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Abstract: 
In this report, we present the simulation result of a comprehensive performance study 
of the Transmission Control Protocol (TCP) enhancements in the satellite environment. 
Our results illustrate many of the remaining challenges facing TCP over satellite links 
and also provide demonstration of three techniques that can be used to optimize 
performance in long delay networks. We also evaluate the different TCP flavors under 
the satellite err or prone links, and explore the bottleneck buffer effect on end-to-end 
TCP connections. 
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1. Motivation 

Satellite communication technology has been developed for nearly 50 years. Over the 
past few years, the demand to use satellite devices to access the Internet is growing 
because satellite communication can deliver Inte rnet services to consumers and 
institutions in remote areas of the world not covered by good terrestrial connectivity. In 
addition, satellite broadcast system is ideal for multicast service, satellite access 
method is also adapt for asymmetric internet data transmission, service providers can 
use satellite ocean range beam easily extend their network nationwide and ocean wide 
without last mile problem. In the mean time, operation expense is not related to the 
distance. Due to the above reason, satellite tec hnology will be more utilized in Internet 
transmission. It is expected that TCP protocol will be frequently used over the Satellite 
network in near future.  
 
Our works are important for several reasons. First, commercial satellite companies (e.g., 
Loral, Hughes, Lockheed Martin) have announced plans to build large satellite system 
to provide broadband data service. Second, our simulation can help researchers to 
understand how satellite links characteristics affect TCP performance. Third, Some of 
the TCP problems experienced on satellite links today will rise in future high-speed 
terrestrial networks because of the similar bandwidth-times-delay property. Problems 
like large window size, prolonged slow start period, and ineffective bandwidth 
adaptation affect both networks. They place satellite networks and gigabit terrestrial 
networks in the same class of extensions for better performance. 
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2. Introduction to satellites communication  

2.1 Satellite links characteristics 
 
The following two channel characteristics will greatly affect the TCP performance. 
2.1.1 Delay: 
Most commercial satellite systems work in geosychonous equatorial orbit (GEO) today. 
A GEO satellite is located directly above the equator, exactly 35,800 kilometers out in 
space. At that distance, it takes the satellite a full 24 hours to circle the planet. Since it 
takes Earth 24 hours to spin on in its axis, the satellite and Earth move together. So, a 
satellite in GEO always stays directly over the same spot on Earth (Figure2.1).  

 
 

     Figure 2.1 Geosychonous equatorial orbit satellite 

Because the distance between GEO satellite and earth station is rather long, 
propagation delay is the dominant part compared with the transmission delay and 
queuing delay. If an earth station transmits a message to another earth station through 
GEO links, the propagation delay will typically be 280ms (one way) of fixed delay. If 
the acknowledgement (ACK) is also returned through satellite channel, the Round Trip 
Time (RTT) will be around 560ms. This delay will greater than the average terrestrial 
transmission delay, which cause larger round trip time and bandwidth product. 
 
2.1.2 Transmission errors: 
Like other wireless communications, satellite communication exhibits higher error 
characteristics compared to wired links. Commercial satellite systems usually work at 
Ku (12GHz-14GHz) band, so that they can offer higher bandwidth with smaller 
antenna. But Signal working in this frequency suffers environmental impairments such 
as rain and fog; the bit error rate (BER) will increase from 10-7 to 10-3 in this condition.  
 
Satellite networks are not the only environments where the above two characteristics 
are found. The mechanisms discussed in this report should benefit most networks, 
especially those with the above characteristics. (E.g., gigabit networks have large 
bandwidth-delay product) 
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2.2 Two types of GEO satellites 
 
There are two types of GEO satellites in industry; we will investigate TCP performance 
in both types. 
 
2.2.1 Bent pipe Satellite 
Bent pipe GEO satellites act as a relay station in space. People use them to bounce 
messages from one part of the world to another. Signal is amplified and retransmitted 
but there’s no improvement in C/N ratio, since there’s no demodulation, decoding or 
other type of processing.  
 
2.2.2 On board Processing satellite 
Satellite performs tasks like demodulation and decoding which allow signal recovery 
before retransmission. Since the signal is available at some points in base band, other 
activities are also possible, such as routing, switching, etc. Our TCP burst simulation 
was based on this type of satellite. 
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3. TCP Improvement for satellite link 

The introduction of the high delay and error prone satellite link into a network, using 
protocols primarily designed for terrestrial networks, creates significant performance 
degradation. Quite a lot of  research has been performed with regard to TCP 
performance in satellite environments, either in the frame of research teams [10] or 
separately by individual researcher; an extensive review of this is given in [6]. The vast 
majority of the solutions suggested concern the TCP redesign implementation. We used 
ns-2 [13] to simulate three redesigning TCP extensions, which are large window size, 
large initial window size and maximum segment size. 
  
The performance of three redesigned TCP extensions was examined on the bent pipe 
satellite in the scenario depicted in Figure 3.1.  
        

 
       Figure 3.1 Simulation scenario 

 
The simulation was based on the abstract impleme ntation of duplex T1 connections. In 
order to simply the result, we use the default value (1000K byte) as packet size. Since 
selective acknowledgement (SACK) option is currently being used in many popular 
operating systems and is expected to be widespread soon, all of simulations were based 
on SACK. In the end, we also compare three TCP versions Reno, SACK and Vegas in 
section 3.4.   
 
3.1 Large window size  
 
The original TCP standard limits the advised receive windows by only assigning 16bits 
of header space for the value. Thus the advised windows can be no more than 64KB. 
Since the maximum throughput of a TCP connection is bounded by the RTT (RFC 793), 
as seen in the formula:  

throughput =
 time tripround

size  windowcongestion  

Without larger window size, the TCP connection over a GEO system will be limited to 
throughput: 
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throughput =
560ms

64Kbytes
kbps

cond
bytes

940
sec

027,117 ≈≈  

This upper bound on TCP throughput is independent of the bandwidth of the channel 
[6]. A TCP connection running over a full T1 channel can only achieve a maximum 
throughput of approximately 940Kbps with a 64KB receive window. So larger 
windows size can allow TCP to fully utilize higher bandwidth links over long-delay 
channels such as those found in satellite links. 
 
We varied the TCP window size from 16KB to 128KB with FTP application; evaluate 
the throughput since throughput determines the bandwidth utilization of the link from 
the system manager’s point of view. 
 
 
 
 
 
    
 
 
 
 
             
     
   Fig 3.2.Throughput vs. time                        Fig 3.3. Sequence number vs. time 

 
The relative efficiency of the different window size is clearly depicted in the 
representative diagram of figure 3.2. As the window size increases, the throughput of 
the connection also increases. When the window size is set to 128 KB, a single 
connection can fully utilize a T1 channel. From the simulation trace, we can find that 
the sequence number is not in order; this lead to the throughput fluctuates. An 
interesting phenomenon is that the packets arrive in order as when we choose 128KB as 
window size, this lead the throughput curve more flat than others. 
 
We also established multiple FTP connections with small window size. Figure 3.3 
shows that three connections with 40KB window size can achieve almost the same 
effect compared with single connection with the large window size (128KB). This 
result shows that if a satellite link was shared with many users, the large windows size 
might not be necessary. The service providers can still fully utilize their channel 
capacity if there are many long-lived connections with small windows size. Long-lived 
connection means that the bulk file transfers long enough so that it can fully utilize the 
large window size. 
 
In practice, memory and operating system resource limit the window size. Because of 
historical implementation issues, the practical window size is often limited to 32KB. 
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RFC 1323 introduced an option for TCP to advertise windows to increase the maximum 
window size from 216 to 232, allowing better utilization of links with large bandwidth 
delay products. To obtain good TCP performance over satellite links, both sender and 
receiver use this extension; applications should also set the size of the send and receiver 
buffers to be bandwidth times delay. 
 
3.2 Large initial windows size 
 
The slow start algorithm is used to gradually increase the size of TCP’s congestion 
window (cwnd). The algorithm is an important safe guard against transmitting an 
inappropriate amount of data into the network when the connection starts up [1]. 
However, slow start can also waste available network capacity, especially in long-delay 
networks. Slow start is particularly inefficient for transfers that are short compared to 
the bandwidth-delay product of the network.  
 
Telnet application is a typical example with a transactional behavior. This interactive 
application often opens a TCP connection only to send a small amount of data. Under 
standard TCP, even a small transaction must undergo the slow start procedure, so this 
application is very inefficient for satellite networks. 
 
Several proposals have suggested ways to make slow start less time consuming. One 
method that will reduce the amount of required time by slow start is to increase the 
initial value of cwnd [5]. By increasing the initial value of cwnd, more packets are sent 
during the first RTT of data transmission, which will trigger more ACKs, allowing the 
congestion window to open more rapidly.  
 
We used Telnet application to investigate this approach to mitigate the underutilization 
of the network during the slow start phase of a TCP transfer.  
 
As the official minutes of the TCP Implemention Working Group meeting show, at the 
December 1997 meeting at the Washington IETF, there was rough consensus to allow 
an initial window of two segments. At the March 1998 meeting at the L.A. IETF, there 
was a rough consensus to allow an initial window of three or four packets (depending 
on the segment size) for experimental purposes. Therefore, we choose initial window 
size 1, 2, 3 and 4 segments respectively. Since we are only interested in the slow start 
period, so we just ran our simulation for one minute. 
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 Figure 3.4 Throughput vs. time    
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        Figure 3.5 Sequence number vs. time 

 
As shown in figure 3.4, the slow start period decreases as the initial value of cwnd is 
increased. From figure 3.5, we can observe that impact is especially significant for 
short transfers.  For instance, it takes 5 seconds to transmit 300 packets with initial 
window size 4. But those data will take around 6 seconds to be delivered with standard 
TCP, which will last 25% longer. We can also infer that the impact for the longer 
transfer is much less due to the relatively short amount of time spent using slow start 
when compared to the total time required transfer the file.  
 
3.3 Maximum segment size  
 
Maximum segment size defines the largest segment of TCP data that can be transmitted. 
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It can be described as the following equation: 
MSS = MTU – TCP header –  IP header 

Here, MTU means maximum transmission unit (or maximum packet size). 
 
The segment size is considered to have a direct impact on the TCP performance, and 
some related researches have been proposed such as Path MTU Discovery to encourage 
TCP to use largest possible packet size [6]. 
 
As we have discussed in the previous part, increasing TCP’s initial window size is 
based on it’s segment size, hence, we want to verify if using larger segment size can 
allow TCP sender to increase the congestion window size in terms of bytes rapidly. 
Therefore, it may significantly improve the throughput to fully utilize the channel. 
 
We assumed that both TCP sender and receiver have agreed on sending large segment 
size, and packets are not being fragmented. With the same scenario as figure 3.1, we 
simulated FTP application with window size 128KB.  Since packets size 576 KB is 
widely used in the network, we tried its multiple size (576, 1152, and 1728 packets) to 
run the simulation. 

 

 
Figure3.6: Throughput vs. time (Different packet size) 

 

From the figure 3.6, we found that if we used the packet size of 1152 bytes, we can 
improve the throughput more than 20% compared with the packet size of 576 bytes. 
Transmitting with 1152 bytes per packet can almost fully use the T1 channel, however, 
the packet size of 576 bytes can’t.  

 
Also, we could infer that when transmitting a certain amount of data, larger packet size 
may achieve better performance. Because it reduces the num ber of headers and 
condenses the cost of routing decisions, both of which are dealt with per -packet rather 
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than per byte. 
 
We found that the packet size of 1728 bytes performs abnormally. During slow start 
period, the congestion window doubled every round trip time. However, due to the 
large window size (128KB) and the large segment size, its transmission rate exceeds the 
given bandwidth 1.544Mbps, then caused the severe congestion in the channel. 
Therefore the throughput decreased rapidly and it reentered the slow start period. In a 
word, using large maximum segment size can improve the throughput; on the other 
hand, too large MSS may cause congestion. That the larger MSS is the better 
performance it can achieve is not always true, thus choosing a suitable MSS should be 
very careful.  
 
3.4 Comparison of different TCP flavors  
 
TCP Reno was widely used in the industry for years. As more and more people focus on 
Internet research, more advanced TCP extensions were developed. The SACK and 
Vegas option have been approved as a proposed standard within the IETF as RFC 2018 
[11] and RFC [3], and are expected to enjoy wide deployment. 
 
TCP Reno is designed to handle packet loss by identifying and re-sending lost segments; 
however, Reno assumes that source of all packet loss is network congestion. 
Consequently, Reno invokes congestion control, reduces its congestion windows. 
Therefore, its transmission rate is a result of any packet loss [1]. This response is 
inappropriate when faced with loss due to corruption rather than congestion, while this 
is often the case on satellite communication links. Reno’s congestion control algorithm 
works well in dealing with congestion-induced loss, but only results in reduced 
throughput without providing any benefits. . In addition, Reno sender can only be 
notified at most a single loss in the receiver’s buffer because the ACK numbers is 
decided by the highest in order sequence number. Therefore, sender will wait till to time 
out, and then begin slow start procedure when more than one packet drop. 
  
RFC 2018 introduced a selective acknowledgement (SACK) option to TCP. Using 
SACK option, receivers can inform senders exactly which segments have arrived, 
rather than replying on TCP’s cumulative acknowledgement. This allows a TCP sender 
to efficiently recover from multiple lost segments without reverting to using a costly 
retransmission timeout to determine which segments need to be re-transmitted [11]. It 
also hasten recovery and prevent the sender from becoming window limited, thus 
allowing the pipe to drain while waiting to learn about lost segments. This ability is of 
particular benefit in keeping the pipe full and allowing transmission to continue while 
recovering from losses [4]. 
 
Unlike TCP Reno, TCP Vegas adopts different mechanisms to detect packet losses and 
available bandwidth. It controls cwnd by estimating RTT and calculating the difference 
between the expected flow rate and the actual flow rate [3]. It linearly increase adjusts 
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TCP’s congestion window upwards or downwards, so as to consume a constant amount 
of buffer space in network switched. It detects packets loss earlier than Reno and uses a 
slower multiple decrease than Reno. The TCP Vegas eliminates the need to tune the 
receive window to serve as an upper bound on the size of the congestion window. It can 
avoid network congestion without overdriving the link to find the upper bound, even 
when operating with large windows. TCP Vegas increases its cwnd more slowly than 
Reno and by measuring the achieved throughput gain after each increase to detect the 
available capacity without incurring loss. 
 
We compared SACK, Reno, and Vegas under the congested long-delay satellite link, 
using FTP application in the same scenario as figure 3.1. For each of these simulations, 
the queues in routers were set above the delay bandwidth product, meaning that there 
was enough buffering in the routers so that no TCP segments were lost due to 
congestion. 
 
Figure 3.7 shows the throughput performance of SACK, Reno and Vegas as a function 
of bit-error rate 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
    
 
 

Figure 3.7 Throughput vs. bit error rate. (SACK, Reno, Vegas) 
 
For bit error rate of 10-7, the SACK performance almost the same as the Reno, we think 
that this is because there isn’t many multiple drop in this good condition. For bit error 
rate of 10-6 and 10-5, SACK is shown to greatly improve throughput relative to TCP 
Reno. Reno learns about segment loss slowly, at most one per round-trip, because it 
lacks a selective acknowledgment mechanism. For bit error rate of 10-4, the channe l is 
too noisy for either protocol to exhibit good performance. 
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Vegas always performs better than SACK and Reno except when BER is 10-7. It 
increase 40% in throughput compared with Reno, this verified what the Vegas’s authors 
has claimed in his proposal [3]. Vegas’ improved throughput is primarily a consequence 
of congestion avoidance. Through its congestion avoidance, Vegas drops fewer packets, 
so it experience fewer timeouts, thus retransmits fewer segment than Reno. For larger 
window sizes, Vegas’ congestion avoidance decreases the chance of multiple segment 
drops. Also, Vegas recovers from multiple segment drops better than Reno. We are 
surprising that its throughput is lower when BER is 10-7. This might because in a low 
bit error channel, due to its conservative characteristic, TCP Vegas might gain a little 
lower throughput compared with SACK and Reno.  
 
Overall, How to optimize algorithms which governs use of the SACK information is 
still the subject of research, however the basic algorithms are now be ginning to be 
implemented. Vegas has not been widely implemented and is not universally accepted 
by the Internet community and is still a subject of much controversy.  
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4. TCP burst 
4.1 Introduction: 
 

Next generation GEO satellites will be more advanced and complex, which will carry 
an on board switch to facilitate the telecommunication network. They will form links 
between satellites, provide more flexible access to the end users. Those on board switch 
will act as a router in the terrestrial netw ork. Since it is impossible to arrange big 
components in the spacecraft, those on board switches will not have powerful function 
as the routers in the terrestrial networks do. Therefore, except for high delay and error 
prone characteristics of satellite links, TCP will encounter a new challenge: limited 
buffer size. 
 
TCP is burst in nature, which is due to the burst data transmission. It may lead to poor 
performance because of the limited buffer size. In order to meet better utilization of the 
high delay ba ndwidth product channel, large window size is recommended. However, 
this results in large burst data added to the network in a short interval so that creates 
long queues in the router. 
 
We study TCP burst in order to find out how it influences the TCP performance, and we 
hope our simulation could explain TCP burst over most high delay-bandwidth product 
links rather than focus on the satellite links. 
 
In addition, in our simulation, we tried two types of acknowledgments: basic 
acknowledgment and delayed acknowledgment. Delayed acknowledgment allows TCP 
transmit an ACK for every second full-sized data segment received. If a second data 
segment is not received within a given timeout, an ACK is transmitted [9]. This 
mechanism is widely deployed in real TCP imple mentations. 
 
4.2 Simulation: 
 

a. Simulation scenario: 
 

 

 

        sender                                 router                                                    router                                  sink 

  Figure 4.1 Simulation scenario 

 

b. Some important parameters: 
•  Window size: 128 packets. 

•  Use various buffer sizes to run the simulation with basic acknowledgment and 
delayed acknowledgment respectively.  

 
c. Simulation Result: 

3.1Mbps 1.544Mbps 3.1Mbps 
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• Using basic acknowledgment: 
I. Queue length vs. time with various buffer sizes: 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 
 

 
 

 

 
 

 

 

 
 
 

 
 
 
 
 
 
 
Figure 4.2 to 4.6 show the queue length in the bottleneck with different buffer size. All 
of these figures have a common characteristic: the exponential growth of the queue 
length during the initial period. It represents TCP burst in slow start. After slow start the 
queue occupancy decreases. Also, according to the simulation result, there shows little 
difference between the buffer size of 70 packets and 80 packets. 
 
 
 

Figure 4.2 

 (Buffer size: 40 packets) 

Figure 4.3 

 (Buffer size: 50 packets) 

Figure 4.4 

(Buffer size: 60 packets) 

Figure 4.5 

(Buffer size: 70 packets) 

Figure 4.6 

(Buffer size: 80 packets) 
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II.  Sequence number vs. time with various buffer sizes: 

 

Figure 4.7 Sequence number vs. time (Different buffer size)  

The buffer size has severe impact on TCP performance, however, when the buffer size 
reaches certain amount, it doesn’t influence the throughput any more. The simulation 
results are quite similar when we use the buffer size of 70 packets and 80 packets. 
 
• Using delayed acknowledgment: 

I. Queue length vs. time with various buffer sizes. 
 

 

 
 
 

 
 

 

 
 

 

 

 
 
 

 
 

 

 
 

Figure 4.8 

(Buffer size: 30 packets) 

Figure 4.9 

(Buffer size: 34 packets) 
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From all of the figures above, TCP burst is also significant during slow start period. 
Moreover, TCP burst almost remains the same when using the buffer size of 40 packets 
and 50 packets. 
 

II.  Sequence number vs. time: 

 
Figure 5.12 Sequence number vs. time (Different buffer size) 

 
In our simulation, the buffer size of 40 packets and 50 packets performs almost the 
same. 
 
 
 

Figure 4.11 

(Buffer size: 50 packets) 

Figure 4.10 

(Buffer size: 40 packets) 
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4.3. Analysis: 
 
Some macro burst can be observed during slow start period. This might be explained as 
following: 
All the Acks arrive at the beginning of every RTT, and then TCP sender doubles the 
window size if all the ACKs have received. This causes a large amount of data 
transmission in a short interval, followed by a long idle time especially in a long delay 
network.  

 
TCP burst has significant impact on TCP performance. Insufficient buffer size will 
cause the throughput degraded severely: Burst of TCP would lead to packets drops 
because of the overload of the buffer. Moreover, the burst nature of traffic will increase 
the queuing delay, which may results in extending RTT. Both of these factors would 
directly influence the throughput. 
 
Due to the different ACK mechanism, delayed ACK is less aggressive, so it shows less 
burst compared with the basic ACK algorithm. As a result, it requires less buffer size. 
However, at the same period of time, delayed ACK may achieve a little lower 
throughput than basic ACK. 
 
In a single connection, when using basic acknowledgment, the ideal router buffer size 
should be at least half of the maximum window size (Wmax). During slow start period, 
as the TCP sender receives one acknowledgment, it increases the window size by one, 
and then inject a pair of (two) packets into the network. The router server only has time 
to deal with one of the two packets before the next pair arrives; hence, one of these 
packets accumulates in the bottleneck queue for every pair of packets arriving. 
Accordingly, if the TCP sender increases the window size from Wmax/2 packets to 
Wmax packets, the bottleneck queue has to store Wmax/2 packets or some of the 
packets may drop. Therefore, the ideal router buffer size should be at least half of the 
maximum window size. When using delayed ACK, generally, the TCP sender increases 
the window size about 3 times every two round trip time. With the same logic, the ideal 
bottleneck queue size should be at least one third of the maximum window size 
(Wmax/3). 

 
From our simulation result, increasing the buffer size neither alleviates TCP burst nor 
improves the throughput if the buffer size is already larger than Wmax/2 using basic 
ACK (or larger than Wmax/3 if using delayed ACK). This may help choose a suitable 
buffer size of routers. 
 
Some solutions have been proposed such as paced TCP and pacing ACK, both of which 
are trying to alleviate the TCP burst during slow -start with even smaller buffer size. 
These algorithms may contribute to next generation GEO satellite networks and other 
links, which are suffered from the bottleneck (limited buffer size) and burst traffic. 
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5.Conclusions 
5.1 Conclusion 
 
From the theoretical analysis and simulation, our study shows that three redesigning 
TCP extensions have positive effect in the large bandwidth-delay product environment.  
 
• Larger windows size option can greatly improve the single connection throughput, 

which is limited by the standard TCP. Multiple long-lived connections can also 
fully utilize the channel capacity with small window size. 

• Larger initial window size will be particular benefit for Telnet application in 
satellite links.  

• Suitable maximum segment size will improve the throughput to fully utilize the 
bandwidth. 

• SACK and Vegas have better performance than Reno dose when satellite links is in 
high bit error rate conditions. 

• TCP burst will significantly influence the TCP performance: With insufficient 
buffer size, the throughput will degrade severely. The ideal buf fer size of the 
bottleneck should be Wmax/2 if using basic ACKs or Wmax/3 if using delayed 
ACKs 

 
5.2 The difficulties and what was learned 
 
The difficulty of this project is how to implement ns-2 satellite model, how to set up the 
related parameters and design the simulation.  
 
From this project, we are familiar with the ns -2 simulator, awk function, and tcl/tk 
programming. This will greatly help in our future research. 
 
5.3 Future work 
 
In the simulation, we showed that the larger window size and initial window size 
extensions should be adopted, but there are some uncertainties need to be addressed.  
 
Large window size can lead to more rapid use of the TCP sequence space. Therefore, 
along with large window size, Protect Against Wrapped Sequence Number algorithm 
(PAWS) is required. 
 
Larger initial windows size may increase packet drop rate for a network with a high 
segment drop rate. So how to choose suitable initial window size is still an open 
question. 
 
Furthermore, in this project, we simulate and analyze the behavior of TCP burst. The 
future work can focus on how to solve this problem. Some new algorithms have been 
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proposed to alleviate TCP burst with limited buffer size such as paced TCP and pacing 
ACK. 
 
In the long term, further improvements can be made at the application protocol level by 
extending the current TCP standard. People are exploring Http1.1 for web browse 
application and Xftp for FTP application in long-delay network. Much work needs to be 
done on possible extensions to ensure that they do not negatively affect the Internet as a 
whole.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 21

6. Reference 
 
[1] V. Jacobson, "Congestion Avoidance and Control", In ACM SIGCOMM, 1988. 
[2] J. Mo, R. J. La, V. Anantharam, and J. Warland, "Analysis and comparison of TCP 
Reno and Vegas'', Proceedings of the Conference on Computer Communications (IEEE 
Infocom), New York, Mar. 1999.  
[3] L. Brakmo, S. O'Malley, and L. Peterson, "TCP Vegas: New techniques for 
congestion detection and avoidance", In Proceedings of the SIGCOMM '94 
Symposium (Aug. 1994) pages 24-35.  
[4] K. Fall and S. Floyd, "Simulation-based comparisons of Tahoe, Reno, and SACK 
TCP", SIGCOMM Computer Communication Review, 26(3), July 1996.  
[5] Joanna Kulik, Robert Coulter, Dennis Rockwell, and Craig Partridge, "A Simulation 
Study of Paced TCP", September 1999.  
[6] [RFC 2488] "Enhancing TCP over Satellite Channels", Mailman, and D.Glover, 
January 1999. 
[7] Larry L.Peterson and Bruce S.Davie, "Computer networks: A system approach." 
Morgan Kaufman, 1996. 
[8] [RFC2581] [8] [RFC 2581] "TCP Congestion Control", M. Allmanm, V. Paxson, W. 
Stevens, April 1999. 
[9] [RFC 1122] "Requirements for Internet Hosts—Communication Layers", R.Braden, 
October 1989.  
[10] [RFC 1323] "TCP Extensions for High Performance", V.Jacobson, R.Braden, 
D.Borman, 1992. 
[11] [RFC 2018] "TCP Selective Acknowledgment Option", M. Mathis, J. Mahdavi, 
October 1996.  
[12] [RFC 1191] "Path MTU Discovery", J. Mogul, S. Deering, November 1990. 
[13] http://www-mash.cs.berkeley.edu/ns. 

 

 

 

 

 


