist. Generate
 */
 /* unformatted packets.
 */
 generate_unformatted = OPC_TRUE;

 /* Display an appropriate warning.
 */
 op_prg_odb_print_major ("Warning from simple packet generator
model (simple_source):",
 "The specified packet
format", format_str,
 "is not found. Generating
unformatted packets instead.", OPC_NIL);
 }

 /* Destroy the lits and its elements since we don't need it
 */
 /* anymore.
 */
 prg_list_free (pk_format_names_lptr);
 prg_mem_free (pk_format_names_lptr);
 }

 /* Make sure we have valid start and stop times, i.e. stop time is */
 /* not earlier than start time.
 */
 if ((stop_time <= start_time) && (stop_time != SSC_INFINITE_TIME))
 {
 /* Stop time is earlier than start time. Disable the source. */
 start_time = SSC_INFINITE_TIME;

 /* Display an appropriate warning.
 */
 op_prg_odb_print_major ("Warning from simple packet generator model
(simple_source):",
 "Although the generator is not
disabled (start time is set to a finite value),",
 "a stop time that is not later
than the start time is specified.",
 "Disabling the generator.",
OPC_NIL);
 }

 /* Schedule a self interrupt that will indicate our start time for */
 /* packet generation activities. If the source is disabled,
 */
 /* schedule it at current time with the appropriate code value. */
 if (start_time == SSC_INFINITE_TIME)
 {
 op_intrpt_schedule_self (op_sim_time (), SSC_STOP);
 }
 else
 {
 op_intrpt_schedule_self (start_time, SSC_START);

 /* In this case, also schedule the interrupt when we will stop */

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
54

 /* generating packets, unless we are configured to run until */
 /* the end of the simulation.
 */
 if (stop_time != SSC_INFINITE_TIME)
 {
 op_intrpt_schedule_self (stop_time, SSC_STOP);
 }
 }

 /* Register the statistics that will be maintained by this model. */
 bits_sent_hndl = op_stat_reg ("Generator.Traffic Sent (bits/sec)",
 OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);
 packets_sent_hndl = op_stat_reg ("Generator.Traffic Sent (packets/sec)",
 OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);
 packet_size_hndl = op_stat_reg ("Generator.Packet Size (bits)",
OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);
 interarrivals_hndl = op_stat_reg ("Generator.Packet Interarrival Time
(secs)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

 /* 885 modification : get values from attributes */
 op_ima_obj_attr_get (own_id, "File Location", file_name);
 //printf("%s\n", &file_name);
 op_ima_obj_attr_get (own_id, "Use File Data", &use_file_data);
 //printf("%d\n", use_file_data);
 op_ima_obj_attr_get (own_id, "File Data Rate", &file_data_rate);
 op_ima_obj_attr_get (own_id, "Second Interarrival Time", &second_int_time);
 op_ima_obj_attr_get (own_id, "Third Interarrival Time", &third_int_time);
 op_ima_obj_attr_get (own_id, "Fourth Interarrival Time", &fourth_int_time);
 op_ima_obj_attr_get (own_id, "Fifth Interarrival Time", &fifth_int_time);
 op_ima_obj_attr_get (own_id, "Second Start Time", &second_start_time);
 op_ima_obj_attr_get (own_id, "Third Start Time", &third_start_time);
 op_ima_obj_attr_get (own_id, "Fourth Start Time", &fourth_start_time);
 op_ima_obj_attr_get (own_id, "Fifth Start Time", &fifth_start_time);

 /* 885 modification : open file operation */
 if (use_file_data == 1) {
 //printf("file name:%s\n", &file_name);
 file_ptr = fopen(file_name, "r");
 //if (file_ptr != NULL)
 // fclose(file_ptr);
 }

/*---*/
/** state (generate) enter executives **/

 /* At the enter execs of the "generate" state we schedule the */
 /* arrival of the next packet.
 */

 /* 885 modification */
 /* next_intarr_time = oms_dist_outcome (interarrival_dist_ptr); */
 if (use_file_data != 1)
 {
 next_intarr_time = oms_dist_outcome (interarrival_dist_ptr);

 if (second_start_time > 0)
 {
 if (op_sim_time()-base_time > second_start_time)
 {
 sprintf(temp_interarrival_str, "constant (%f)",
second_int_time);
 interarrival_dist_ptr = oms_dist_load_from_string
(temp_interarrival_str);
 next_intarr_time = oms_dist_outcome
(interarrival_dist_ptr);
 }

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
55

 }

 if (third_start_time > 0)
 {
 if (op_sim_time()-base_time > third_start_time)
 {
 sprintf(temp_interarrival_str, "constant (%f)",
third_int_time);
 interarrival_dist_ptr = oms_dist_load_from_string
(temp_interarrival_str);
 next_intarr_time = oms_dist_outcome
(interarrival_dist_ptr);
 }
 }

 if (fourth_start_time > 0)
 {
 if (op_sim_time()-base_time > fourth_start_time)
 {
 sprintf(temp_interarrival_str, "constant (%f)",
fourth_int_time);
 interarrival_dist_ptr = oms_dist_load_from_string
(temp_interarrival_str);
 next_intarr_time = oms_dist_outcome
(interarrival_dist_ptr);
 }
 }

 if (fifth_start_time > 0)
 {
 if (op_sim_time()-base_time > fifth_start_time)
 {
 sprintf(temp_interarrival_str, "constant (%f)",
fifth_int_time);
 interarrival_dist_ptr = oms_dist_load_from_string
(temp_interarrival_str);
 next_intarr_time = oms_dist_outcome
(interarrival_dist_ptr);
 }
 }

 }
 else
 {
 sprintf(temp_interarrival_str, "constant (%f)",
(double)(1.0/file_data_rate));
 //sprintf(temp_interarrival_str, "constant (1.0)");
 interarrival_dist_ptr = oms_dist_load_from_string
(temp_interarrival_str);
 next_intarr_time = oms_dist_outcome (interarrival_dist_ptr);
 }

 /* Make sure that interarrival time is not negative. In that case it */
 /* will be set to 0.
 */
 if (next_intarr_time <0)
 {
 next_intarr_time = 0;
 }

 next_pk_evh = op_intrpt_schedule_self (op_sim_time () + next_intarr_time,
SSC_GENERATE);

/*---*/
/** state (stop) enter executives **/

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
56

 /* When we enter into the "stop" state, it is the time for us to */
 /* stop generating traffic. We simply cancel the generation of the */
 /* next packet and go into a silent mode by not scheduling anything */
 /* else.
 */
 if (op_ev_valid (next_pk_evh) == OPC_TRUE)
 {
 op_ev_cancel (next_pk_evh);
 }

 /* 885 modification : closing source data file */

 if (use_file_data == 1)

 if (file_ptr != NULL)
 fclose(file_ptr);

/*---*/

Receving Node Module
/* Process model C form file: yy_rcv_node_process2.pr.c */
/* codes for the receiving node process model */

/* ***** Header Block ***** */

/* transition macros */
#define PK_ARRVL (op_intrpt_type()== OPC_INTRPT_STRM)

/* ***** End of Header Block ***** */

/* ***** State variable definitions ***** */
typedef struct
 {
 /* Internal state tracking for FSM */
 FSM_SYS_STATE
 /* State Variables */
 Stathandle ete_gsh;
 int packet_count;
 Stathandle packet_cnt_stathandle;
 Stathandle ete_dff_stathandle[4];
 } yy_rcv_node_process2_state;

/* ***** End of State variable definitions ***** */

/* ***** Temporary variable definitions ***** */

 Packet *pkptr; // pointer to packet
 double ete_delay; // end to end delay
 int i; // temporary counter variable
 Ici* ici_ptr; // ici information pointer
 int flowID; // indicates which flow the packets is from

/* ***** End of Temporary variable definitions ***** */

Appendix: Implementation of Start-Time Fair Queuing in Opnet (Mitchell & Yeung)
57

/*---*/
/** state (init) enter executives **/

 /* initialize variables and register statistics */

 ete_gsh=op_stat_reg("ETE delay", OPC_STAT_INDEX_NONE, OPC_STAT_GLOBAL);
 packet_count=0;
 packet_cnt_stathandle=op_stat_reg("packet count", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);
 for (i=0;i<4;i++)
 ete_dff_stathandle[i]=op_stat_reg("ETE Delay For Flows", i, OPC_STAT_GLOBAL);

/*---*/
/** state (arrival) enter executives **/

 /* get a pointer to the incoming packet */
 pkptr= op_pk_get (op_intrpt_strm());

 /* calculate end to end delay */
 ete_delay=op_sim_time()-op_pk_creation_time_get(pkptr);
 op_stat_write(ete_gsh, ete_delay);

 /* record end to end delay for a specific flow */
 ici_ptr=op_pk_ici_get(pkptr);
 op_ici_attr_get(ici_ptr, "incoming_flow", &flowID);
 op_stat_write(ete_dff_stathandle[flowID], ete_delay);

 /* count how many packet received so far */
 packet_count=packet_count + 1;
 op_stat_write(packet_cnt_stathandle, packet_count);

 /* destroy the packet */
 op_pk_destroy(pkptr);

/*---*/

