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Abstract 
 
 Scheduling or queuing algorithms are used in packet forwarding elements such as routers 
or switches [Cis95]. The goal is to minimize transmission delays as well as to help in manage 
network congestions. In this project, we study different scheduling algorithms. We examine in 
particular Start-Time Fair Queuing [Goy96] which claims to achieve good fairness even with 
VBR traffic source present in the network. We implemented the algorithm as an Opnet™ 8.0 
model on which simulations are run to verify its different characteristics. Comparisons between 
Start-Time Fair Queuing and other scheduling schemes were also done by ways of simulations. 
 
 

1 Introduction 
 
Routers and switches in packet-switched networks use buffers to manage data, which come from 
various sources but are destined to a single shared link. However, the difference between the 
packet arrival rate and packet departure rate as well as congestion in the network usually causes 
packet to wait in the buffers, and this imposes significant delays in the transmissions. Efficient 
buffer managements help to minimize these delays and can even help to resolve congestion in the 
network. 
 
The majority of routers deployed in real networks serve packets from various sources in the order 
they arrive (First-in, First-out, or ‘FIFO’). This is a simple and thus low cost approach which 
generally works. However, with FIFO scheduling, if one source floods the network with packets, 
it will appropriate a high proportion of the packets served and thus the bandwidth available to 
other well-behaved sources will dramatically decrease, resulting in an unfair allocation of 
bandwidth in the view of the well-behaved sources. 
 
A number of different scheduling algorithms (a.k.a. queuing algorithms) with varying levels of 
complexity have been introduced over the past 15 years to address this issue. They generally 
achieve fairness by allocating a relatively equal share of the bandwidth to each source; under 
congestion, each source or incoming packet flow is guaranteed its portion. Flows may transmit 
faster than their allocated bandwidth only if there is idle time not being used by other flows. 
 
Many of these fair queuing (FQ) algorithms developed in the old days, however, do not perform 
well in the presence of variable bit rate (VBR) traffic source. As VBR traffic becomes very 
common in modern networks (e.g. video traffic on the Internet), modern queuing algorithms must 
be able to fairly handle a combination of VBR and CBR traffic. 
 
For this CMPT 885 project we decided to study different scheduling algorithms used in routers or 
switches, and specially focus on examining and implementing the “Start Time Fair Queuing” 
(SFQ), which is a fair queuing algorithm that performs well even in the presence of VBR traffic. 
Performance of SFQ will be evaluated with other algorithms. Our evaluation approach follows an 
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earlier project by Nazy Alborz in which she implemented and evaluated a different FQ algorithm, 
Virtual Clock (VC). 
 
In this report, we give a general description of different scheduling algorithms and present the 
SFQ algorithm as the result of our study. We then describe our implementation of SFQ in the 
Opnet™ network modeling and simulation environment. Finally, we report the results of a 
network simulation that we ran for evaluating the performance of the SFQ algorithm in 
comparison to other scheduling schemes.  
 

2 Background 
 
In the section, we first present the role of scheduling or queuing algorithms in the packet-switched 
network. Descriptions of different widely adopted queuing algorithms, including Start-Time Fair 
Queuing, follow. Then, we describe our implementation of SFQ in Opnet™ 8.0. Finally, we 
present the results of the performance evaluation of SFQ with our implementation. 

2.1 Congestion Control 
 
In circuit-switched networks where data travels along a fixed path with dedicated bandwidth, 
there is no queuing delay at the switches; in packet-switched networks, however, the data rate 
varies depending on the packet size and the rate at which packets arrive.  
 
When packets from multiple sources are multiplexed to the same outgoing link at the switch or 
router but data arrives faster than it can be routed and transmitted across, congestion may occur. 
In this case, the switch must buffer the packets until the outgoing link is free. The time the packet 
waits in the buffer adds random delay to the transmission. This added delay can be very large, and 
if the capacity of buffer is exceeded packets will be lost. [Wal00] 
 
The simplest way to avoid congestion and delay is to use less than the maximum bandwidth of the 
network [Chu02]. However, that would by definition mean an inefficient use of the network. 
Instead, the goal is to keep the delay within acceptable limits by using congestion control 
algorithms.  
 
Congestion control can be done at the source by limiting the amount of traffic sent, which is also 
referred as flow control. A typical example is the window adjustment approach of TCP [Wal00]. 
On the other hand, congestion can also be controlled at the switch or router by managing the 
buffers effectively. Different methods for the latter approach, known as scheduling or queuing 
algorithms, are developed and widely adopted by switch and router manufacturers.  
 
One drawback of the controlling-at-the-source approach is that it usually depends on the 
responses from other network elements, either the switches or the receiver host, in order to 
dynamically adjust how much data should be sent out or how much data should be buffered in the 
future. Queuing algorithms instead usually works by only examining the incoming traffic rate, and 
thus needs no communications with other network elements. 
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2.2 Queuing Schemes 
 
A very simple and basic queuing algorithm is to serve packets in the order they arrive from all 
sources, FIFO1. However, the router is susceptible to a serious problem. The flaw, identified 
nearly twenty years ago by John Nagle [Nag84], is that a source that ignores flow control and 
floods the network with traffic will dominate the FIFO queue - at the expense of the other well-
behaved sources. This ill-behaved source effectively steals bandwidth from the other sources. 
Such behaviour could easily take place when people intentionally altering their algorithms in order 
to take advantage of the phenomenon [Der90]. But it could also happen unintentionally when a 
source has relatively larger packet size, or when network equipment malfunctions. In fact, this 
problem can even occur between well-functioning sources that use different congestion control 
algorithms, such as the Reno and Vegas versions of TCP [Mo99]. 
 
Priority Queuing tries to improve FIFO queuing, by examining priority values of incoming 
packets. Incoming packets with higher priorities will always be served before lower priority 
packets. So important packets with higher priorities should have smaller delays. However, if an 
ill-behaved source keep flooding the network with higher priority packets, the domination 
situation occurs as in FIFO. 
 
Another queuing algorithm called Class-Based Queuing tries to improve FIFO by classifying 
incoming packets into different pre-defined sub-queues, and then serve the different sub-queues in 
a round-robin manner. This ensures fair bandwidth allocation among different “kinds” of packets 
(i.e. among different sub-queues). But since packets in the same sub-queues are still being served 
in a FIFO manner, the disadvantages of simple FIFO queuing still present. 
 
The solution, known as fair queuing (FQ), is to share the bandwidth of the outgoing link among 
sources by guaranteeing each source a minimum bandwidth allocation. In this way, well-behaved 
sources can have some protections from ill-behaved sources. More Specifically, the algorithm 
“insures that well-behaved hosts receive better service than badly-behaved hosts” [Nag84, RFC]. 
Each source is served one at a time in a round robin manner. Sources with no incoming packets 
are skipped in that round. Nagle’s concept is widely accepted and affects many later queuing 
algorithms, such as Virtual Clock Fair Queuing, Weighted Fair Queuing, and Start Time Fair 
Queuing. 
 
Weighted Fair Queuing (WFQ) is proposed based on Nagle's simple FQ algorithm in order to 
better suit the needs of the real world and at the same time retains the advantages of FQ. WFQ 
estimates the time of finishing serving the packet, and use this finish time to determine which 
packets to serve first. Moreover, the “weight” concept gives room to implement quality of 
services in the network. The algorithm provides good fairness in general for constant bit rate 
(CBR) traffic. 
 
Virtual Clock (VC) orders incoming packets by calculating a time stamp for each incoming 
packet. The time stamp is created by considering both a finish-serving time, like WFQ, and a time 
                                                
1 FIFO queuing (i.e. first-in, first-out) is also commonly called “first-come first-serve,” or FCFS 
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from a virtual clock system. The packet with the earliest stamped time is served first. VC was 
designed to reduce the computational complexity associated with the original FQ method. 
However, it increases the maximum delay incurred by packets significantly. Although it is 
technically fair, VC does not handle VBR traffic well because it penalizes a source for the use of 
idle bandwidth, as stated by Parekh & Gallagher [Par93] 
Zhang proposes an interesting scheme called virtual clock multiplexing [21], Virtual clock 
multiplexing allows a guaranteed rate and (average) delay for each session, independent of the 
behavior of other sessions. However, if a session produces a large burst of data, even while the 
system is lightly loaded, that session can be “punished” much later when the other sessions 
become active.  
This will be examined further in Section 4.4. 
 

2.3 Start-Time Fair Queuing Algorithm 
 
Unlike WFQ, Start Time Fair Queuing (SFQ)2 orders packets by calculating a start-sending time 
stamp for each packet. The packet with the earliest starting time will be served first. Similar to 
VC, it is designed to reduce computational complexity. SFQ has also been claimed to be the first 
queuing algorithm focusing on handling both CBR and VBR traffic, and thus has benefits when 
applying on modern networks where VBR traffic is common. 
 
The SFQ algorithm can be summarized as follows: 
The router serves packets in order of start time. The basic idea is as follows: a packet arriving in 
flow f is assigned a “start tag” as follows: 
If there are packets from flow f waiting in the buffer, the new packet should be scheduled as soon 
as possible behind them. Thus the start tag is set to be the “finish tag” of the previous packet. 
The finish tag is actually pre-assigned based on the size of packet divided by the rate assigned to 
the flow. 
However, if the start tag of the packet currently being serviced (from any flow) is higher than the 
finish tag of the previous packet, use the currently servicing start tag that instead. (i.e. if flow f is 
behaving, the packet can go to the front of the line, but it can’t go in front of the line) 
 
Goyal et al additionally refer to setting the first start tag after a non busy period (i.e. server not 
serving packets) to the maximum finish time of packets served so far, but note that this was for 
proving delay guarantees and that setting it to zero would be equivalent. 
The algorithm provides fairness protection between flows because each packet is scheduled 
behind the packets from its own flow. If one flow over-transmits, then its packets won’t cut in line 
in front of other flows. It also provides sensible fairness during less busy periods (corresponding 
to the times when a flow does not have any packets waiting in the buffer): the extra bandwidth is 
shared among all flows. When a new packet arrives from the idle flow it goes to the front of the 
                                                
2 Note that a different queuing algorithm, Stochastic Fairness Queuing, was already referred to as “SFQ” leading 
some to suggest the use of “STFQ” for Start-Time Fair Queuing [Vil98]. However, in most citations the acronym 
“SFQ” - as used by the authors - persists [Citeseer]. 
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line and scheduling continues as before, and thus there is no penalty for other flows using the 
extra bandwidth. 

2.4 SFQ Details 
The algorithm uses two variables associated with each data flow to record the state, 
maximum_finish_tag_served to store the greatest finish_tag of all packets served so far, and it 
uses two values that it calculates and associates with each packet, start_tag and finish_tag. 
The algorithm works as follows: 
For each packet that arrives from flow f at time t 
if (the server is busy) 
  virt_time ← the start_tag of the packet in service at time t  
else (server not busy) 
  virt_time ← maximum_finish_tag_served  
prev_finish_tag  ← finish_tag of the previous packet in flow f  
start_tag  ← max{ virt_time , prev_finish_tag } 
finish_tag ← start_tag  + (length of packet)/weight  
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3 SFQ Implementation 
 
In this section we describe our implementation of the SFQ algorithm in Opnet™ 8.0 as a Queue 
Model that is a process model in Opnet™ 8.0. The core of the implementation consists of a ‘C’ 
programming language file sfq.pr.c. With SFQ implemented as a Queue Model, a Queue Node 
created in the Node editor can select “sfq” as the queuing scheme. 
 

3.1 SFQ ICI 
 
To support the algorithm, we use the “Interface Control Information” (ICI) system in Opnet™. 
This allows us to associate data fields with each arriving packet to the SFQ Queue Model. The 
SFQ ICI is found in the file sfq.ic.m., and its configuration is show below: 
 

 

3.2 SFQ Process Model 
 
We originally planned to implement SFQ as one of the QoS routing options in the IP model of 
Opnet™ following what Nazy Alborz did in her implementation of the VirtualClock algorithm 
[Alb01]. This was our intention at the time of the progress report in March, 2002. However, after 
spending time examining the code for the IP output interface and IP QoS models, we realized that 
the complexity of integration was too great for this project and that it would divert our focus from 
the implementation and testing of SFQ. Consequently, we determined to implement SFQ as an 
Opnet™ process model, and 
were able to use the finite state machine (FSM) of Opnet™’s active FIFO queue, acb_fifo, as the 
foundation of our SFQ implementation.  
 

Figure 3.1-1 ICI used in SFQ scheduling algorithm 
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The Finite State Machine of SFQ Queue Model is arranged as follows: 

 

3.2.1 Algorithm Implementation Design 
In FIFO queuing, the arrival state simply queues the packet at the tail of a single queue. At the 
time of servicing, the algorithm selects the packet at the head of the queue. The queue is accessed 
by using Opnet™ queuing commands like 

 
op_subq_pk_insert (queue_id, pkptr, OPC_QPOS_TAIL) 
pkptr = op_subq_pk_access (queue_id, OPC_QPOS_HEAD); 
 
In SFQ, since the packets are served in order of start tag we had the option of   
building a single priority queue and inserting packets with start_tag as the priority. 
maintaining separate FIFO subqueues for each incoming flow. Then, when it comes to the time to 
serve a packet, we examine the head of each queue and serve the packet with the lowest start tag. 
 
Both techniques are suitable to implement SFQ because they both schedule packets in order of 
start tags. 
 
In a real router we would likely choose option 1 because it would be adaptable to a large number 
of flows and it keeps most of the packet processing actions within the packet insertion stage – 
which would often occur while another packet was being served, thus minimizing delay between 

Figure 3.2-1 Process model finite state machine of FIFO, SFQ, and VirtualClock queue 
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serving packet. (Note: This priority queue concept is the one presented by Lixia Zhang for the 
Virtual Clock scheme [Zha90].) 
 
For this simulation, however, we decided to use subqueues for each flow since conceptually it 
matched more closely with our mental model. Furthermore, it would be convenient to measure the 
size and delay in each subqueue using built-in statistic functions in Opnet™. 

3.2.2 The init State 
Initialize the variables and statistics.  

3.2.3 The arrive State 
Step 1:   Get the incoming packet 
Step 2:  Get information about the packet: flow f that it is from, packet length, and arrival time in 
queue. Store the arrival time. If the flow has been assigned a weight of 0 then discard the packet. 
Step 3:  Calculate the start_tag and finish_tag for the packet, and update the 
“prev_finish_tag[flow]” variable to use in the next packet arrival from flow f 
Step 4:  Create an ICI and assign values to the data fields: start_tag, finish_tag (for SFQ) and 
“Arrival Time in Queue” and “incoming_flow” (for statistics); attach the ICI to the packet. 
Step 5:  Attempt to queue the packet in the subqueue corresponding to flow f. If the server is not 
busy, go straight to the svc_start state; otherwise return to the idle state. 
 
 

3.2.4 svc_start State 
Step 1: Determine which subqueue to serve. This is performed by the following sequence 
of actions: 
Cycle through the subqueues, stop when you find the first non-empty queue 
Access the packet at the head, get its start_tag from the ICI 
Set this start_tag as “min” and the queue as “min_q” 
Loop through any remaining subqueues and for each non-empty subqueue repeat (b) 
If this start_tag is lower than min, update min and min_q 
min_q is the subqueue to serve 
 
 
 
 
 
 
Step 2:  Get a pointer to the packet and retrieve its start_tag from the ICI. Update the 
start_tag_in_service and queue_in_service state variables. 
Step 3:  Calculate the time it will take to serve the packet (based on packet length) and schedule 
an interrupt for the time when service is completed. 
Step 4:  Update statistics 
Step 5:  Set the server_busy state variable to true and return to the idle state. 
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3.2.5 The svc_complete State 
This state is entered by the self-scheduled interrupt from svc_start state, which indicates that the 
time required for packet service is completed. 
Step 1:  Remove the packet from its subqueue 
Step 2:  Retrieve its finish_tag from the ICI. Update the max_finish_tag state variable if the new 
finish_tag is greater. 
Step 3:  Update statistics 
Step 4:  Send the packet. If there are packets waiting to be sent, go straight to the svc_start state; 
otherwise return to the idle state. 
 

3.3 VirtualClock Process Model 
We originally intended to use the Virtual Clock QoS routing option in Opnet™’s IP model that 
Nazy Alborz implemented [Alb01]. However, we discovered that it was written for an earlier 
version of Opnet™ and did not work in Opnet™ Modeller 8.0. Nevertheless, we desired to 
compare SFQ with another fair queuing technique: it was important if we wanted to get more 
interesting simulation results. Thus, we decided to implement VC algorithm as a Queue Model, 
similar to SFQ. 
 
Our VC process model was primarily built by transforming Nazy Alborz’s VC implementation in 
the IP framework into the Opnet™ Process model framework. The functioning of SFQ and VC, 
like most Fair Queuing (FQ) algorithms, are very similar except for the scheduling method. We 
were able to implement VC with exactly the same structure that we did in implementing SFQ. 
start_tag and finish_tag  in SFQ are replaced by auxiliary_virtual_clock in VC. Also, a VC ICI is 
created to associate time stamps (‘virtual_clock_stamp’ and ‘aux_virtual_clock_stamp’) to each 
arriving packet. The FSM for VirtualClock is the same as that of SFQ and acb_fifo. Since the 
details of the VC Queue Model are very similar to the SFQ Queue Model, the implementation 
details for VC are left to Appendix A. 
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3.4 Source Node Process Model 
We modified the simple_source process model 
in Opnet to allow a more flexible way to 
generate different types of traffic flows. Figure 
3.4-1 (right) shows the additional options 
available to the users in the modified version of 
simple source object. They are basically used 
to control two new functions: 
 
1) File reading capability 
The "Use File Data", "File Location" and the 
"File Data Rate" options together allow the 
user to tell the source node to read in data 
from a file and generate traffic flows based on 
the data (e.g. the star wars trace). 
2) Multiple packet interarrival time 
The second, third, fourth and fifth interarrival 
time allow the user to specify up to five 
different interarrival times in a traffic flows 
over different periods of time. With the 
corresponding "Start Time" options, these 
different periods of time are controlled. 
 
 

3.5 Receiving Node Process Model  
The receiving node acts as the end point in the network since all the packets from the source 
nodes are destined to this receiving node. The receiving node is a completely new implementation, 
and it has two functionalities: 
1) destroy the incoming packets, and  
2) record statistics about the incoming packets.  
 
Figure 3.5-1 (right) shows the Finite State 
Machine of its process model. It starts with the 
"init" state to initial all the state and temporary 
variables, and then it switches to the "idle" 
state. When a packet arrives, it switches from 
the "idle" state to the "arrival" state to record 
statistics, like end-to-end delay of the packets. 
Finally, it destroys the packets and returns to 
the "idle" state to wait for the next packet to 
arrive. 

 

Figure 3.4-1 Source Node Attributes 

Figure 3.5-1 Receiving Node Process  
Model – Finite State Machine 
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4 Performance Evaluation 

4.1 Network Configuration 
 
We designed a simple network in order to test the 
SFQ queue model and to verify the characteristics 
and performances of SFQ. There are four source 
nodes (on the left) for generating traffic. All 
source nodes are connected to the router (in the 
middle). In order to communicate with the 
receiving node (on the right), the source nodes 
share the same link between the router and the 
receiving node. The traffic generation of the 
source s and the bandwidth bottleneck of the 
router/shared link are customizable. This 
arrangement allowed us to create variety of 
source traffic situations with a bottleneck at the 
router. 
 
We ran a number of simulation scenarios to verify 
the performance and characteristics of SFQ. The 
results are presented as 4 categories in the 
following subsections. 
 

4.2 Unfairness of FIFO 
 
As stated in Section 2.2, FIFO is susceptible to a problem of unfairness in which an ill-behaving 
source can easily occupy most of the bandwidth of the outgoing link by using a relatively higher 
packet arrival rate at the router, leaving only a small room for the other sources to transmit their 
packets. Fair Queuing algorithms protect each flow from other flows’ misbehaviour; in Weighted 
Fair Queuing schemes such as SFQ, the algorithm guarantee a certain amount of bandwidth to 
each flow according to its allocated ‘weight.’ 
 
We created a simple scenario to observe FIFO behaviour and verify that SFQ maintains fair 
bandwidth allocation to each flow. The scenario uses two source nodes of our network model to 
generate traffic: 

Source [0] 1 pkt / 8 seconds 
Source [1] 10 pkts / second 

The bandwidth of the link is 6 pkts/sec, so Source [1] is deemed to be misbehaving and flooding 
the network. We ran the scenario twice, first with FIFO queuing and then with SFQ as the 
scheduling algorithm in the router. The throughput of the individual traffic flows were as follows: 

Figure 4.1-1 Network Configuration 
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Figure 4.1-1 and 4.1-2 above show the throughputs of individual traffic flows at the router, and 
we can see that SFQ allowed packet from source 1 to go through at the expected rate of 0.125 
packets per second. However, with FIFO, packets from source 1 only have an outgoing rate of 
0.075 packets/sec at the router, while packets from source 2 were using most of the bandwidth.  
 
This illustrates the fact that FIFO does not protect bandwidth for flows when there is congestion. 
In SFQ, on the other hand, a conforming source has a guarantee throughput even with the 
presence of congestion caused by a misbehaving source. 

4.3 Flow Protection in SFQ 
 
We further investigated the fairness of SFQ by verifying its ability to protect conforming sources 
from misbehaving sources in terms of 1) delay and 2) “credit storing.” 

4.3.1 Delaying Only Packets From Misbehaving Sources 
A consequence of the fact that Fair Queuing algorithms guarantee bandwidth to behaving flows is 
that when a traffic flow misbehaves and causes congestion in the network, packets from that 
traffic flow will greater experience delays. To visualize this characteristic, a scenario with 2 traffic 
generation nodes was set up as follows: 
 

Time: 0-3 minutes 3-5 minutes 5-10 minute 
Source [1] 4 packets/sec 
Source [2] 4 packets/sec 6 packets/sec 4 packets/sec 

 

Figure 4.2-2 Throughput of Flow[1] (misbehaving source) Figure 4.2-1 Throughput of Flow[0] (behaving source) 
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The outgoing link bandwidth is 8 pkts/sec. The bandwidth guarantee for the flows are: 
Flow 1:  4 pkts/sec 
Flow 2:  4 pkts/sec 
Thus, during the period of 3-5 minutes, source 2 misbehaves and causes congestion. The traffic 
generated by the sources and the throughputs for individual traffic flows are shown below 
(Figures 4.3-1 and 4.3-2): 

 
Furthermore, the end-to-end (ETE) delays of packets from different flows (Figure 4.3.-3, shown 
below) confirms that SFQ protects packets from the behaving source [1] from experiencing larger 
delays in the presence of congestion caused by the misbehaving source. 

Figure 4.3-1 Source Traffic 

 

Figure 4.3-2 Throughput with SFQ 

Figure 4.3-3 ETE Delay of behaving and misbehaving 
flows 



 
Implementation of Start-Time Fair Queuing in Opnet  (Mitchell & Yeung) 19 

Figure 4.3-1 Source Traffic for Flows 1, 2, 3 

4.3.2 Preventing Credit-Store & Burst Misbehaviour 
A flow (e.g. VBR) should not be allowed to store up credit in a low period and burst later, 
because the idle bandwidth that existed during the low period is “gone” [Zha90]. VirtualClock 
prevents a source from bursting after credit-storing, as verified by Alborz and Trajkovic [Alb01]. 
We use the same simulation scenario to verify that SFQ has the same ability. 
The scenario is created with the following settings: 
 5-20sec 20-141sec 142-391sec 392-455sec 456-555sec 
Source 1, CBR – 4 packets/sec 
Source 2, CBR – 2 packets/sec 0.5 packets/sec 8 packets/sec – 
Source 3, 
VBR 

Average 4 packets/sec 

 
The outgoing link serves up to 8 packets/sec 
The weight agreement is as follows: 
Source 1: “4” 
Source 2: “2” 
Source 3: “4” 
Thus even in congestion SFQ should guarantee 
bandwidth of: 
Source 1:  3.2 pkts/sec 
Source 2:  1.6 pkts/sec 
Source 3:  3.2 pkts/sec 
Source 2 attempts to misbehave by under-
transmitting (during t= 20-141) and then 
bursting (during t= 392 – 455). Traffic 
generation for each source is shown in  
Fig. 4.3-1 (right). 
 
The router throughput for each flow is found in 
Fig. 4.3-2 (right). This result shows that as in 
VirtualClock, this credit storing strategy does 
not work with SFQ. The throughput of flow 2 
never exceeds 2 pkts /sec even when it transmits 
8 pkts/sec, and the bandwidth guarantees for the 
other flows are maintained. 
Thus we see that SFQ does not allow a 
misbehaving source to store credits in order to 
send a traffic burst at a later time. 
 

Figure 4.3-2 Throughput for Flows 1, 2, 3 (SFQ) 
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4.4 Idle Bandwidth Use: Comparison SFQ vs. VC 
 
In Section 2.2 we mentioned that Parekh & Gallagher claim that VirtualClock punishes flows for 
large bursts of data, even long after the burst [Par93]. Goyal et al cite this, stating that VC 
“penalizes a traffic flow for using idle bandwidth” [Goy96]. They designed SFQ to eliminate this 
effect, allow a flow to use the idle bandwidth (i.e. bandwidth originally reserved for some other 
flows but are not being used at the time) without penalty, in order to achieve an efficient use or an 
efficient use of bandwidth. 
 
In this section, we present a number of tests we used to verify this claim. 
 
Our result shows that VC does have a “punish” effect but the claim of “punishing of using idle 
time” is not completely true. 

4.4.1 Does VC “Punish the Use of Idle Time”? 
 
The claim that VC punishes the use of idle time was surprising to us. We concluded that if this 
were true, the consequence would be as follows: 

Figure 4.4-1 Source Traffic (Using “Idle Time”) Figure 4.4-2 Expected Throughput In VC 

Transmission rate of source 1 and 
source 2 
 
Source 1 

Source 2 

Packet serving under punishing 
scheduling scheme 
(red indicates actual rate) 
Flow 1  

 
Flow 2 (source 2 is ‘punished’) 
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Scenario 1 
Fig. 4.4-1 defined our first test. We created a simple simulation by using two sources with traffic 
to mimic the traffic sources above, as follows: 

Time: 0-2 minutes 2-5 minutes 5-15 minutes 
Source [1] 4 pkts/sec 1 pkt / sec 4 pkts/sec 
Source [2] 4 pkts/sec 6 pkts/sec 4 pkts/sec 

The bandwidth of the outgoing link was 8 pkts /sec, so each flow was given 4 pkts/sec. 
The input traffic and outgoing throughput are shown below: 
 

Clearly, VC did not punish flow 2 for using idle time! 
 

Scenario 2 
It was only when we used the same 
source traffic and introduced congestion 
into the system by reducing the bandwidth 
of the outgoing link to 6 pkts /sec, so 
each flow was given 3 pkts/sec (and thus 
both were misbehaving), that we saw the 
result we expected for the first scenario: 
 
 
The above two scenarios showed that our 
original understanding was not completely 
accurate. VirtualClock does not strictly 
punish the “use of idle time.” 

Figure 4.4-5 Throughput with VC  - Scenario 2 

Figure 4.4-4 Throughput with VC - Scenario 1 Figure 4.4-3 Source Traffic  
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4.4.2 VC Punishes Misbehaviour 
What VC actually does punish is misbehaviour, and this punishment is only effected when 
congestion occurs. These two principles are shown in the following sections: 

Misbehaviour: Auxiliary Virtual Clock in Traffic bursts (Scenario 1) 
In 4.4.1 Scenario 1 (no congestion), both flows maintained their throughput (Fig. 4.4-4) and had 
no delay (Fig 4.4-6, below left). However, let us examine the Auxiliary Virtual Clock during that 
scenario (Fig. 4.4-7, below right): 

 
Note that although Flow 2 appeared to be unaffected by misbehaving because it only used idle 
bandwidth, its Auxiliary Virtual Clock is now running fast because it incremented faster than 
agreed due to the increased arrival rate from time = 2 – 5 minutes. When the misbehaviour 
stopped, both internal clocks will increased at the same rate again; yet source 2’s misbehaviour 
had been “remembered” by the values in these clocks. 
This occurs whenever a flow misbehaves in VC. 

Scenario 3 …When Congestion Occurs 
 
To show the punishing effect that this results in, we will create a new Scenario 3 by extending 
Scenario 1, adding another 15 minutes to the original simulation. Recall that because the 
bandwidth of the link is 8 pkts/sec there has been no packet delay so far. 
 
For the first 5 minutes both sources continue to behave by transmitting 4 pkts/sec. Now, at time = 
20 minutes, source 1 takes a turn at misbehaving, transmitting 8 pkts/sec for 1 minute, causing 
congestion in the router. The full source traffic can be seen below in Fig. 4.4-8. We ran the 
simulation twice, once with VC and a second time with SFQ. 
 

Figure 4.4-7 Throughput of flows in Scenario 2 (no 
congestion) with VC scheduling 

Figure 4.4-6 ETE delay in Scenario 2 (no 
congestion) with VC scheduling 
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The throughput and ETE delay for SFQ (Figs. 4.4-9 and 4.4-10, below) show that flow 1 is 
punished for misbehaving at time=20, creating a very large packet queue that delays packets that 
follow the burst: 

 
This is fair behaviour according Goyal et al [Goy96], who believe that than bandwidth of each 
flow should be protected under all circumstances  
 

Figure 4.4-9 Throughput with SFQ (Scenario 3) Figure 4.4-10 ETE delay with SFQ (Scenario 3) 

Figure 4.4-8 Source Traffic (Scenario 3) 
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Under VirtualClock scheduling the behaviour is very different, as shown in the throughput and 
ETE delay graphs above (Figs. 4.4-11 and 4.4-12). At the time when source 1 misbehaves, it is 
actually source 2 that is punished! 
Source 2 is actually being punished for its misbehaviour 18 minutes earlier, which can be clearly 
seen in a graph of the values of auxiliary clocks of the 2 traffic flows: 
 

As explained previously, source 2 has a higher auxiliary clock value due to an earlier misbehaviour 
of sending packets faster than the expected rate. During the time when both sources are 
transmitting packets conformingly, the gap between the auxiliary clocks stay the same; in a 
sense,VC remembers the misbehaviour of source 2. At the time of congestion, it was source 1 that 

Figure 4.4-10 Throughput with VC (Scenario 3) Figure 4.4-11 ETE delay with VC (Scenario 3) 

Figure 4.4-12 Auxiliary Virtual Clock of flows (Scenario 3) 
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sent packets in a higher rate than usual. However, since its auxiliary clock value is lower than that 
of source 2, its packets will generally be scheduled before packets from source 2. 
The punishing effect is due to the auxiliary clock value ‘running fast’ during misbehaviour. It does 
not take effect until there is congestion. 
 
 
Thus we verified that VirtualClock does not punish the use of idle time, but it does “remember” 
misbehaviours that take place when there was no congestion, and then punishes them when 
congestion occurs. 
The authors of SFQ believe that this is unfair. Some would not agree, arguing that misbehaviour 
should always be punished. The precise definition of fairness must be determined by the reader 
according to context of their particular scheduling application.  
 

4.5 Punishing & Bandwidth for VBR flows  
In Section 4.2.1 we saw that a consequence of fairness was that misbehaving flows should be 
punished, and in Section 4.4.2 we saw that VC punishes all misbehaviour, whereas SFQ does not 
punish misbehaviour that takes only idle bandwidth. 
 
In their paper introducing SFQ, Goyal et al recognized the particular significance of VBR flows in 
today’s networks and identified the need to extend the notion of fairness in light of VBR 
behaviour: 
Due to the difficulty in predicting the bit rate requirement of VBR video sources, video channels 
may utilize more than the reserved bandwidth. As long as the additional bandwidth used is not at 
the expense of other channels (i.e., if the channel utilizes idle bandwidth), it should not be 
penalized in the future by reducing its bandwidth allocation. [Goy96] 
They relate this issue specifically to the punishing characteristic of VirtualClock and some other 
scheduling schemes. Let us examine the VC algorithm to see why they made this association. 
Recall from section 4.3 and 4.4 above: 
During the low bandwidth times, VC updates the flow’s auxiliary virtual clock to real time so that 
it cannot store up credits 
During the high bandwidth times, VC allows the flow’s auxiliary virtual clock to go faster and get 
ahead of real time 
If for a time the VBR source’s bandwidth is higher than the allocated bandwidth its auxiliary 
virtual clock will get ahead of real time just like a misbehaving flow. This characteristic can be 
verified by running a simple simulation. 
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Scenario 4 
Source [1] CBR source sending 4 pkts/sec 
Source [2] VBR source (Poisson) sending an average of 4 pkts/sec 

 
The shared link has a bandwidth of 8.1 pkts/sec to guarantee no congestion, giving 4 pkts/sec to 
each flow (actually 4.05 pkts/sec). 
 

When there is no congestion, the throughput of both flows fair at 4 pkts/sec (Fig 4.5-2, above). 
However, the auxiliary virtual clock (Fig. 4.5-3, below) looks surprisingly similar to the 
misbehaving flow of Scenario 1 (compare to Fig. 4.4-7). The VBR flow’s auxiliary virtual clock is 
‘running fast’. 

Figure 4.5-3 Auxiliary Virtual Clock of flows (Scenario 4) 

Figure 4.5-1 Source Traffic (Scenario 4) Figure 4.5-2 Throughput of flows (Scenario 4) 
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Scenario 5 – VBR punishing in VC 
If we introduce some congestion into Scenario 4, the VBR flow should be susceptible to 
punishment just like the misbehaving flow in Scenario 3. 
We simply make the CBR flow - which was behaving in the above simulation - now intentionally 
misbehave by sending 9 pks/sec for a brief period as shown in Fig 4.4-4 (below): 
The graphs of auxiliary virtual clock and throughput are included below: 

Notice that the throughput of the behaving VBR source  (red) drops as soon as there is 
congestion, until the auxiliary virtual clock of flow [2] ‘catches up’. 

 

Figure 4.5-4 Source Traffic (Scenario 5) 

Figure 4.5-6 Throughput of flows (Scenario 5) Figure 4.5-5 Auxiliary Virtual Clock of flows (Scenario 
5) 
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Scenario 6 – VBR non- punishing in SFQ 
We ran the same setup as Scenario 5 with SFQ 
The throughput shows how SFQ does not regard the VBR source (flow 2) as ‘misbehaving’ and 
thus does not punish it when congestion is introduces by flow 1. 
 

 

VBR punishing: Conclusion 
 
Scenario 5 and Scenario 6 illustrate the claim by Goyal et al that VBR sources whose average 
bandwidth is ‘behaving’ will be treated as misbehaving by the VirtualClock algorithm, but will not 
be punished by SFQ. [Goy96] 
 
Again, the ‘fairness’ evaluation of these scheduling algorithms is left to the reader.

Figure 4.5-6 Auxiliary Virtual Clock of flows (Scenario 
4) 
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5 Discussion and Conclusion 
   
In this course project, we studied various packet scheduling algorithms with a particular focus on 
the Start-Time Fair Queuing (SFQ) algorithm. We implemented SFQ as a Queue Model in 
Opnet™ 8.0 Modeller.  
 
We ran simulations to verify the characteristics of SFQ and compared it to FIFO queuing and 
another Fair Queuing algorithm that we implemented as an Opnet Queue Model, VirtualClock 
(VC). 
SFQ was shown 
 
The major implementation contribution of this project was the Opnet™ model of SFQ, which can 
be reused in other research or simulation project in the future. 
 
The major analysis contribution of this paper was the comparison of SFQ and VC approaches to 
scheduling sources which transmit more than their allotted share of service using idle bandwidth. 
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Appendix A: VirtualClock Implementation Details 

3.3.1 The init State 
Convert the SFQ flow allocation notation, proportional weights, to the VC notation, “arrival rate” 
by taking 
arrival_rate(flow) = weight(flow) / sum-of-weights-for-all flows 
Initialize the variables and statistics.  

3.3.2 The arrive State 
Step 1:   Get the incoming packet 
Step 2:  Get information about the packet: flow f that it is from, packet length, and arrival time in 
queue. Store the arrival time. If the flow has been assigned a weight of 0 then discard the packet. 
Step 3:  Check if this is the first packet to arrive on flow f, intialize the flow’s variables 
(‘virt_clock’ and ‘aux_virtual_clock’, and mark ‘first_packet_flag’ to skip this step in to future. 
Step 4:  Set the variables used in the VC algorithmx, v_clock, and a_v_clock, and calculate v_tick 
Step 5:  If a_v_clock is less than the packet arrival time, set it equal. This prevents a flow from 
‘storing up credits’ by transmitting under its arrival rate and then sending a burst. 
Step 6:  Increment and update ‘virt_clock’ and ‘aux_virtual_clock’ 
Step 7: Create an ICI and assign values to the data fields: ‘virtual_clock_stamp’, 
‘aux_virtual_clock_stamp’, and some statistics; attach the ICI to the packet. 
Step 8:  Attempt to queue the packet in the subqueue corresponding to flow f. If the server is not 
busy, go straight to the svc_start state; otherwise return to the idle state. 
 

3.3.3 The svc_start State 
Step 1:   Determine which subqueue to serve. This is performed as follows: 
Cycle through the subqueues, stop when you find the first non-empty queue 
Access the packet at the head, get its aux_virtual_clock_stamp from the ICI 
Set this stamp as “min” and the queue as “flow” 
Loop through any remaining subqueues and for each non-empty subqueue  
repeat (b) 
If this start_tag is lower than min, update min and flow 
flow is the subqueue to serve 
Step 2:  Get a pointer to the packet and retrieve its aux_virtual_clock_stamp from the ICI. 
Update the queue_in_service state variable. 
Step 3:  Calculate the time it will take to serve the packet (based on packet length) and schedule 
an interrupt for the time when service is completed. 
Step 4:  Update statistics 
Step 5:  Set the server_busy state variable to true and return to the idle state. 
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3.3.4 The svc_complete State 
This state is entered by the self-scheduled interrupt from svc_start state, which indicates that the 
time required for packet service is completed. 
Step 1:   Remove the packet from its subqueue 
Step 2:  Update statistics 
Step 3:  Send the packet. If there are packets waiting to be sent, go straight to the svc_start state; 
otherwise return to the idle state. 
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Appendix B: Source Code 
 

FIFO Queue Module (Opnet’s acb_fifo) 
/* Process model C form file: yy_acb_fifo.pr.c */ 
/* codes for the modified acb_fifo process model */ 
 
 
/* ***** State variable definitions ***** */ 
typedef struct 
 { 
 /* Internal state tracking for FSM */ 
 FSM_SYS_STATE 
 /* State Variables */ 
 int                       server_busy; 
 double                    service_rate; 
 Objid                     own_id; 
 /* cmpt885 modification: State Variables for collecting statistics */ 
 Stathandle                In_Traffic_handle[8]; 
 Stathandle                Out_Traffic_handle[8]; 
 Stathandle                Out_Bit_Traffic_handle[4]; 
 Stathandle                In_Bit_Traffic_handle[4]; 
 } yy_acb_fifo_state; 
/* ***** End of State variable definitions ***** */ 
 
 
/* ***** Temporary Variables definitions ***** */ 
  Packet* pkptr; 
  int              pk_len; 
  double           pk_svc_time; 
  int              insert_ok; 
   
  /* 885 modification */ 
  int  flowID; 
  Ici*  ici_ptr; 
  int  i; 
/* ***** End Temporary Variables definitions ***** */ 
   
   
/*---------------------------------------------------------*/ 
/** state (init) enter executives **/ 
 
 /* initially the server is idle  */ 
 server_busy = 0; 
     
 /* get queue module's own object id */ 
 own_id = op_id_self (); 
          
 /* get assigned value of server  */ 
 /* processing rate      */ 
 op_ima_obj_attr_get (own_id, "service_rate", &service_rate); 
     
 /* 885 modification */ 
 for (i=0; i<8; i++) 
  In_Traffic_handle[i]=op_stat_reg("In_Traffic",i,OPC_STAT_LOCAL); 
  
 for (i=0; i<8; i++) 
  Out_Traffic_handle[i]=op_stat_reg("Out_Traffic",i,OPC_STAT_LOCAL); 
     
 for (i=0; i<4; i++) 
  Out_Bit_Traffic_handle[i]=op_stat_reg("Out_Bit_Traffic",i,OPC_STAT_LOCAL); 
     
 for (i=0; i<4; i++) 
  In_Bit_Traffic_handle[i]=op_stat_reg("In_Bit_Traffic",i,OPC_STAT_LOCAL); 
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/*---------------------------------------------------------*/ 
 
/** state (arrival) enter executives **/ 
 
 /* acquire the arriving packet     */ 
 /* multiple arriving streams are supported. */ 
  
 /* 885 modification */ 
 /* pkptr = op_pk_get (op_intrpt_strm ()); */ 
 flowID = op_intrpt_strm (); 
 pkptr = op_pk_get (flowID); 
     
 ici_ptr= op_ici_create("yy_flow_stat_ici"); 
 op_ici_attr_set(ici_ptr, "incoming_flow", flowID); 
 op_pk_ici_set(pkptr, ici_ptr); 
     
 op_stat_write(In_Traffic_handle[flowID], 1.0); 
 pk_len = op_pk_total_size_get (pkptr); 
 op_stat_write(In_Bit_Traffic_handle[flowID], pk_len); 
     
   
 /* attempt to enqueue the packet at tail  */ 
 /* of subqueue 0.       */ 
 if (op_subq_pk_insert (0, pkptr, OPC_QPOS_TAIL) != OPC_QINS_OK) 
     { 
     /* the inserton failed (due to to a  */ 
  /* full queue) deallocate the packet. */ 
     op_pk_destroy (pkptr); 
  
  /* set flag indicating insertion fail  */ 
  /* this flag is used to determine   */ 
  /* transition out of this state   */ 
     insert_ok = 0; 
     } 
 else{ 
  /* insertion was successful    */ 
     insert_ok = 1; 
     } 
     
/*---------------------------------------------------------*/ 
 
/** state (svc_compl) enter executives **/ 
 
 /* extract packet at head of queue; this */ 
 /* is the packet just finishing service  */ 
 pkptr = op_subq_pk_remove (0, OPC_QPOS_HEAD); 
  
 ici_ptr=op_pk_ici_get(pkptr); 
 op_ici_attr_get(ici_ptr, "incoming_flow", &flowID); 
  
 op_stat_write(Out_Traffic_handle[flowID], 1.0); 
  
 pk_len = op_pk_total_size_get (pkptr); 
 op_stat_write(Out_Bit_Traffic_handle[flowID], pk_len); 
  
 /* forward the packet on stream 0, causing  */ 
 /* an immediate interrupt at destination. */ 
 op_pk_send_forced (pkptr, 0); 
  
 /* server is idle again.      */ 
 server_busy = 0; 
/*---------------------------------------------------------*/ 
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SFQ Queue Module 
 
/* Process model C form file: sfq.pr.c */ 
/* codes for the SFQ Queue Model (Process Model) */ 
 
 
 
 
 
 
/* ***** Header Block ***** */ 
 
#define QUEUE_EMPTY     (op_q_empty ()) 
#define SVC_COMPLETION  op_intrpt_type () == OPC_INTRPT_SELF 
#define ARRIVAL         op_intrpt_type () == OPC_INTRPT_STRM 
 
/* SFQ */ 
// stdlib.h for max(a,b) function 
//#include <stdlib.h> 
#define max(a,b) (((a)>(b))?(a):(b)) 
#define DEBUG 0 
#define DEBUG2 1 
#define DEBUG3 0 
/* ***** End of Header Block ***** */ 
 
 
 
/* ***** State variable definitions ***** */ 
typedef struct 
 { 
 /* Internal state tracking for FSM */ 
 FSM_SYS_STATE 
 /* State Variables */ 
 int                       server_busy; 
 double                    service_rate; 
 Objid                     own_id; 
 double                    start_tag_in_service; 
 double                    max_finish_tag; 
 double*                   prev_finish_tag; 
 double*                   flow_weight; 
 int                       queue_in_service; 
 int                       num_subqs; 
 Stathandle                bits_sent_hndl[4]; 
 double                    bits_sent_count[4]; 
 Stathandle                q_delay_hndl[4]; 
 Stathandle                In_Traffic_stathandle[8]; 
 Stathandle                Out_Traffic_stathandle[8]; 
 Stathandle                packets_sent_hndl[4]; 
 double                    packets_sent_count[4]; 
 Stathandle                In_Bit_Traffic_stathandle[4]; 
 Stathandle                Out_Bit_Traffic_stathandle[4]; 
 } sfq_state; 
 
/* ***** End of State variable definitions ***** */ 
 
 
 
/* ***** Function Block ***** */ 
// double "virtual_time()" returns the value of SFQ's 'virtual time' 
  // Note that according to the authors (Goyal et al, 1996) you could reset 
  // the start_tag and finish_tag to zero after a non-busy period 
 
double virtual_time(double arr_time) 
 { 
 if (server_busy) // "BUSY PERIOD" 
  { 
  return start_tag_in_service; 
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  } 
 else // AFTER A NON-BUSY PERIOD 
  { 
  return max_finish_tag; 
  } 
 } // end virtual_time() 
 
// double "get_start_tag()" accesses the packet's ICI and returns  
// the value of the "start_tag" field 
 
double get_start_tag(int q_index) 
 { 
 Packet*          pkptr; 
 double start_tag; 
 Ici* ici_ptr; 
  
 /* Get the start_tag of head packet and set variables */ 
 pkptr = op_subq_pk_access (q_index, OPC_QPOS_HEAD); 
 ici_ptr = op_pk_ici_get(pkptr); 
 op_ici_attr_get(ici_ptr,"start_tag", &start_tag); 
  
 return start_tag; 
 } // end "get_start_tag()" 
 
 
/* int "q_with_best head()" returns the subqueue id (a numerical 
   index starting from 0) of the queue in which the packet with the 
   lowest start_tag is found. This is found by examining the value  
   of the "start_tag" for the packet at the head of each subqueue.   */ 
/* If two queues have the same start tag, the decision is arbitrary; 
   We choose the lower queue number first.                           */ 
 
int q_with_best_head () 
 { 
 int  q_index; 
 double start_tag; 
 double min_start_tag; 
 int  min_q; 
  
 // Find the first  non-empty queue and set is as min 
 for (q_index = 0; q_index<num_subqs && op_subq_empty(q_index)==OPC_TRUE; q_index++) 
  { 
  } // end for 
 min_start_tag = get_start_tag(q_index); 
 min_q = q_index;  
 
 /* Then loop through any remaining subqueues and update min if necessary*/ 
 for (q_index=q_index+1; q_index < num_subqs; q_index++) 
  { 
  if (op_subq_empty(q_index) == OPC_FALSE) 
   { 
   /* Examine start_tag of head packet and update min if new lowest */ 
   start_tag = get_start_tag(q_index); 
   if (start_tag < min_start_tag) 
    { 
    min_start_tag = start_tag; 
    min_q = q_index; 
    } 
   } // end if subqueue not empty 
  } // end for q_index 
 return min_q; 
 } //end q_with_best_head () 
 
// This function simply passes Opnet a warning message and ends the  
// simulation. 
 
static void sfq_warning_message_print (char* message) 
 { 
 /** Ends the simulation and print a error message. **/ 
 FIN (sfq_warning_message_print (message)); 
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 op_sim_end ("Error in sfq process model\n", message, "", ""); 
 FOUT; 
 } 
 
/* ***** End of Function Block ***** */ 
 
/* ***** Temporary Variable definitions ***** */ 
  Packet*          pkptr; 
  int             pk_len; 
  double          pk_svc_time; 
  int             insert_ok; 
   
  /* Added for SFQ */ 
  int  i;    // For cycling through for loops! 
  double arrival_time; 
  int  flow; 
  Ici* ici_ptr;  // The ICI is the information that holds start and  
        // finish tags for each packet 
  double start_tag; 
  double finish_tag; 
  double pk_arrival_time; // Used for statistics 
  Objid objid;    // Used to grab information from the node 
  int  flowID; 
/* ***** End of Temporary Variable definitions ***** */ 
   
   
   
   
   
   
/*---------------------------------------------------------*/ 
/** state (init) enter executives **/ 
   
 /* Initially the server is idle  */ 
 server_busy = 0; 
    
 /* Get queue module's own object id */ 
 own_id = op_id_self (); 
             
 /* Get assigned value of server processing rate      */ 
 op_ima_obj_attr_get (own_id, "service_rate", &service_rate); 
     
     
 /* Get the number of subqueues and flow weights from node properties */ 
 op_ima_obj_attr_get (op_id_self (), "subqueue", &objid); 
 num_subqs = op_topo_child_count (objid, OPC_OBJTYPE_SUBQ); 
     
 /* Allocate memory for the arrays */ 
 flow_weight = (double*) malloc(num_subqs* sizeof(double)); 
 prev_finish_tag = (double*) malloc(num_subqs* sizeof(double)); 
     
 /* Initialize variables */ 
 if (op_ima_obj_attr_get (own_id, "weight_flow0", &flow_weight[0]) == OPC_COMPCODE_FAILURE) 

flow_weight[0] = 0.0; 
 if (op_ima_obj_attr_get (own_id, "weight_flow1", &flow_weight[1]) == OPC_COMPCODE_FAILURE) 

flow_weight[1] = 0.0; 
 if (op_ima_obj_attr_get (own_id, "weight_flow2", &flow_weight[2]) == OPC_COMPCODE_FAILURE) 

flow_weight[2] = 0.0; 
 if (op_ima_obj_attr_get (own_id, "weight_flow3", &flow_weight[3]) == OPC_COMPCODE_FAILURE) 

flow_weight[3] = 0.0; 
     
 for(i=0; i<num_subqs; i++) prev_finish_tag[i] = 0; 
 for(i=0; i<num_subqs; i++) packets_sent_count[i] = 0; 
 for(i=0; i<num_subqs; i++) bits_sent_count[i] = 0; 
 max_finish_tag = 0; 
 start_tag_in_service = 0; 
     
 // Register statistics 
 for (i=0; i<4; i++) 
  { 
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  q_delay_hndl[i] = op_stat_reg ("Queuing Delay for Packets Leaving Flow",i, 
OPC_STAT_LOCAL); 

  bits_sent_hndl[i] = op_stat_reg ("Throughput of Flow (bits)",i, OPC_STAT_LOCAL); 
  packets_sent_hndl[i] = op_stat_reg ("Throughput of Flow (packets)",i, 

OPC_STAT_LOCAL); 
  In_Traffic_stathandle[i]=op_stat_reg("In_Traffic",i,OPC_STAT_LOCAL); 
  Out_Traffic_stathandle[i]=op_stat_reg("Out_Traffic",i,OPC_STAT_LOCAL); 
  In_Bit_Traffic_stathandle[i]=op_stat_reg("In_Bit_Traffic",i,OPC_STAT_LOCAL); 
  Out_Bit_Traffic_stathandle[i]=op_stat_reg("Out_Bit_Traffic",i,OPC_STAT_LOCAL); 
 } 
     
   
/*---------------------------------------------------------*/ 
 
/** state (arrival) enter executives **/ 
   
 /* Acquire the arriving packet     */ 
 if ((pkptr = op_pk_get (op_intrpt_strm ()) ) == OPC_NIL) 
  { 
  /* Stop the simulation if the packet can not be accessed. */ 
  sfq_warning_message_print ("Unable to get the packet from interrupt stream"); 
     } 
     
 /* Determine the flow and the packet length (in bits) */ 
 flow = op_intrpt_strm(); 
 if (flow_weight[flow] == 0.0) 
     { 
  // Packet arrived from a flow not set to be serviced 
  /* set flag indicating no packet was queued (for transition out of state) */ 
     op_pk_destroy (pkptr); 
     insert_ok = 0; 
     } 
 else{ 
  if (DEBUG3) printf("Arrived on flow %i\n", flow); 
  
  
  /* Get information about the packet for SFQ algorithm*/ 
  pk_len = op_pk_total_size_get (pkptr); 
  arrival_time = op_sim_time (); 
   
  /* Determine Start time and Finish Time for SFQ algorithm, 
     and update finish tag for next packet that arrives      */ 
  start_tag = max ( virtual_time(arrival_time), prev_finish_tag[flow] ); 
  finish_tag = start_tag + pk_len/flow_weight[flow]; 
  prev_finish_tag[flow] = finish_tag; 
   
  /* Create ICI to store tags and Assign SFQ information to it*/ 
  ici_ptr = op_ici_create("sfq"); 
  op_ici_attr_set(ici_ptr,"start_tag", start_tag ); 
  op_ici_attr_set(ici_ptr,"finish_tag", finish_tag ); 
  // Add information for statistics too 
  op_ici_attr_set(ici_ptr,"Arrival time in queue", arrival_time); 
  op_ici_attr_set(ici_ptr,"incoming_flow", flow); 
  // Associate ICI with packet 
  op_pk_ici_set(pkptr, ici_ptr); 
   
  /* Attempt to enqueue  packet at tail of subqueue corresponding to the flow */ 
  if (op_subq_pk_insert (flow, pkptr, OPC_QPOS_TAIL) != OPC_QINS_OK) 
   { 
   /* the inserton failed (due to to a  */ 
   /* full queue) deallocate the packet. */ 
   op_pk_destroy (pkptr); 
    
   /* set flag indicating insertion fail  */ 
   /* this flag is used to determine   */ 
   /* transition out of this state   */ 
   insert_ok = 0; 
   } 
  else 
   { 
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   /* insertion was successful    */ 
   insert_ok = 1; 
   } // end if() for packet insertion 
  } // end if() for empty flow 
  
  
  /* Write SFQ statistics */ 

 op_stat_write (In_Traffic_stathandle[flow], 1.0);  
  op_stat_write (In_Bit_Traffic_stathandle[flow], pk_len);  
/*---------------------------------------------------------*/ 
 
/** state (svc_start) enter executives **/ 
      
    /* Determine which flow subqueue to service */ 
    flow = q_with_best_head(); 
     
    /* Get a handle on packet at head of the chosen subqueue */ 
    /* (this does not remove the packet)             */ 
    /* Then get information about packet (Start Tag and  packet length) */ 
    pkptr = op_subq_pk_access (flow, OPC_QPOS_HEAD); 
    pk_len = op_pk_total_size_get (pkptr); 
    ici_ptr = op_pk_ici_get(pkptr); 
    op_ici_attr_get(ici_ptr,"start_tag", &start_tag); 
     
    /* Update state variables */ 
    start_tag_in_service = start_tag; 
    queue_in_service = flow; 
     
     
    /* Determine the time required to complete service of the packet */ 
    /* (Depends on the length of the packet and the service rate     */ 
    /* available to the router                                       */ 
    pk_svc_time = pk_len / service_rate; 
     
    /* Schedule an interrupt for this process at the time where service 

ends.*/ 
    op_intrpt_schedule_self (op_sim_time () + pk_svc_time, 0); 
     
    // Pass statistics for queue throughput 
    op_stat_write(bits_sent_hndl[flow], pk_len); 
    packets_sent_count[flow] += 1; 
    op_stat_write(packets_sent_hndl[flow], 1.0); 
      
     
    /* Set the server as "busy"  */ 
    server_busy = 1; 
     
/*---------------------------------------------------------*/ 
/** state (svc_compl) enter executives **/ 
  
/* Extract packet at head of queue; this is the packet just finishing service */ 
 /* (this removes the packet) */ 
 pkptr = op_subq_pk_remove (queue_in_service, OPC_QPOS_HEAD); 
     
     
     
 /* Get SFQ info from packet and update state variable value if necessary */ 
 ici_ptr = op_pk_ici_get(pkptr); 
 op_ici_attr_get(ici_ptr,"finish_tag", &finish_tag); 
 if (finish_tag > max_finish_tag) 
  { 
  max_finish_tag = finish_tag; // maximum of all packets served so far 
  } 
     
 // Update Statistics 
 op_ici_attr_get(ici_ptr,"incoming_flow", &flowID); // flow ID for outgoing packet 
 op_stat_write(Out_Traffic_stathandle[flowID], 1.0); 
 pk_len = op_pk_total_size_get (pkptr); 
 op_stat_write(Out_Bit_Traffic_stathandle[flowID], pk_len); 
 op_ici_attr_get(ici_ptr,"Arrival time in queue", &pk_arrival_time); 



 
Appendix: Implementation of Start-Time Fair Queuing in Opnet  (Mitchell & Yeung)   
41 

 op_stat_write (q_delay_hndl[queue_in_service], op_sim_time () - pk_arrival_time); 
     
 /* Rorward the packet on stream 0, causing an immediate interrupt at destination. */ 
 op_pk_send_forced (pkptr, 0); 
   
 /* server is idle again.      */ 
 server_busy = 0; 
/*---------------------------------------------------------*/ 
 
 
/* Process model C form file: virtual_clock.pr.c */ 
/* codes for VC Queue Model (Process Model) */ 
 
 
 
 
 
/* ***** Header Block ***** */ 
 
#define QUEUE_EMPTY     (op_q_empty ()) 
#define SVC_COMPLETION  op_intrpt_type () == OPC_INTRPT_SELF 
#define ARRIVAL         op_intrpt_type () == OPC_INTRPT_STRM 
 
/* SFQ */ 
// stdlib.h for max(a,b) function 
//#include <stdlib.h> 
#define max(a,b) (((a)>(b))?(a):(b)) 
#define DEBUG 0 
#define DEBUG2 0 
#define DEBUG3 0 
#define DEBUG4 0 
 
/* ***** End of Header Block ***** */ 
 
 
 
 
 
 
 
 
 
/* ***** State variable definitions ***** */ 
typedef struct 
 { 
 /* Internal state tracking for FSM */ 
 FSM_SYS_STATE 
 /* State Variables */ 
 int                       server_busy; 
 double                    service_rate; 
 Objid                     own_id; 
 double                    arrival_rate[4]; 
 int                       queue_in_service; 
 int                       num_subqs; 
 Stathandle                bit_count_stat; 
 double                    bit_count; 
 double                    virt_clock[4]; 
 double                    aux_virtual_clock[4]; 
 int                       first_packet_flag[4]; 
 double                    flow_weight[4]; 
 Stathandle                In_Traffic_stathandle[4]; 
 Stathandle                Out_Traffic_stathandle[4]; 
 Stathandle                vc_stathandle[4]; 
 Stathandle                aux_vc_stathandle[4]; 
 Stathandle                Out_Traffic_bandwidth_handle[4]; 
 Stathandle                In_Bit_Traffic_handle[4]; 
 Stathandle                Out_Bit_Traffic_handle[4]; 
 } virtual_clock_state; 
 
/* ***** End of State variable definitions ***** */ 
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/* ***** Function Block **** */ 
 
 
double get_aux_vc_stamp(int q_index) 
 { 
 double aux_vc_stamp; 
 Ici* ici_ptr; 
 Packet* pkptr; 
 
 /* Get the start_tag of head packet and set variables */ 
 pkptr = op_subq_pk_access (q_index, OPC_QPOS_HEAD); 
 ici_ptr = op_pk_ici_get(pkptr); 
 op_ici_attr_get(ici_ptr,"aux_virtual_clock_stamp", &aux_vc_stamp); 
  
 if (DEBUG3) printf("Queue [%i] aux_VC_stamp = %f\n",q_index, aux_vc_stamp); 
 
 return aux_vc_stamp; 
 } // end "get_aux_time_stamp()" 
 
void pk_send_statistics(Ici* ici_ptr) 
 { 
 /* 
  // Statistics are not written when the statistic dimension is exceeded. 
 if ( 1 ) // @@@@@ should be if statistic_index < stat_index_max) @@@@@ 
  { 
  // Write the statistic for queuing delay. 
  op_ici_attr_get (ici_ptr, "arrival_time", &pk_arrival_time); 
  stat_info_ptr = op_prg_list_access (stat_info_list_ptr, q_index); 
  op_stat_write (stat_info_ptr->queuing_delay_stathandle, op_sim_time () - 

pk_arrival_time); 
 
  // Write out a new data point for the "Traffic Sent" statistic  
  // under the 'IP Interface' group.           
  packet_size = op_pk_total_size_get (sending_packet_ptr); 
  op_stat_write (stat_info_ptr->traffic_sent_in_pps_stathandle, 1.0); 
  op_stat_write (stat_info_ptr->traffic_sent_in_bps_stathandle, packet_size); 
 
  // Write out a zero value to signal the end of the duration to hold 
  // the statistic at the previously written out value.     
  op_stat_write (stat_info_ptr->traffic_sent_in_pps_stathandle, 0.0); 
  op_stat_write (stat_info_ptr->traffic_sent_in_bps_stathandle, 0.0); 
        } 
 
 */ 
 } // end pk_send_statistics 
 
void register_stats() 
 { 
 //virtual_clock_stathandle = op_stat_reg ( "IP Interface.Virtual Clock (Sec)", stat_index, 

OPC_STAT_LOCAL); 
 } //end register_stats() 
 
static void sfq_warning_message_print (char* message) 
 { 
 op_sim_end ("Error in sfq process model\n", message, "", ""); 
 } // end warning message 
 
 
/* ***** End of Function Block ***** */ 
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VC Queue Module 
 
/* ***** Temporary Variables definitions ***** */ 
 
  Packet*          pkptr; 
  int             pk_len; 
  double          pk_svc_time; 
  int             insert_ok; 
   
  /* Added for SFQ */ 
  int  i; 
  double arrival_time; 
  double total_weight; 
  int  flow; 
  Ici* ici_ptr;  // The ICI is the information that holds start and  
         // finish tags for each packet 
  double start_tag; 
  double finish_tag; 
  Objid objid;  // Used to grab information from the node (# and weights of 

subqueues( 
  char* message; 
  
   
   
  /* Variables added to use Nazy's  Virtual Clock algorithm          */ 
  int  q_index; 
  double aux_vc_stamp; 
  double min; 
  int  min_vc_q_index; 
  double pk_arrival_time; 
    
  /* Variables borrowed from Nazy's Virtual Clock algorithm          */ 
  double          v_clock; 
  double         a_v_clock = 0; 
  double         c_v_clock = 0; 
  double         arr_rate; 
  double         v_tick = 0; 
  int          no_eqvc_queues; 
  int          j; 
  int          active_q_index[10]; 
  Packet *        packetptr; 
  double         virtual_clock_stamp; 
  double         a_virtual_clock_stamp; 
   
  /* 885 modification */ 
  int flowID; 
 
/* ***** Temporary Variables definitions ***** */   
 
/*---------------------------------------------------------*/ 
/** state (init) enter executives **/ 
 
 /* initially the server is idle  */ 
 server_busy = 0; 
  
 /* get queue module's own object id */ 
 own_id = op_id_self (); 
          
 /* get assigned value of server  */ 
 /* processing rate      */ 
 op_ima_obj_attr_get (own_id, "service_rate", &service_rate); 
  
  
 /* Determine the number of subqueues and flow weights from node properties */ 
 op_ima_obj_attr_get (own_id, "subqueue", &objid); 
 num_subqs = op_topo_child_count (objid, OPC_OBJTYPE_SUBQ); 
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 if (op_ima_obj_attr_get (own_id, "weight_flow0", &flow_weight[0]) == OPC_COMPCODE_FAILURE) 
flow_weight[0] = 0.0; 

 if (op_ima_obj_attr_get (own_id, "weight_flow1", &flow_weight[1]) == OPC_COMPCODE_FAILURE) 
flow_weight[1] = 0.0; 

 if (op_ima_obj_attr_get (own_id, "weight_flow2", &flow_weight[2]) == OPC_COMPCODE_FAILURE) 
flow_weight[2] = 0.0; 

 if (op_ima_obj_attr_get (own_id, "weight_flow3", &flow_weight[3]) == OPC_COMPCODE_FAILURE) 
flow_weight[3] = 0.0; 

  
  
 /* Convert SFQ flow weights (proportional) to VC arrival rate (absolute) */ 
 total_weight = flow_weight[0]+flow_weight[1]+flow_weight[2]+flow_weight[3]; 
 for(i=0; i<4; i++)  
  { 
  arrival_rate[i] = ( service_rate * flow_weight[i]/total_weight ); 
  } // end for 
  
 /* Notify "weight" (SFQ notation) --> "arrival-rate" (VC notation) conversion */ 
 printf("For flow weights:\n"); 
 for(i=0; i<4; i++) printf("\tflow_weight[%i] = %f\n", i, flow_weight[i]); 
 printf("And total router service rate = %f\n",service_rate); 
 printf("Virtual Clock has been assigned arrival rates of:\n"); 
 for(i=0; i<4; i++) printf("\tarrival_rate[%i] = %f\n", i, arrival_rate[i]); 
  
  
 /* Initialize variables */ 
 for(i=0; i<4; i++) 
  { 
  first_packet_flag[i] = 0;  // Will be set to 1 when the first packet arrives on 

that flow 
  } 
  
 /* Register statistics */ 
 for (i=0; i<4; i++) 
  { 
  vc_stathandle[i]=op_stat_reg("Virtual_Clock",i,OPC_STAT_LOCAL); 
  aux_vc_stathandle[i]=op_stat_reg("Aux_Virtual_Clock",i,OPC_STAT_LOCAL); 
  In_Traffic_stathandle[i]=op_stat_reg("In_Traffic",i,OPC_STAT_LOCAL); 
  Out_Traffic_stathandle[i]=op_stat_reg("Out_Traffic",i,OPC_STAT_LOCAL); 
 

 Out_Traffic_bandwidth_handle[i]=op_stat_reg("Out_Traffic_bandwidth",i,OPC_STAT_LOCAL
); 

  In_Bit_Traffic_handle[i]=op_stat_reg("In_Bit_Traffic",i,OPC_STAT_LOCAL); 
  Out_Bit_Traffic_handle[i]=op_stat_reg("Out_Bit_Traffic",i,OPC_STAT_LOCAL); 
  } // End for() -- statistics registering 
  
  
 
 
 
/*---------------------------------------------------------*/ 
/** state (arrival) enter executives **/ 
 
 if (DEBUG==1) printf("\t\t\t<--arrival-->\n"); 
  
 /* Acquire the arriving packet     */ 
 if ((pkptr = op_pk_get (op_intrpt_strm ()) ) == OPC_NIL) 
  { 
  /* Stop the simulation if the packet can not be accessed. */ 
  sfq_warning_message_print ("Unable to get the packet from interrupt stream"); 
  } 
  
 /* Determine the flow and the packet length (in bits) */ 
 flow = op_intrpt_strm(); 
 if (flow_weight[flow] == 0.0) 
  { 
  // Packet arrived from a flow not set to be serviced 
  /* set flag indicating no packet was queued (for transition out of state) */ 
  op_pk_destroy (pkptr); 
  insert_ok = 0; 
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  } 
 else{ 
  if (DEBUG3) printf("Arrived on flow %i\n", flow); 
  
  
  /* attempt to insert packet*/ 
  pk_len = op_pk_total_size_get (pkptr); 
  arrival_time = op_sim_time (); 
   
  /* If this is the first packt comming into the queue initialize the Virtual Clock */ 
    
  if ( first_packet_flag[flow] == 0 ) 
   { 
   virt_clock[flow] = arrival_time; 
   aux_virtual_clock[flow] = arrival_time; 
   first_packet_flag[flow] = 1; 
   } 
   
  /* initialization of virtual clock and auxilary virtual clock   

 */ 
  //v_tick = 1 / arrival_rate[flow]; 
  v_tick = pk_len / arrival_rate[flow]; 
  v_clock = virt_clock[flow]; 
  a_v_clock = aux_virtual_clock[flow]; 
  
  /* Calculation of auxilary virtual clock */ 
  if ( arrival_time > a_v_clock ) 
   { 
   a_v_clock = arrival_time; 
   } 
       
  /* Update and store the flow's virt_clock and aux_virtual_clock 
     for the next packet arrival                                      */ 
  v_clock = v_clock + v_tick; 
  a_v_clock = a_v_clock + v_tick; 
  virt_clock[flow] = v_clock; 
  aux_virtual_clock[flow] = a_v_clock; 
  
   /* NOTE: The virt_clock value is used by the Virtual Clock algorithm 
     to warn a source if it is transmitting more than its assigned rate. 
     In this implementation we use one-way traffic so the virt_clock is 
     not needed, but is available as a future resource 
  */ 
   
  /* The virtual Clock and Auxilary Virtual Clock stamps are inserted in */ 
  /* the ICI. They are used in the extract state for choosing a queue    */ 
  /* containing a packet with the lowest Auxilary Virtual Clock Value    */ 
   
  /* Create ICI to store tags and Assign VC information to it*/ 
  ici_ptr = op_ici_create("virtual_clock"); 
  op_ici_attr_set (ici_ptr, "virtual_clock_stamp",virt_clock[flow] ); 
  op_ici_attr_set (ici_ptr, "aux_virtual_clock_stamp",aux_virtual_clock[flow] ); 
  op_ici_attr_set (ici_ptr, "incoming_flow", flow); 
  op_pk_ici_set (pkptr, ici_ptr); 
   
  op_stat_write(In_Traffic_stathandle[flow], 1.0); 
  op_stat_write(In_Bit_Traffic_handle[flow], pk_len);  
  op_stat_write(vc_stathandle[flow], virt_clock[flow]); 
  op_stat_write(aux_vc_stathandle[flow], aux_virtual_clock[flow]); 
   
   
   
  /* Attempt to enqueue  packet at tail of subqueue corresponding to the flow */ 
  if (op_subq_pk_insert (flow, pkptr, OPC_QPOS_TAIL) != OPC_QINS_OK) 
   { 
   /* the inserton failed (due to to a  */ 
   /* full queue) deallocate the packet. */ 
   op_pk_destroy (pkptr); 
    
   /* set flag indicating insertion fail  */ 
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   /* this flag is used to determine   */ 
   /* transition out of this state   */ 
   insert_ok = 0; 
   } 
  else 
   { 
   /* insertion was successful    */ 
   insert_ok = 1; 
   } // end if() for packet insertion 
  } // end if() for empty flow 
  
 
 
 
 
/*---------------------------------------------------------*/ 
/** state (svc_start) enter executives **/ 
 
 if (DEBUG==1) printf("\t\t\t<--svc_start-->\n"); 
  
  
  
 /* Loop through all the queues to find a queue */ 
 /* with lowest Auxilary Virtual Clock value    */ 
  
 // Find the first  non-empty queue and set is as min 
 for (q_index = 0; q_index<num_subqs && op_subq_empty(q_index)==OPC_TRUE; q_index++) 
  { // Go until find non-empty queue 
  } // end for 
 min = get_aux_vc_stamp(q_index); 
 min_vc_q_index = q_index;  
  
 /* Then loop through any remaining subqueues and update min if necessary*/ 
 for (q_index=q_index+1; q_index < num_subqs; q_index++) 
  { 
  if (op_subq_empty(q_index) == OPC_FALSE) 
   { 
   /* Examine start_tag of head packet and update min if new lowest */ 
   aux_vc_stamp = get_aux_vc_stamp(q_index); 
   if (aux_vc_stamp < min) 
    { 
    min = aux_vc_stamp; 
    min_vc_q_index = q_index; 
    } 
   } // end if subqueue not empty 
  } // end for q_index 
  
 /* Loop through all the queues to find out if there are more than one queue with */ 
 /* the same min Auxilary Virtual Clock. Then fill out the array that contains    */   
 /* the index of the queues with minimum equal Auxilary Virtual Clock             */ 
 /* SFQ NOTE: THIS LOOP WAS WRITTEN BY NAZY AND IT'S NOT CLEAR TO US WHAT IT DOES */ 
  
 /* ---SO I'M GETTING RID OF IT AND DOING THE EQUIVALENT, AS FAR AS I CAN SEE ----*/ 
 /* 
 for (q_index=0; q_index < num_subqs; q_index++) 
  { 
  if (op_subq_empty(q_index) == OPC_FALSE) 
  { 
   aux_vc_stamp = get_aux_vc_stamp(q_index); 
   if ( min == aux_vc_stamp ) 
    { 
    j = 0; 
    no_eqvc_queues =  0; 
    active_q_index[j] =  q_index; 
    j++; 
    no_eqvc_queues++; 
    } 
   } 
  } 
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 // Choose the queue to service based on what we've found 
 if ( no_eqvc_queues>1 ) 
  { 
  flow = active_q_index[0]; 
  } 
 else 
  { 
  flow = min_vc_q_index; 
  }  
 */ 
 flow = min_vc_q_index;  // Replaced above loop with this line 
  
  
 /* get a handle on packet at head of subqueue 0 */ 
 /* (this does not remove the packet)    */ 
 pkptr = op_subq_pk_access (flow, OPC_QPOS_HEAD); 
  
 /* Update state variables */ 
 queue_in_service = flow; 
  
 /* determine the packets length (in bits)   */ 
 pk_len = op_pk_total_size_get (pkptr); 
  
 /* determine the time required to complete   */ 
 /* service of the packet       */ 
 pk_svc_time = pk_len / service_rate; 
  
 /* schedule an interrupt for this process   */ 
 /* at the time where service ends.     */ 
 op_intrpt_schedule_self (op_sim_time () + pk_svc_time, 0); 
  
 // Pass statistics for queue throughput 
 /* 
 bit_count = bit_count + pk_len; 
 op_stat_write(bit_count_stat, bit_count); 
 */ 
  
 /* the server is now busy.       */ 
 server_busy = 1; 
  
  
 
 
 
/*---------------------------------------------------------*/ 
/** state (svc_compl) enter executives **/ 
 
 if (DEBUG==1) printf("\t\t\t<--svc_compl-->\n"); 
  
  
 /* extract packet at head of queue; this */ 
 /* is the packet just finishing service  */ 
 pkptr = op_subq_pk_remove (queue_in_service, OPC_QPOS_HEAD); 
  
 /* 885 modification */ 
 ici_ptr = op_pk_ici_get(pkptr); 
 op_ici_attr_get(ici_ptr,"incoming_flow", &flowID); 
 op_stat_write(Out_Traffic_stathandle[flowID], 1.0); 
 op_stat_write(Out_Traffic_bandwidth_handle[flowID], 1.0); 
 pk_len = op_pk_total_size_get (pkptr); 
 op_stat_write(Out_Bit_Traffic_handle[flowID], pk_len); 
  
 /* forward the packet on stream 0, causing  */ 
 /* an immediate interrupt at destination. */ 
 op_pk_send_forced (pkptr, 0); 
  
 /* server is idle again.      */ 
 server_busy = 0; 
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/*---------------------------------------------------------*/ 
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Source Node Module 
/* Process model C form file: yy_simple_source2.pr.c */ 
/* codes for the source node process model */ 
 
 
 
 
 
 
/* ***** State variable definitions ***** */ 
typedef struct 
 { 
 /* Internal state tracking for FSM */ 
 FSM_SYS_STATE 
 /* State Variables */ 
 Objid                     own_id; 
 char                      format_str [64]; 
 double                    start_time; 
 double                    stop_time; 
 OmsT_Dist_Handle          interarrival_dist_ptr; 
 OmsT_Dist_Handle          pksize_dist_ptr; 
 Boolean                   generate_unformatted; 
 Evhandle                  next_pk_evh; 
 double                    next_intarr_time; 
 Stathandle                bits_sent_hndl; 
 Stathandle                packets_sent_hndl; 
 Stathandle                packet_size_hndl; 
 Stathandle                interarrivals_hndl; 
 FILE*                     file_ptr; 
 int                       use_file_data; 
 char                      file_name[128]; 
 double                    file_data_rate; 
 double                    base_time; 
 double                    second_int_time; 
 double                    third_int_time; 
 int                       second_start_time; 
 int                       third_start_time; 
 double                    fourth_int_time; 
 int                       fourth_start_time; 
 double                    fifth_int_time; 
 int                       fifth_start_time; 
 } yy_simple_source2_state; 
 
/* ***** State variable definitions ***** */ 
 
 
 
 
 
 
 
/* ***** Function Block ***** */ 
 
static void 
ss_packet_generate (void) 
 { 
 Packet*    pkptr; 
 SimT_Pk_Size  pksize; 
  
 /* 885 modification : variable declaration */ 
 char tempstr[100]; 
 
 /** This function creates a packet based on the packet generation  **/ 
 /** specifications of the source model and sends it to the lower layer. **/ 
 FIN (ss_packet_generate ()); 
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 if (use_file_data != 1) 
  { 
  /* Generate a packet size outcome.     */ 
  pksize = (SimT_Pk_Size) ceil (oms_dist_outcome (pksize_dist_ptr)); 
  } 
 else 
  { 
  /* 885 modification : reading in the next packet size */ 
  if (file_ptr != NULL) 
   { 
   // printf("file pointer not null\n"); 
   if (feof(file_ptr)==0)  
    { 
    fscanf(file_ptr, "%d\n", &pksize); 
    sprintf(tempstr, "constant (%d)", pksize); 
    pksize_dist_ptr = oms_dist_load_from_string (tempstr); 
    pksize = (SimT_Pk_Size) ceil (oms_dist_outcome 
(pksize_dist_ptr));    
    }  
   else  
    { 
    fclose(file_ptr); 
    sprintf(tempstr, "constant (0)"); 
    pksize_dist_ptr = oms_dist_load_from_string (tempstr); 
    pksize = (SimT_Pk_Size) ceil (oms_dist_outcome 
(pksize_dist_ptr));    
    } 
   } 
  } 
   
  
 /* Create a packet of specified format and size. */ 
 if (generate_unformatted == OPC_TRUE) 
  { 
  /* We produce unformatted packets. Create one. */ 
  pkptr = op_pk_create (pksize); 
  } 
 else 
  { 
  /* Create a packet with the specified format. */ 
  pkptr = op_pk_create_fmt (format_str); 
  op_pk_total_size_set (pkptr, pksize); 
  } 
 
 /* Update the packet generation statistics.   */ 
 op_stat_write (packets_sent_hndl, 1.0); 
 op_stat_write (packets_sent_hndl, 0.0); 
 op_stat_write (bits_sent_hndl, (double) pksize); 
 op_stat_write (bits_sent_hndl, 0.0); 
 op_stat_write (packet_size_hndl, (double) pksize); 
 op_stat_write (interarrivals_hndl, next_intarr_time); 
   
 /* Send the packet via the stream to the lower layer. */ 
 op_pk_send (pkptr, SSC_STRM_TO_LOW); 
 
 FOUT; 
 }  
 
/* ***** End of Function Block ***** */ 
 
 
 
 
 
 
/* ***** Temporary Variables definitions ***** */ 
 
  /* Variables used in the "init" state.  */ 
  char  interarrival_str [128]; 
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  char  size_str [128]; 
  Prg_List* pk_format_names_lptr; 
  char*  found_format_str; 
  int   low, high; 
  Boolean  format_found; 
  int   i; 
   
  /* 885 modification : variable declaration */ 
  char  temp_interarrival_str [128]; 
   
  /* Variables used in state transitions.  */ 
  int   intrpt_code; 
 
/* ***** End of Temporary Variables definitions ***** */ 
 
/*---------------------------------------------------------*/   
/** state (init) enter executives **/ 
 
 /* 885 modification : record the simulation start time */ 
 base_time = op_sim_time(); 
  
 /* At this initial state, we read the values of source attributes */ 
 /* and schedule a selt interrupt that will indicate our start time */ 
 /* for packet generation.         
  */ 
  
 /* Obtain the object id of the surrounding module.    
 */ 
 own_id = op_id_self (); 
  
 /* Read the values of the packet generation parameters, i.e. the */ 
 /* attribute values of the surrounding module.     
 */ 
 op_ima_obj_attr_get (own_id, "Packet Interarrival Time", interarrival_str); 
 op_ima_obj_attr_get (own_id, "Packet Size",              size_str); 
 op_ima_obj_attr_get (own_id, "Packet Format",            format_str); 
 op_ima_obj_attr_get (own_id, "Start Time",               &start_time); 
 op_ima_obj_attr_get (own_id, "Stop Time",                &stop_time); 
  
 /* Load the PDFs that will be used in computing the packet   */ 
 /* interarrival times and packet sizes.       
 */ 
 interarrival_dist_ptr = oms_dist_load_from_string (interarrival_str); 
 pksize_dist_ptr       = oms_dist_load_from_string (size_str); 
  
 /* Verify the existence of the packet format to be used for  
 */ 
 /* generated packets.         
   */ 
 if (strcmp (format_str, "NONE") == 0) 
  { 
  /* We will generate unformatted packets. Set the flag.  
 */ 
  generate_unformatted = OPC_TRUE; 
  } 
 else 
  { 
  /* We will generate formatted packets. Turn off the flag.  */ 
  generate_unformatted = OPC_FALSE; 
  
  /* Get the list of all available packet formats.   
 */ 
  pk_format_names_lptr = prg_tfile_name_list_get 
(PrgC_Tfile_Type_Packet_Format); 
  
  /* Search the list for the requested packet format.   
 */ 
  format_found = OPC_FALSE; 
  for (i = prg_list_size (pk_format_names_lptr); ((format_found == 
OPC_FALSE) && (i > 0)); i--) 
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   { 
   /* Access the next format name and compare with requested  */ 
   /* format name.        
    */ 
   found_format_str = (char *) prg_list_access 
(pk_format_names_lptr, i - 1);  
   if (strcmp (found_format_str, format_str) == 0) 
    format_found = OPC_TRUE; 
   } 
  
  if (format_found == OPC_FALSE) 
   { 
   /* The requested format does not exist. Generate   
 */ 
   /* unformatted packets.       
   */ 
   generate_unformatted = OPC_TRUE; 
   
   /* Display an appropriate warning.     
  */ 
   op_prg_odb_print_major ("Warning from simple packet generator 
model (simple_source):",  
         "The specified packet 
format", format_str, 
         "is not found. Generating 
unformatted packets instead.", OPC_NIL); 
   } 
  
  /* Destroy the lits and its elements since we don't need it 
 */ 
  /* anymore.          
    */ 
  prg_list_free (pk_format_names_lptr); 
  prg_mem_free  (pk_format_names_lptr); 
  }  
   
    
 /* Make sure we have valid start and stop times, i.e. stop time is */ 
 /* not earlier than start time.        
  */ 
 if ((stop_time <= start_time) && (stop_time != SSC_INFINITE_TIME)) 
  { 
  /* Stop time is earlier than start time. Disable the source. */ 
  start_time = SSC_INFINITE_TIME; 
  
  /* Display an appropriate warning.      
  */ 
  op_prg_odb_print_major ("Warning from simple packet generator model 
(simple_source):",  
        "Although the generator is not 
disabled (start time is set to a finite value),", 
        "a stop time that is not later 
than the start time is specified.", 
        "Disabling the generator.", 
OPC_NIL); 
  } 
  
 /* Schedule a self interrupt that will indicate our start time for */ 
 /* packet generation activities. If the source is disabled,  
 */ 
 /* schedule it at current time with the appropriate code value.  */ 
 if (start_time == SSC_INFINITE_TIME) 
  { 
  op_intrpt_schedule_self (op_sim_time (), SSC_STOP); 
  } 
 else 
  { 
  op_intrpt_schedule_self (start_time, SSC_START); 
  
  /* In this case, also schedule the interrupt when we will stop */ 
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  /* generating packets, unless we are configured to run until */ 
  /* the end of the simulation.       
  */ 
  if (stop_time != SSC_INFINITE_TIME) 
   { 
   op_intrpt_schedule_self (stop_time, SSC_STOP); 
   } 
  } 
  
 /* Register the statistics that will be maintained by this model. */ 
 bits_sent_hndl      = op_stat_reg ("Generator.Traffic Sent (bits/sec)",  
 OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 
 packets_sent_hndl   = op_stat_reg ("Generator.Traffic Sent (packets/sec)", 
 OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 
 packet_size_hndl    = op_stat_reg ("Generator.Packet Size (bits)",              
OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 
 interarrivals_hndl  = op_stat_reg ("Generator.Packet Interarrival Time 
(secs)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 
  
 /* 885 modification : get values from attributes */ 
 op_ima_obj_attr_get (own_id, "File Location", file_name); 
 //printf("%s\n", &file_name); 
 op_ima_obj_attr_get (own_id, "Use File Data", &use_file_data); 
 //printf("%d\n", use_file_data); 
 op_ima_obj_attr_get (own_id, "File Data Rate", &file_data_rate); 
 op_ima_obj_attr_get (own_id, "Second Interarrival Time", &second_int_time); 
 op_ima_obj_attr_get (own_id, "Third Interarrival Time", &third_int_time); 
 op_ima_obj_attr_get (own_id, "Fourth Interarrival Time", &fourth_int_time); 
 op_ima_obj_attr_get (own_id, "Fifth Interarrival Time", &fifth_int_time); 
 op_ima_obj_attr_get (own_id, "Second Start Time", &second_start_time); 
 op_ima_obj_attr_get (own_id, "Third Start Time", &third_start_time); 
 op_ima_obj_attr_get (own_id, "Fourth Start Time", &fourth_start_time); 
 op_ima_obj_attr_get (own_id, "Fifth Start Time", &fifth_start_time); 
  
 /* 885 modification : open file operation */ 
 if (use_file_data == 1) { 
  //printf("file name:%s\n", &file_name); 
  file_ptr = fopen(file_name, "r"); 
  //if (file_ptr != NULL) 
  // fclose(file_ptr); 
 } 
 
 
 
 
 
/*---------------------------------------------------------*/ 
/** state (generate) enter executives **/ 
 
 /* At the enter execs of the "generate" state we schedule the  */ 
 /* arrival of the next packet.        
  */ 
  
 /* 885 modification */ 
 /* next_intarr_time = oms_dist_outcome (interarrival_dist_ptr); */ 
 if (use_file_data != 1) 
  { 
  next_intarr_time = oms_dist_outcome (interarrival_dist_ptr); 
   
  if (second_start_time > 0) 
   { 
   if (op_sim_time()-base_time > second_start_time) 
    { 
    sprintf(temp_interarrival_str, "constant (%f)", 
second_int_time); 
    interarrival_dist_ptr = oms_dist_load_from_string 
(temp_interarrival_str); 
    next_intarr_time = oms_dist_outcome 
(interarrival_dist_ptr); 
    } 
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   } 
  
  if (third_start_time > 0) 
   { 
   if (op_sim_time()-base_time > third_start_time) 
    { 
    sprintf(temp_interarrival_str, "constant (%f)", 
third_int_time); 
    interarrival_dist_ptr = oms_dist_load_from_string 
(temp_interarrival_str); 
    next_intarr_time = oms_dist_outcome 
(interarrival_dist_ptr); 
    } 
   } 
  
  if (fourth_start_time > 0) 
   { 
   if (op_sim_time()-base_time > fourth_start_time) 
    { 
    sprintf(temp_interarrival_str, "constant (%f)", 
fourth_int_time); 
    interarrival_dist_ptr = oms_dist_load_from_string 
(temp_interarrival_str); 
    next_intarr_time = oms_dist_outcome 
(interarrival_dist_ptr); 
    } 
   } 
  
  if (fifth_start_time > 0) 
   { 
   if (op_sim_time()-base_time > fifth_start_time) 
    { 
    sprintf(temp_interarrival_str, "constant (%f)", 
fifth_int_time); 
    interarrival_dist_ptr = oms_dist_load_from_string 
(temp_interarrival_str); 
    next_intarr_time = oms_dist_outcome 
(interarrival_dist_ptr); 
    } 
   } 
   
  } 
 else  
  { 
  sprintf(temp_interarrival_str, "constant (%f)", 
(double)(1.0/file_data_rate)); 
  //sprintf(temp_interarrival_str, "constant (1.0)"); 
  interarrival_dist_ptr = oms_dist_load_from_string 
(temp_interarrival_str); 
  next_intarr_time = oms_dist_outcome (interarrival_dist_ptr); 
  } 
    
  
 /* Make sure that interarrival time is not negative. In that case it */ 
 /* will be set to 0.         
    */ 
 if (next_intarr_time <0) 
  { 
  next_intarr_time = 0; 
  } 
  
 next_pk_evh      = op_intrpt_schedule_self (op_sim_time () + next_intarr_time, 
SSC_GENERATE);  
   
  
 
 
 
/*---------------------------------------------------------*/ 
/** state (stop) enter executives **/ 
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 /* When we enter into the "stop" state, it is the time for us to */ 
 /* stop generating traffic. We simply cancel the generation of the */ 
 /* next packet and go into a silent mode by not scheduling anything */ 
 /* else.           
    */ 
 if (op_ev_valid (next_pk_evh) == OPC_TRUE) 
  { 
  op_ev_cancel (next_pk_evh); 
  } 
  
 /* 885 modification : closing source data file */ 
  
 if (use_file_data == 1) 

  if (file_ptr != NULL) 
   fclose(file_ptr); 
 
/*---------------------------------------------------------*/ 
 

Receving Node Module 
/* Process model C form file: yy_rcv_node_process2.pr.c */ 
/* codes for the receiving node process model */ 
 
 
 
 
/* ***** Header Block ***** */ 
 
/* transition macros */ 
#define PK_ARRVL ( op_intrpt_type()== OPC_INTRPT_STRM ) 
 
/* ***** End of Header Block ***** */ 
 
 
 
 
/* ***** State variable definitions ***** */ 
typedef struct 
 { 
 /* Internal state tracking for FSM */ 
 FSM_SYS_STATE 
 /* State Variables */ 
 Stathandle                ete_gsh; 
 int                       packet_count; 
 Stathandle                packet_cnt_stathandle; 
 Stathandle                ete_dff_stathandle[4]; 
 } yy_rcv_node_process2_state; 
 
/* ***** End of State variable definitions ***** */ 
 
 
 
 
 
/* ***** Temporary variable definitions ***** */ 
 
 
  Packet *pkptr;  // pointer to packet 
  double ete_delay; // end to end delay 
  int i;       // temporary counter variable 
  Ici* ici_ptr;  // ici information pointer 
  int flowID;   // indicates which flow the packets is from 
 
/* ***** End of Temporary variable definitions ***** */ 
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/*---------------------------------------------------------*/ 
/** state (init) enter executives **/ 
 
 /* initialize variables and register statistics */ 
  
 ete_gsh=op_stat_reg("ETE delay", OPC_STAT_INDEX_NONE, OPC_STAT_GLOBAL); 
 packet_count=0; 
 packet_cnt_stathandle=op_stat_reg("packet count", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 
 for (i=0;i<4;i++) 
  ete_dff_stathandle[i]=op_stat_reg("ETE Delay For Flows", i, OPC_STAT_GLOBAL); 
  
 
 
 
 
/*---------------------------------------------------------*/ 
/** state (arrival) enter executives **/ 
 
 /* get a pointer to the incoming packet */ 
 pkptr= op_pk_get (op_intrpt_strm() ); 
  
 /* calculate end to end delay */ 
 ete_delay=op_sim_time()-op_pk_creation_time_get(pkptr); 
 op_stat_write(ete_gsh, ete_delay); 
  
 /* record end to end delay for a specific flow */ 
 ici_ptr=op_pk_ici_get(pkptr); 
 op_ici_attr_get(ici_ptr, "incoming_flow", &flowID); 
 op_stat_write(ete_dff_stathandle[flowID], ete_delay); 
  
 /* count how many packet received so far */ 
 packet_count=packet_count + 1; 
 op_stat_write(packet_cnt_stathandle, packet_count); 
  
 /* destroy the packet */ 
 op_pk_destroy(pkptr); 
 
 
/*---------------------------------------------------------*/ 

 


